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Abstract: Robot-manipulators with less than six degrees of freedom are
considered as submanifolds of the pseudo-Riemannian Lie group Cs of all
orientation preserving congruences of the Euclidean space. They are general-
isations of quadratical ruled surfaces in Euclidean geometry to the geometry
of Cs. In the paper we discuss the problem of existence of one more “straight”
line of such a submanifold and describe relations of this problem to the ge-

ometry of the motion of robot-manipulators.

The paper is a straightforward continuation of [1] and [2] and
therefore we shall use results and denotations from [1] and [2] without
special reference. In the presented paper we shall limit ourselves to
robot-manipulators with less then 6 degrees of freedom and we shall
treat them as submanifolds of the pseudo-Riemannian homogeneous
space Cjg.

Let us consider a p-parametric robot-manipulator ¢ as the map-
ping

9: RP = Cg : [ug, ... yup] = g(ua,... ,up) = g1(u1). ... .gp(uyp),
where g;(u;) = exp(u;X;) and X1,... , X, are linearly independent vec-
tors from L. ¢ determines an imbedded submanifold of Cs on some
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neighbourhood U(0) of 0 € R?;let us denote g(U) =

Robot manipulators with p < 6 were locally characterized as sub-
manifolds of Cg in [1]; Let us notice that geodesic lines in Cg are left or
right translates of screw-motions (including rotations and translations
as special cases). From the definition of the robot manipulator we see
that M is a submanifold such that it has p independent geodesic lines
passing through each of its points. It was proved in [1], Th. 1, that this
property is also a local characterisation of robot-manipulators in the
general case — if a submanifold of Cg has the above mentioned prop-
erty, it is locally a robot-manipulator (if we consider only rotations and
translations, we have to take isotropic geodesic lines only). This shows
that a robot-manipulator is a generalisation of a quadratical ruled sur-
face in the Euclidean space to the geometry of the pseudo-Riemannian
space Cg — a p-parametric robot-manipulator is characterized as a sub-
manifold of Cg with p systems of straight lines (geodesics) on it similarly
as quadratical ruled surfaces in Ej are the only 2-dimensional submani-
folds with two systems of straight lines on them.

Similarly as in the 6-parametric case we have the coordinate sys-
tem v = [u,...,up] given on ¢ in a neighbourhood U(0) of 0 €
€ R?. The induced pseudo-Riemannian metric is given by the same
formula as in the.6-parametric case, h;; =< Y;,Y; >, where Y] =
= Adg;1 . ..Adg;'_*_llX,-. ‘The affine connection induced by h;; is the
Levi—Civita connection and therefore it is given by the same formula as

in [2],

1 ..
Fij;m=565j<[yri7ytj]7ym> 7',.77m:1,...,p.

The same is true for equations of geodesic lines, which are
u"-l—I”Lu wuy =0 4,5,k=1,...,p,

as in any submanifold of the pseudo-Riemannian space.

From now on we shall consider robot-manipulators with rota-
tional axes only. In this case we have h;; = 0. As the values of
gij, hij, T'ijx depend only on the instantaneous position of axes of the
robot-manipulator, it is not difficult to find the geometrical meaning of
gij, hij, Tij x for a given robot- mampulator

Let Y,,Y.,Y, be three pairwise different axes of the p- parametrlc
robot-manipulator g, (, 7, k) be an even (cyclic) permutation of (g, r, s).
Let us denote aj, the angle of Y;,Y;, a the distance of Y; and Y;, Cy =

= cosag, Sk = sinay. Let ¥ = (zi;v:),Y; = (5595), Y = (z592),6 =
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= |z;,z;,2x] > 0, where z? = :c? =z = 1,(zi,4:) = (2j,y;) =
= (zk,yx) = 0.
Lemma 1. gij = Ci,hij = Skak,P,J,k = 266,‘j5((1;5§(0j0k - Ci)),

where S denotes the cyclzc sum over (1,7, k).
Proof. Let us write y; = m?z,. We have (z;,z;) = Chk, (zi,y5) +
+(:1:J,y,) = a Sk, <[Y1,Y] Yk>—|mn$]a ykl+lxn y17$k|+ lyn x]’xkl
= 5Tr(m). iS5 = (25,ue) + (ox,35) = (a3,mizs + mie; + mbzs) +
+(zk,m z;+m’ z]+m :ck) kak-i-mk—l—m C; +m; C; +m C; +m
§[a;Si(CiCr — C;)] = SmiC;C? +mi 2Ck +(mk+mf)C’ Ck +(mk+

