Mathematica Pannonica
5/2 (1994), 203 - 212

COMMUTATIVITY RESULTS FOR
RINGS THROUGH STREB’S CLAS-
SIFICATION

Hamza A. S. ABUJABAL

Department of Mathematics, Faculty of Science, King Abdul Aziz
University, P.0. Boz 81464, Jeddah 21497, Saudi Arabia

Received January 1994
AMS Subject Classification: 16 U 80

Keywords: Commutativity of rings, ring with unity, s-unital rings, Streb’s
classification.

Abstract: An associative ring R is commutative if (and only if) for each
z,y € R, there exist integers m > 0, n > 0 and f(X), g(X),h(X) € X2z [X]
with f(1) = %1 such that [z,yz™ — f(y)z™] = 0 and [z — g(z),y — h(y)] = 0.
Further, we extend this result for one sided s-unital rings.

Throughout this paper, R will denote an associative ring with
center Z(R), and C(R) the commutator ideal of R. Let N(R) be the
set of nilpotent elements in R, and let N*(R) be the subset of N(R)
consisting of all elements in R which square to zero. A ring R is called
left (resp. right) s-unital if z € Rz (resp. z € zR) for every z € R.
Further, R is called s-unital if z € ReNzR for all z € R. If R is
s-unital (resp. left or right s-unital), then for any finite subset F' of R,
there exists an element ¢ € R such that ez = ze = z (resp. ez = z or
ze = ) for all z € F. Such an element e will be called a pseudo (resp.
pseudo left or pseudo right) identity of F'in R. We denote by Z <X,Y >
the polynomial ring over Z the ring of integers, in the non-cummuting
indeterminates X, and Y. As usual Z[X] is the totality of polynomials
in X with coefficients in Z and for any z,y € R, [z,y] = 2y — yz. For
any positive integer d, we consider the following ring property:
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Q(d): if z,y € R, and d[z,y] = 0, then [z,y] = 0.
By GF(q), we mean the Galois field (finite field) with ¢ elements,
and (GF(q)), the ring of all 2 X 2 matrices over GF(g). Set e;; =

L0 0 1 0 0]. '
:[0 O],em:[o 0],and622=[0 1]1n(GF(p))2forapr1me

In [7, Prop. 2], Komatsuo et al. proved the following important
result:
Proposition 1. Let R be a ring generated by two elements such that the
commutator ideal C(R), is the heart of R and C(R)R = RC(R) = 0.
Then R 13 nilpotent.

In view of Prop. 1, we see that Streb’s Theorem of [8] can be
stated as follows:
Theorem S. Let R be a non-commutative ring (R # Z(R)). Then
there ezists a factor subring of R which is of type (a)i, (a)i, (b), (c),
(@), (e), (£) or (o)

. |GE(p) GF(p) :
(a); 0 GF(p) | p a prime.
) 0 GF(p) .
(a)i 0 GF(p)|’ p a prime.
(b) M,(K) = [g n(ba)] | a,b e K}, where K is a finite field
with @ non-trivial automorphism n.
(c) A non-commutative division ring.
(d) A non-commutative ring with no non-zero divisors of zero.

(e) A finite nilpotent ring S such that C(S) s the heart of S and
SC(S)=C(5)S =0.

(f) A ring S generated by two elements of finite additive order such
that C(S) 1s the heart of S, SC(S) = C(S)S =0, and N(S) s
a commutative nilpotent ideal of S.

(g) A simple radical Ting with no non-zero divisors of zero.

Further, from the proof of [8, Korollar 1], we have the following:

Theorem ST. Let R be a non-commutative ring with 1. Then there

exists a factor subring of R which is of type (a);, (b), (c), (d), (d)’, (&)’

or (e)":

(a); [GF(;(p) gggg;] , P a prime.

(b) M,(K) = {[g n(ba)] | a,bc K}, where K 13 a finite field

with ¢ non-triviel automorphism 1.
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(c) A non-commutative division ring.

d A non-commutative Ting with no non-zero divisors of zero.

(d)) T =<1> 4S5 is a finite integral domain, where S is a simple
radical ring.

(d) A non-commutative ring with no non-zero divisors of zero.