+m})CiC;Cy — m.CiCr — miC;C; — (m,c +mk)C; — (mk +m})C?] =
= S[-miC;S? — m} C’k52 + (mk + m])(C'C' Cy—C?] = S’[m’S2
+(mk+m’)(C’ C; C’k _02)] = 62Tr(m) because (zj,y;) = (z_,,m 2+
+m’ JTitms kry) = mi Ck—l—ka +m =0, 62 = 2C; C; Ck+.5'2 C?-C?
and the formula follovvs O

To give more insight into the formula for Tijk, let us consider a
3-parametric robot-manipulator with axes Y; = (zy; Y1), Y2 = (z2;y2)
and Y3 = (z3;y3). Let Z3 be the axis of ¥; and Y3, Z; be the axis of Y,
and Y3, uy be the angle between Z3 and Z;, d, be the distance between
Z3 and Z;. a; be the distance of Y; and Y3, a3 be the distance of Y:
and Y;. We have the following (c; = cosug, $2 = sin ug)
Lemma 2. 4T, 3= —52(010153 + agSlC'g) dycy 5153,
Proof We have Z3 St (zy X 9521 X yg +y1 ><:c2 +C'3a35' T1 X Zg),

S ($2X$3,£B2Xy3 +y2x:03+C1a15 .112)(1?3) (.’131>($2,$2X
X .’123) = 625153 = 0103 Cg, d232 = S 15 1(C3a1.5'1 + 010,353 -
- a25'2 + Cla1c253 + C3CL36251) and hence

25y = C301581 + C1a353 + C1a16353 + C3a3¢58) — dps3.5, 5.

This yields

0 0 .
4F12,3 = B—u;(hla) = 'a—u—z(azsz) = —Sz(alc'lsa+0351C'3)'—d2025153- 0

Now we are going to study the relation between the Levi-Civita
connection on M, which is determined by the induced scalar product
on M and the Cartan connection on Cy. For the Cartan connection V
we have the following splitting:

1
(1) Vy,Y; = 55;,'([1’,-,1/,-]1 + [Y5,Yj]a),

where [Y;,Y;]; denotes the component into the tangent space of the
submanifold M into the space ¥ = {¥7,...,Y,} generated by vectors
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Y1,...,Y,. [Yi,Y;]2 denotes the component into the orthogonal com-
plement Z =Y of Y in L with respect to the Klein form.
Remark. It is convenient to translate the tangent space of Cg at the
point g to the Lie algebra L by left translations, Y; = Lg—-l(a%i‘)g. The
splitting (1) is invariant, because the Klein form is invariant. We have
to suppose that M is a submanifold of the pseudo-Riemannian manifold
Cs, which requires the tangent space of M to be non-degenerated in
the induced metric. In this case L is the direct sum of Y and Z =Y.
Let Zs,a=p+1,...,6,beabasisin Z =Y+ Y = {13,... Yy}
We have
si = [V Vi = Th¥i, Leiil¥:, Yl = HY 2,
,5,k=1,...,p;a=p+1,...,6.

(1) now reads as .
(2) %si,-[yi, Y;] =TEY: + HE Z,.
Scalar multiplication of (2) by Y7, yields I'y; m = fij,m, t,j,m=1,...,p,
which gives the relation between the Cartan connection on Cg and the
Levi-Civita connection on M. I';; », are Christoffel symbols of the Car-
tan connection for any 6-parametric robot-manipulator, which has axes
of the given p-parametric robot-manipulator as its first p axes. Scalar
multiplication of (2) by Z; yields

seis <[V ¥il, Zy>= HY <20, 2>,
which determines H fj, because the matrix < Z,z, Zp > is nonsingular.
Coeflicients H%,1,5 =1,... ,p;ja=p+1,...,6 determine the so called
second metric tensor of the submanifold M. The second metric ten-
sor is a bilinear form on T(M) with values in T(M)L. With respect
to the second metric tensor there is a fundamental difference between
the classical geometry of submanifolds of multi-dimensional Euclidean
spaces and geometry of submanifolds of Cs: ,

The geometry of Cg gives the possibility to define a canonical or-
thonormal basis in each space T(M)* for p = 2,...,5 in a way, which
is independent of the geometry of the submanifold M. Such a construc-
tion is in the Euclidean geometry possible only for codimension 1.

To construct the canonical basis in T(M)L, we have to know
whether the tangent space T,,(M) at the point m € M is degenerated
or not. Let us discuss this problem at first. The tangent space T,(M)
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is non-degenerated iff the matrix h;; of the fundamental metric tensor
is non-singular, det h;; # 0.

Let an instantaneous position of a p-parametric robot-manipulator
be determined by axes Yi,...,Y, € L. Then h;; =< Y;,Y; >;¢,j =

=1,...,p.hij = %a,-j sin a;j, where a;; is the distance of Y; and Yj, a;;
is the angle of Y; and Y. For instance for p = 2 we have
0 ki 2
det h1] = h12 0 =*—h12,
for p = 3 we have
0  hiz his
det h,’j = h12 0 h23 = 2h12h23h13.
hiz hez 0O

For the description of a p-parametric robot-manipulator we shall
use the so called Denavit-Hartenberg parameters: Let X1,...,X, be
axes defining the robot-manipulator, ¥3,...,Y, be any instantaneous

position of X;,...,X,. Let a; be the distance of X;, X;11, a; be the
angle of X;, X;11, di;1 be the distance of the axis of lines X;, X;4; from
the axis of lines X;11, Xit2 (the offset), u; be the angle of those axes.
We write S; = sina;, C; = cos a;, 8; = sinu;, ¢; = cos u;.

Lemma 3. 4 2-parametric robot-manipulator is a submanifold of Cg

iff a151 # 0 and it has indez 1. A 3-parametric robot-manipulator is a
submanifold of Cg iff

41625152 # 0,d3 + (af — a3)? + (cot? oy — cot? az)? # 0.
It has indez 1 or 2 according to the sign of hizhazhas.
Proof. We use the expression for ki3 in the proof of Lemma 2. {
Remark. Any p-parametric robot-manipulator has nonzero index be-
cause it has isotropic lines (rotations).

For p > 3 we have more complicated situation, but similarly as
in Lemma 3 we can see that the equation det h;; = 0 is algebraic in
cosu; and sinu;. Such an equation can be changed into an algebraic
equation by a suitable substitution. This means that either the equation
det h;; = 0 is identically satisfied or the set of positions, for which
det h;; # 0 is dense and open. This justifies our assumption that the
induced metric is defined on M and we can write (1).

Now we shall construct the canonical basis in T, (M), Let p =
= 3 and let Z = T,,(M)*+ = {X;,Xs,X3} be a nondegenerated 3-
dimensional subspace in L, let us write X; = (y;;2;). Let us consider
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only the general case, for which vectors y; are linearly independent. We
can choose the basis {X;} in such a way that y; are orthonormal. Then
zi = mly;. Let {y!} = v{y:} be another orthonormal triple, v € O(3).
Then
{2} = vz} = ym{yi} = ymy"{yi}, m = (mi).

We obtain a new matrix m' = ym+y7. This means that we can choose
the basis in the space Z in such a way that the symmetric part of m is
diagonal (the symmetric and skew-symmetric parts of m transform sep-
arately). This procedure means geometrically the transformation of the
ruled hyperboloid determined by Z to the main axes. We also see that
the canonical system of coordinates in Ty,(M)* yields immediately a
canonical basis in Tp, (M), because Tp, (M) determines the other system
of straight lines on the same hyperboloid.

For p = 4 we obtain a similar situation. The space T;,(M) de-
termines a linear congruence and Ty,,(M)' determines axes of this con-
gruence. These axes determine the canonical basis — see for instance
[1].

The 5-dimensional case is obvious — the orthogonal complement
is one-dimensional. Geometrically it means that we have to find the
axis of a linear complex. The degeneration of the induced metric has
obvious geometrical meaning in this case: the induced metric in T, (M)
is degenerated iff all axes of the robot-manipulator intersect one straight
line. The linear complex determined by T, (M) is special in this case
and the orthogonal complement Z = T,,(M)t is a one-dimensional
isotropic subspace and the induced metric degenerates.

The most interesting case is the case p = 2. Let X7, X, be two
straight lines such that < X;,X; ># 0.Let Y be the 3-dimensional
subspace in L generated by vectors X, Xo, X3 = [X1,X>]. Let X =
= m;X; € Y be an arbitrary vector. Then < X, X >= a;51(mimg —
m2Ch), because < [X1, X»],[X1, X2]>= —a;C1S1. This shows that Y is
nondegenerated iff a;C1.57 # 0. In this case we obtain a 3-dimensional
complement Y1 in which we construct the canonical basis in the same
way as for the case p = 3. Because < X, X3 >=< X3, X3 >= 0 we have
X3 € {Xl,Xg}J‘ and we have a canonical basis in Tm(M)J‘.