(e) T =<1> +S, where S i3 a finite nilpotent ring such that C(S)
is the heart of S and SC(S)=C(5)S=0.

(e)) T =<1> 48, where S is a non-commutative subring of T
such that S[S,S] =[5,S5]S =0.

Now Th. S and Th. ST give the following Meta Theorem which
plays an important role in our subsequent study.

Lemma 1 (Meta Theorem). Let P be a ring property which is inherited

by factor subrings. If no rings of type (a)i, (a)ii, (b), (c), (e), or (g),

(f) (resp. (a)i, (b), (c), (), (d)', (&)’ or (e)") satisfy P, then every ring

(resp. every ring with unity 1) satisfying P is commutative.

Our objective is to prove the following results.

Theorem 1. Let R be a ring. Then R is commutative if (and only if)

for each z,y € R, there exist integers m > 0, n > 0, and f(X), g(X),

h(X) € X2Z[X] with f(1) = %1 such that [z,yz™ — f(y)z"] = 0 and

[z —g(z),y — h(y)] = 0.

Theorem 2. Let R be a right s-unital ring, and let m and n be non-

negative integers. Assume that for each y € R, there exists f(X) €

€ X?Z[X] such that [z,yz™ — f(y)z"] = O for all z € R. Then R is
commutative.

Theorem 3. Let R be a right (or left) s-unital ring. Then the following

are equivalent:

(1) R is commutative.

(i1) For each z, y in R, there ezxist non-negative integers m > 0,
n >0 and f(X) € X2Z[X] with f(1) = £1 such that [z, yz™ —
— f(y)z™] = 0, and for each € R, either = € Z(R), or there
ezists g(X) € X2Z[X] such that z — g(z) € N(R).

(i)  For each y € R, there emists f(X) € X°Z[X] with f(1) = £1
such that [z,yz™ — f(y)z"] = 0 for all z € R, provided m,n
are fized non-negative integers.

Theorem 4. Let R be a right s-unital ring. Suppose that R satisfies a

polynomaal identity

[f(‘Y)aY]Xm + /\(Xv Y)[X,g(Y)])\*(X,Y) =0,

where m 18 a non-negative integer, A(X,Y) and X\*(X,Y) are monic

monomials in L <X,Y>, f(X) and g(X) are polynomials in XZ[X] with
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f(1)==1 and g(1)==+1, and every monomial of A(X,Y)g(Y)A*(X,Y)
has degree > 2 in Y. Suppose that n = (f'(1),4'(1)) is non-zero, where
f(X) and ¢'(X) are the wsual derivatives of f(X) and g(X) respec-
twely. If R satisfies the property Q(n), then R is commutative.

Following [4], let P be a ring property. If P is inherited by every
subring and every homomorphic image, then P is called an h-property.
More weakly, if P is inherited by every finitely generated subring and
every natural homomorphic image modulo the annihilator of a central
element, then P is called an H-property.

A ring property P such that a ring R has the property P if and
only if all its finitely generated subrings have P, is called an F-property.
Lemma 2 ([4, Prop. 1]). Let P be an H-property, and let P' be an
F-property. If every ring R with unity 1 having the property P has the
property P’, then every s-unital ring having P has P'.

Lemma 3 ([3, Th.]). If for every z, y in a ring R, we can find a
polynomial py () with integer coefficients which depend on z and y
such that [z%p, 4(z) — z,y] = 0, then R is commutative.

Lemma 4 ([1, Lemmal). Let R be a ring with unity 1. If for each z,y €
€ R, there ezists an integer m = m(z,y) > 1 such that z™[z,y] = 0,
or [z,y]z™ = 0, then necessarily [z,y] = 0.

Lemma 5 ([5, Th.]). Let f be a polynomial in non-commuting inde-
terminates x1,T3,...,T, with coprime integer coefficients. Then the
following statements are equivalent:

(1) For any ring R satisfying f =0, C(R) 1s a nil ideal.

(2) For every prime p, (GF(p))2 fail to satusfy f = 0.

In [2], Chacron defined the cohypercenter C'(R) of a ring R as
the set of all elements a € R such that for each £ € R there holds
la,z — f(z)] = 0 with some f(X) € X?Z[X], which is a commutative
subring of R ([2, Remark 12]). Indeed Chacron proved the following
result:

Theorem C (Chacron, [2]). Suppose that R satisfies the following con-

dition:

(C) For each z,y € R, there ezist f(X),g(X) € X*1[X] such that
[z — f(z),y — g(v)] = 0.