A submanifold M of a pseudo-Riemannian manifold is called flat
at the point m € M iff the second metric tensor H = 0 at m. M is
called totally geodesic iff it is flat at all its points.

Theorem 1. Let g: R? — Cg be a p-parametric robot-manipulator
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with only rotational azes. If g is flat at one of its points, it is totally
geodesic. Then S; =0 fori=1,...,p—1ora;=0fori=1,...,p—
—landd; =0 forj=2,...,p~1;p=3,4,5. A 2-parametric robot
manipulator has no flat points.

Proof. Let g be determined by vectors X3,...,X, € L. H = 0 at the
point 0 € R? shows that the component of [X;, X ;] into the orthog-
onal complement {Xj,...,X,}* is equal to zero. This means that
[X:, X;] must be a linear combination of Xj,... ,X,. This shows that
{X1,...,X,} must be a subalgebra generated by rotations. There are
only two such subalgebras, the algebra SO(3) of the group of all spher-
ical motions and the Lie algebra of the group of all congruences of
the plane E;. This follows that all axes of the robot-manipulator pass
through one point or all of them are parallel. ¢

Remarks. 1. Strictly speaking we have to suppose p = 3, because for
p =4 and p = b vectors Xy,... ,X, are not linearly independent. In
that case we consider the manifold M = g(RP) as a subset of Cj.

" 2. If we admit robot-manipulators with translational (prismatic)
and screw joints, we obtain all connected subgroups of Cs as totally
geodesic submanifolds generated by robot-manipulators. Their list can
be found for instance in [3].

3. Th. 1 shows that robot-manipulators have one more property of
ruled quadratical surfaces in E3 — if such a quadratical surface has one
flat point, it splits into planes. Let us remark that robot-manipulators
with only rotational axes are generalisations of the one-sheet hyper-
boloid, robot-manipulators with prismatic joints are generalisations of
the hyperbolic paraboloid.

Robot-manipulators with a; = 0,7 = 1,... ,p — 1 will be called
spherical robot-manipulators, robot-manipulators with S; = 0, i =
=1,...,p—1 will be called planar robot-manipulators. A curve ¢(t) on
a pseudo-Riemannian submanifold M is called asymptotic iff H(c'(t)) =
= 0, where c'(t) is the tangent vector of ¢(¢). This shows that a geodetic
curve on M is asymptotic iff it is a geodetic curve of the enveloping space
of M. This means that a p-parametric robot-manipulator is character-
ized as a submanifold with p independent asymptotic geodesic curves
passing through each of its points. (Independent means independent
tangent vectors and the statement is true only for regular points.)

In the next part of the paper we shall consider some special prop-
erties of robot-manipulators. For instance we may ask if there ex-
ist robot-manipulators which have one more asymptotic geodesic line
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(apart from those given above). The answer is positive because to-
tally geodesic robot-manipulators have all geodesic lines asymptotic.
Interesting question is whether there are some other solutions. In the
Euclidean geometry of E5 the answer is negative — if a ruled quadrat-
ical surface contains one more straight line it must be flat. For robot-
manipulators we have nontrivial solutions of this problem — for instance
the so called Bennets mechanism is one of them and some other cases
are known. The general solution of this problem is not known. The
above mentioned problem is not uninteresting from the practical point
of view, because an asymptotic geodesic curve on a robot-manipulator
with less then six degrees of freedom means a translation, rotation or
a screw-motion. This means that we ask whether the end-effector of
such a robot-manipulator can perform a rotation different from the ro-
tation around one of its axes or if it can perform a translation or a
screw motion. We shall see that this problem is closely connected with
some other problems concerning robot-manipulators. To simplify our

language we shall introduce some definitions:
Definition 1. A p-parametric robot-manipulator is called singular iff

dim{Y3,...,Y,} < p for all positions of the robot-manipulator. We
say that a p-parametric robot-manipulator has an additional degree of
freedom iff there exists such a location of the end-effector (uncertainty
position) that its joints can move with the end-effector fixed.
Remark. For instance the spherical and planar robot-manipulators
are singular for p > 3. Robot-manipulators with p > 6 have additional
degree of freedom at most of their positions; therefore we shall suppose
< 6.
i Because we can identify the coordinate system in the moving space
with the one in the fixed space for any fixed location of the end-effector,
we can write the equation for the additional degree of freedom in the
form
(3) g1 (). ... 05 (up(8)) = e,
where u;(t) are functions of one parameter ¢ and at least one of these

functions is not constant.
Let us denote by S, the subgroup of all permutations of numbers

(1,...,p), which is generated by the cyclic permutation (1,...,p) —
— (p,1,...,p—1) and by the permutation (1,... ,p) — (p,p—1,...,1).
The group S, operates on vectors Xy,... , X, in a natural manner.