Then we have the following:

(1) C'(R) is a commutative subring of R containing N(R);

(2) N(R) 1s a commutative ideal of R containing C(R);

(3)  N(R)C'(R),R]=[C'(R),RIN(R) = 0 and [C'(R), R] € N*(R).
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In this paper, we hall study rings satisfying condition (C) of Th. C
by making use of the recent result of W. Streb [8], which we called
Streb’s classification. v ‘
Theorem SC (Streb [8]). Suppose that a ring R satisfies the following
condition:

(SC) For each z,y € R, there ezists a polynomzal f(X,Y) €
€l<X, Y>[X Y7 <X,Y > each of whose monomial terms is
of length > 3 such that [z,y] = f(z,y).

Then there ezists no factor subring of R which 1s of type (e) or (f).

Therefore, if R is mon-commutative, then there exists a factor subring

of R which is of type (a), (b), (c) or (d).

The next result is crucial in our subsequent study is immediate
by Th. C, and Th. SC.

Theorem KT. Suppose that a ring R satisfies (C). Then there ezists
no factor subring of R which is of type (c), (d), (e) or (f). Therefore,
if R is non-commutative, then there exists a factor subring of R which
is of type (a) or (b). .
Proof of Th. 1. Let Pibe prime. Consider the ring [GF(’)(p) : gigg] )
Set x = eg3 and y = eyy in our hypothesis to obtain :

[e22, e12e5; — fe12)eqs] # 0
for all integers m >0, n>0 and f(X)€ X2Z[X] with f(1)= +1. Fur-
ther, consider the ring M,(K), a ring of type (b). Let z = [g 77(0‘/)} ,
(n(7) # ) and y = e12. Then

[z,y2™ = f(y)2"] = [z,y]z™ = y(y = ()™ # 0
for all integers m > 0, n > 0 and f(X) € XZZ[X] Hence, R is
commutative by Th. KT. ¢ :
Corollary 1. Suppose that for each z,y € R, there ezist integers | > 1,
m>0,n>0, and f(X),g(X) € X?Z[X] such that [z,yz™ —y'z"] =0
and [z — f(z),y — g(y)] = 0. Then R is commutative.
Lemma 6. If R is a right s-unital and not left s-unital, then R has a
factor subring of type (a);.
Proof. There exists ¢ € R such that z ¢ zR, (R is not left s-unital).
Let e, f € R such that re =z and ef =e. Thenzf =z. Put y =z —
— fr. Theny # 0, y2 =0, ye = y and ey = 0. Let M be an ideal of
< e,y > which is maximal with respect to y ¢ M. Put I =<e,y> /M,
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E=e+M,j=y+ M. Thus ye = § and &j = 0 = §*. So we have I =
=<e&>+¥yZ and 7 is the smallest non-zero ideal of I. Hence §Z is an irre-
ducible right <€>module. Next, we can see that 4 = {s e<e> |gs=0}
is an ideal of I which does not contain 7, so A = 0. Therefore <é&>
is a commutative primitive ring and so a field. Since €2 —& € A = 0,
I =¢el @yl is of type (a). O ,

Proof of Th. 2. Trivially, we can check that no rings of type (a); or
(b) satisfy our hypothesis. In view of Lemma 6, R is s-unital. Hence,
by Lemma 2, we may assume that R with 1. If m = n = 0, then [z,y —
— f(y)] = 0. Therefore, R is commutative by Lemma 3. Henceforth,
we may assume that m > 0, or n > 0. Then z = ey and y = e
in (GF(p)): p prime, fails to satisfy [z,y]z™ = [z, f(y)]z". Hence,
by Lemma 5, R has no factor subrings of type (d). Further, suppose
that R has a factor subring T of type (e)’. Take s,t € S such that
[s,2] # 0. Then there exists f(X) € X2Z[X] such that [s,t] = [s,](s +
+1)™ —[s, f(¢)](s + 1)™ = 0, which is a contradiction. Therefore, R is
commutative by Lemma 1. {

Lemma 7. Let R be a ring with 1. Suppose that for each z,y € R,
there ezists non-negative integers m, n and f(X) € X?Z[X] such that
[z,yz™ — f(y)z™] = 0. Then N(R) C Z(R).

Proof. Suppose that a € N(R), and a € R. Then [z,a]z™ =
= [z, fi(a)]z™, for m; > 0, ny > 0, and some f;(X) € X?Z[X]. Also,
[z, fi(a)]z™ = [z, f2(f1(a))]z™2, for some my > 0, ny > 0, and some

f2(X) € X?Z[X). Thus
[:c,a]a:m1+m2 = [$,f2(f1(a))]$"1+"2_
Continuing this process, we can see that
[17, a]wm1+...+mt — [SL’, ft( .. fl(a) . )]$n1+...+nt’

for some my > 0, ny > 0 and some fr(X) € X2Z[X], k =1,---,t.
Since a € N(R), for sufficiently large ¢, we get

o, a4 =,
and so
[.’II,CL](.’E + 1)m1+"'+mz — 0’

for my +---4+m; > 0. By Lemma 4, [z,a] = 0. Thus, N(R) C Z(R). ¢
Proof of Theorem 3. It suffices to show that each of (ii) and (iii)
implies (i).
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(i1)=(1): Consider the ring (GF(p))2, p a prime. Then we see that
(€22, e12€5% — f(e12)el,] = e12 # 0, for any integers m > 0, n > 0 and
f(X) € X?Z[X] with f(1) = £1. Accordingly, R has no factor subrings
of type (a);. Thus in view of Lemma 6 and its dual, R is s-unital. By
Lemma 2, we may assume that R has unity 1. Since N(R) C Z(R),
by Lemma 7, R satisfies all the hypotheses of Th. 1. Therefore, R is
commutative.

(ii))=(i): In case m > 0, we have shown above that R has no
factor subrings of type (a)i;. If m = 0, then we consider in (GF(p))2, p
a prime, = = €59 and y = e, in our hypotheses to obtain [es2, 1255 —
— f(e12)ed,] # 0 for any integer n > 0 and f(X) € X?Z[X]. Hence, R
has no factor subrings of type (a);. In view of the dual of Lemma 6,
if R is left s-unital, then R is also right s-unital. By Th. 2, R is
commutative. §

Corollary 2. If R is a right (or left) s-unital ring, then the following

conditions are equivalent:

(1) R 1s commutative.

(2) For each z,y € R, there exist integers [ > 1, m > 0, n > 0 such
that [z,yz™ — y'a™] = 0, and for each ¢ € R, either z € Z(R)
or there ezists f(X) € X?Z[X] such that z — f(z) € N(R).

(3) For each y € R, there exists an integer | > 1 such that [z, yz™ —
—y'z™] = 0, for all z € R, where m, n are fized non-negative

integers.
Following Kobayashi [6], let © be the additive mapping of Z <X, Y >
to Z defined as follows: For each monic monomial X, -+, Xy, (X is

either X or V), ©(Xy,---,X;) is the number of pairs (4,7) such that
1<i<j<tand X; = X, X; =Y. Trivially, one can see that, for
any f(X,Y) € Z <X,Y > O(f(X,Y)) equals the coefficient of XY
occurring in f(X +1,Y 4+ 1).

Let N be the set of all non-negative integers, F(X,Y) €
€ 7 <X,Y >, and (m,n) € N x N. Then (m,n)-component of F,
the sum of all monomials of degree (m,n), that is, of degree m with
respect to X, and of degree n with respect to Y, is denoted by Fi ».