Lemma 4. The group S, preserves the property of additional degree of
freedom.
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Proof. Let g1...gp =e. Then g1...gp—1 = g;l and g,g1...9p-1 = e.
Similarly g; (up) ... g7 (u1) = eand gp(~up)...q1(~uw1) =e. O
Lemma 5. Let the p-parameiric robot-manipulator g have an additional
degree of freedom. Then there exists a robot-manipulator g' S, equiva-
lent with g, such that the (p—1)- parametric robot-manipulator obtained
from g' by leaving out the last azis has an additional asymptotic geodesic
curve.

Proof. Let g1(ui(t))...gp(up(t)) = e for functions uq(t),...,up(t).
Then there exists a, 1 < a < p, such that u,(t) is not constant. This
yields

9a(ta(t))-gat1(tat1(t)) - - - gp(up(t))-g1 (w1 (£)) - - Gam1(ua—s(t)) =€
and therefore

ga+1(Uat1(8)) ... gp(up(t))-g1(u1(2)) - .. gam1(ta=1(t)) = ga(—ua(2)).
We change the parameter to w = —u,(¢) and obtain a geodesic asymp-
totic line g,(w) on the (p — 1)-parametric robot-manipulator

ga+1(ua+1) ce gp(up)'gl (ul) te ga-—l(ua—l)- <>

Lemma 6. A (p— 1)-parametric robot-manipulator with additional as-
ymptotic geodesic curve determines a p-parametric robot-manipulator

with additional degree of freedom.
Proof. Let u;(t) be the parametric expression of the additional asymp-
totic geodesic curve, 1=1, ..., p—1. This yields g, (u1(2))...gp1(vpa (t) =
= g(t), where g(t) is a rotation or translation. This means that the
p-parametric robot-manipulator g1 (u1)...¢p—1(up-1) - 97 (up) has an
additional degree of freedom (g(u,) must be different from g,—1(up—1),
because g = g,-1 leads to g1(ui(t)). .. gp—2(up—2(t)) - gp—1(up-1(t) —
—t) = e, which shows that the given robot-manipulator has an addi-
tional degree of freedom and the problem is trivial). ¢
Remark. The p-parametric robot-manipulator from Lemma 6 can be
singular.

As the dimension of the vector space generated by vectors Y7, ...,
Y, is constant on an open and dense set in R?, we can define this dimen-
sion as the rank of the robot-manipulator. It is the maximal dimension
of the tangent space of the robot-manipulator. Obviously, singular

robot-manipulators have rank less then the number of parameters.
Theorem 2. Let g be a p-parametric robot-manipulator of rank p —s.

Then g has s independent additional degrees of freedom.
Proof. Let at first s = 1. Vectors Y3,...,Y, are linearly dependent for

all u € RP. This means that there exist functions m(us,... ,u,), ...
mp(u1,... ,up) such that

)
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> mi(ua)¥i(ua) =0,

where we can suppose that m; are differentiable on an open subset of R?.

Let us consider the following system of ordinary differential equations
du;

(®) B i)

Let u;(t) be an arbitrary solution of (4). Let us consider the following

expression:

[92(us(t))- - gp(up(E)] g1 (ua())- ... gp(up()] ™" =

dgi _1 dga _1 _1_ 4 dgp 4 ~1,1
=Eu—1-g1 .u1+g1(—j—u—2—g2 91 u2+...+g1...gp_1—czl—;gp cn g Up =

= lel +...4+ Ad(g1 . .gp_l)Xme =0

’ :

because > m;Y; = 0. This yields [g1(u1(2))...gp(up(t))] = 0 and
=1

g1(u1(t)) ... gp(up(t)) = =, where v € Cs is constant. We can change

the representation of the robot-manipulator to have v = e. (If g; (uy())
.o gp(up(t)) =7, we have v = g1(u1(t,)) . . . gp(up(t,)) for some ¢,, let
us denote ¢;(ui(t,)) = 7vi.) Let for simplicity p = 3, other cases are
similar. We obtain
e= 0192957 Yz 1 = g1 mlg2ve ) vva(gsys (1) T

Because gwi—l = gi(ui(t) — ui(t,)), we obtain an another position of
the same robot-manipulator and we have a solution for the additional
degree of freedom. Let us remark that the choice of initial conditions
ui(t,) = u? for (4) shows that any position of the robot-manipulator
leads to an additional degree of freedom.