Using the above definition, we state the following:
Lemma 8 ([6, Th.]). Let R be a ring with unity 1, and let F(X,Y") be
a polynomial in T <X,Y > of total degree d. Suppose that the greatest
common divisor of {(m — D){(n — )O(Fpnn) | m+n =d, m,n > 0}
is positive. If R satisfies the identity F(X,Y) =0, then R satisfies the




210 H. A. S. Abujabal

identity (XY — Y X) = 0. Therefore, if moreover R has Q(I), then R
18 commutative.
Proof of Th. 4. By Lemma 1, it is enough to show that R has no
factor subrings of type (a)i, (b), (d) or (f). It is easy to see that no
rings of type (a);; satisfy

[F(X), Y]IX™ + A(X, Y)[X, g(Y)]\*(X,Y) = 0,
where m is a non-negative integer. In view of Lemma 5, we also see

that R has no factor subrings of type (d). Further, by Lemma 6, R is
s-unital. Hence, in view of Lemma 2, we may assume that R has unity

- The sum of all monomials which have the maximal degree in
[F(X), Y]X™ + MX, V)X, g(Y)]A"(X, )
is one of the following:
a X Y]X™, b\(X, V)X, Y'I\N(X,Y),
and
| alXF Y]X™ 4+ bA(X, V)X, Y\ (X, Y),
where aX* and bY"' are the leading terms of f(X) and ¢(Y), respec-
tively. Now it is easy to see that
O(a[X*,Y]X™) =ak and O(NX,Y)X, Y \*(X,Y) = bl

Hence, by Lemma 8 there exists a positive integer, n such that n[z,y] =
= 0 for all z,y € R. Since R satisfies Q(d), we may assume that
(n,d) = 1. If T is any factor subring of R, then T inherits the property
that n[z,y] = 0 for all z,y € T. Thus T satisfies Q(d).

0

Next, suppose that R = M,(K). Let ¢ = [g U(a)]’ (n(a) #

# a), e = g (1)] Then, by our assumption, we get [f(c),elc™ =
= —X(c, €)[c, g(e)]A*(c,e) =0. But ¢ is invertible, so we have [f(c),e]=
=0. So [f(c),1+€]c™ = —A(c,1+¢€)[c,g(1+€)]A*(¢,14+e) = 0. There-
fore, ¢'(1)lc,e] = le,g(1 + €] = 0. Now, [f(c),c + ele™ =
= —Ae,c+e)lc,g(c+e)]A\*(c,c+ e) and both ¢ and ¢+ e are invertibe,
then we obtain [c,¢g(c + ¢)] = 0. We have

g(a) (n(g(a)) —g(a))(n(a) —a)™*
0 n(g(a)) '

Therefore, [c, g(c + €)] = 0 means that n(g(a)) = g(a), and this implies

g(c+6)=[



Commautativity results for rings 211

that [g(c), e] = 0. Hence, it follows that
(4 e+ 6™ = ~A(1+e,0)[1 + e, g(N(1+e,) =0,

and hence [e, c]f'(1) = [f(1+e¢),c] = 0. This together with [c, e]g'(1) =
= 0 implies that d[c,e] = 0. By Q(d), we get [c,e] = 0. Thus we have
a contradiction.

Finally, we suppose that R is of type (e)'. Choose s,t € S with
[s,t] #0. Then

[s,81f'(1) = [f(1+5),8)(1+5)™ = =A(1+s,1)[1+s5,g(£)]A*(1+s,1) = 0.

S0.0 = [5,8(1) = [f(1+5), 1+8](1+8)™ = —A(L+s, 1+H)[1+s,g(1+
+ A (1 + 5,1+ 1) = —[s,t]¢'(1). Hence d[s,t] = 0. By Q(d), we have
[s,t] = 0 which is a contradiction. {

Corollary 3. Let R be a right or left s-unital ring. Suppose that R
satisfies the polynomial identity [f(X),Y]X™ + [X,9(V)|N\*(X,Y) =
= 0, where m s a non-negative integer, A*(X,Y’) i3 ¢ monic monomsial
in L<X,Y > f(X), g(X) are polynomials in XZ[X] with f(1) = +1,
g(1) = £1, and every monomial of g(Y)A*(X,Y) has degree > 2 in Y.
Suppose that d = (f'(1),¢'(1)) 18 non-zero. If R satisfies Q(d), then R
18 commutative.

Proof. As in the proof of Th. 3, we can see that R has no factor
subrings of type (a); and R is s-unital. Therefore, R is commutative by
Th. 4. §

Corollary 5. Let R be a right or left s-unital ring. Suppose that R
satisfies the polynomial identity [X* Y]X™ — [X, Y] X™ = 0, where
k>0,1>1, m>0, andn > 0. Letd = (k,I). If R satisfies Q(d),

then R is commutative.
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