The proof for s > 1 is similar, but we have to show at first that
the corresponding system of partial differential equations satisfies the
integrability conditions. To simplify denctations, let s = 2,p = 6. This
means that the dimension of the vector space generated by Yi,...,Ys
is equal to 4 on some open subset of R%. This yields '

6 6
(5) > Yimi(ua) =0, Y Yini(us) =0,
=1 i=1

where we can suppose m; = 1, mg = 0, n; = 0, np = 1. Let us consider
the following system of partial differential equations
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Ou; Ou;i
(6) 6t - m:(ua)’ _6_1" - nz(ua)-

Differentiation of (6) yields
8%u; Bm, 8ua Bm, Bn,
otor o Z 3ua Z
Integrability conditions are

6
Zl(ng:na—ggima) =0 for ?':1,... , 6.

Differentiation of (5) yields

(7)

i(%mi+y"g§i) =0; Z(Zj n'+Y§ua) =0fora=1,...,6.

1= 1=

We multiply the first equation of (7) by n,, the second one by m,, add
them over a and subtract the results. The result is

Zy{z(é‘mz _ g_Zima)} + Z g?; (ming —nim,) = 0.

i,a=

From [2] we know that

0Y; . 0Y; .
= < = |Y; .
u. Ofora <1, B [V;,Y,]fori > a
This yields
6Y
= Z[ifiaya}mina + E[K,Ya]mina == E [Y’i,Ya]mina - 0,
i>a i<a i,a=1

because

0= [inmi,inna] ZG: [V, Yalmina.
i=1 a=1

1,a=1

We have obtained

(’)m, 6TL,’
;Y{;(aua ~ )} =0
The dimension of the vector space generated by Y;,...,Ys is four and
therefore there exist functions A(u,), u(u,) such that
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(200, - 2n,) < i 4 pn

2o BUa a auG al = i T U4,

Substitution for ¢ = 1 and 7 = 2 yields A\ = g = 0. This finishes the
proof. {

So far we have proved the following implications for properties of
robot-manipulators:

singular — additional degree of freedom at each position;
totally geodesic — additional asymptotic geodesic curves;
totally geodesic — rank equal to 3;

additional degree of freedom = additional asymptotic geodesic
curve in a partial robot-manipulator.

It is not difficult to show that the only singular robot-manipulators
of rank 3 (and therefore p > 3) are spherical and planar robot-mani-
pulators. The problem of the classification of all robot-manipulators
with additional degree of freedom remains open. (It includes the clas-
sification of all singular robot-manipulators and the classification of
robot-manipulators with additional geodesic asymptotic curve.)

There is a 1-1 correspondence between motions of robot-manipu-

lators with additional degrees of freedom and closed kinematical chains,
which have possibility to move. To show it we prove the following
Lemma 7. Let g1(ui(t))...g,(up(t)) = e for functions u;(t),i =
=1,...,p. Let us denote d, the offset between azes Y,_1,Y, and Y,, Y3
and ssmilarly for dy. Then <Yi(t),Yy(t) >, K(Y1(t),Yy(t)),dp and dy
are constant.
Proof. We have Yy = Ad(g: ... gk-1)Xk, where X} is the initial posi-
tionof ¥z, k =1,...,p. Thisyields¥; = X, Y, = Ad(g1 ... 9p-1)X, =
= Ad(g, )X, = X, and therefore <Y1, Y, >=<X1,X,>, K(1,Y,) =
= K(X1,X,). Let now S, = sina,, Cp = cos a,, where a, is the angle
between Y, and Y;. Calculation yields

—dpS2_15% = S¥|2p—1,vp—1, 25| + |25, Vp, Zp—1|Cp_1]—
- 3_1[l21,v1,2pl + IZP,vp,zllcp],

where Y; = (z;;v;) fori =1,...,p. As Y1 = Ad(g; .. gp—2)Xp_1 =
= Ad(g1...9p-1)Xp-1 = Ad(g;')Xp-1, it is easy to show that
|2p—1,Vp—1, 2p| + |2, Vp, 2p—1|Cp—1 is invariant with respect to up. Q
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