ON THE FELLER STRONG LAW OF LARGE NUMBERS FOR FIELDS OF B-VALUED RANDOM VARIABLES

Zbigniew A. Lagodowski

Department of Mathematics, Technical University, 20-618 Lublin, Nadbystrzycka 38, Poland

Received March 1994

AMS Subject Classification: 60 F 15, 60 B 12

Keywords: Strong law of large numbers, multidimensional indices, Banach space.

Abstract: The purpose of this note is to provide Feller type strong law of large numbers for sums of i.i.d. B-valued random variables with multidimensional indices.

1. Introduction

Let $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be a field of independent and identically distributed (i.i.d.) random variables taking values in a separable Banach space $(B, \| \ \|)$. \mathbb{N}^r denotes the positive integer r-dimensional lattice points, r is positive integer. Assume that points of \mathbb{N}^r are denoted by $\bar{n} = (m_1, ..., m_r)$, $\bar{n} = (n_1, ..., n_r)$ etc. and ordered by coordinatewise partial ordering. For $\bar{n} = (n_1, ..., n_r) \in \mathbb{N}^r$, we define $S_{\bar{n}} = \sum_{\bar{k} \leq \bar{n}} X_{\bar{n}}$ and

 $|\bar{n}| = \prod_{i=1}^r n_i$. Throughout this paper, $\bar{n} \to \infty$ means $|\bar{n}| \to \infty$. Further, let $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be an increasing directed (directed upwards) family of positive numbers, i.e $a_{\bar{m}} \leq a_{\bar{n}}$ whenever $\bar{m} \leq \bar{n}$ and $a_{\bar{n}} \to \infty$ as $\bar{n} \to \infty$.

In order to bring into focus the main aim of this paper we start with a description of Fazekas' result [2]. Let B be separable Banach space, $1 \le p < 2$ and $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be i.i.d. B-valued random variables. Assume that $E\|X_1\|^p(\log^+\|X_1\|)^{d-1} < \infty$. If $S_{\bar{n}}/|\bar{n}|^{1/p} \xrightarrow{P} 0$ as $\bar{n} \to \infty$ then $S_{\bar{n}}/|\bar{n}|^{1/p} \to 0$ a.s. as $\bar{n} \to \infty$. Our main aim is to establish

the strong law of large numbers with an arbitrary normalizing family and no moment restriction assuming on a random field $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$, which is also a generalization of some results obtained for a field of real random variables (cf. Gut [3], Klesov [4]). We exploit the concept of Mikosh and Norvaisa [8], and assume similar properties for normalizing family of positive numbers $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$.

2. Auxiliary lemmas

In this section we collect some auxiliary results needed later on. Let $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be a field of positive numbers such that $\lim_{\bar{n} \to \infty} a_{\bar{n}} = \infty$ and let there exist a sequence D_k , $k \geq 1$ of finite subsets of \mathbb{N}^r such that $D_k \uparrow \mathbb{N}^r$, and satisfies the following conditions:

- (A) Set $I_k = D_k D_{k-1}$, $k \ge 1$. If $\bar{n} \in I_k$, then $(\bar{n}) \subseteq D_k$;
- (B) There are constants d > 1, $C_1, C_2 > 0$ such that for every $k, \bar{n} \in I_k$, the relation $C_1 d^k \le a_{\bar{n}} \le C_2 d^k$ holds;
- (C) For every k there exist disjoint rectangles E_{kl} and an appropriate index set R_k such that $I_k = \bigcup_{l \in R_k} E_{kl}$;

(D)
$$\nu_0 \overline{\lim_{k \to \infty}} \max_{\bar{n} \in I_k} d^{-k} \sum_{i=1}^k d^i |\{t \in R_i : E_{it} \cap (\bar{n}) \neq \emptyset\}| < \infty.$$

Conditions (A), (B), (C) and (D) come from Mikosh and Norvaisa [8] and field of numbers satisfying them is said to have the weak star property. For examples of the weak star property see Mikosh [7], Mikosh, Norvaisa [8] and the star property see Li, Wang, Rao [5–6]. Lemma 2.1 (Mikosh, Norvaisa [8]). Let $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be a field of independent, symmetric B-valued r.v.'s. Assume that (A)-(D) hold. Then the condition

(2.1)
$$\sum_{k} \sum_{l \in R_k} P(\|S_{E_{kl}}\| > \varepsilon d^k) < \infty, \quad \forall \varepsilon > 0$$

is equivalent to the strong law of large numbers

$$(2.2) S_{\bar{n}}/a_{\bar{n}} \to 0, \quad a.s. \ as \ \bar{n} \to \infty$$

Lemma 2.2. Let $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be a field of independent, symmetric B-valued r.v.'s. Assume that (A)-(C) hold and

$$(2.3) ||X_{\bar{k}}|| \le a_{\bar{k}} \quad a.s. \quad (\bar{k} \in \mathbb{N}^r),$$

$$(2.4) S_{\bar{n}}/a_{\bar{n}} \to 0 in probability.$$

Then for all p > 0, $E \|S_{E_{kl}}/d^k\|^p \to 0$ as $k \to \infty$ uniformly in $l \in R_k$. **Proof.** Lemma V-1-1 of Neveu [9] implies that, the family $\{x_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ converges to x if the net $\{x_{\bar{n}}, \bar{n} \in K\}$ converges to x for any infinite linearly ordered subset (K, \leq) of \mathbb{N}^r , thus by Lemma 3.1 of de Acosta [1] $E \|S_{\bar{n}}/a_{\bar{n}}\|^p \to 0$ as $\bar{n} \to \infty$. Then it is easy to see that for an arbitrary $l \in R_k$, $\lim_{k \to \infty} E \|S_{E_{kl}}\|^p / d^{kp} \to 0$. Since for every k, R_k are finite, therefore $\lim_{k \to \infty} \max_{l \in R_k} E \|S_{E_{kl}}\|^p / d^{kp} \to 0$. \Diamond

3. Results

Let $M_j = \operatorname{card}\{\bar{n} \in \mathbb{N}^r : a_{\bar{n}} \leq j\}$ and $m_j = M_j - M_{j-1}$ for every integer $j \geq 1$.

Theorem 3.1. Let $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be a field of i.i.d. Banach space valued random variables and $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ be an increasing directed field of positive numbers. Suppose that there exist $j_0 \geq 1$ and positive numbers C_3 , C_4 such that

(3.1)
$$\forall_{j>j_0} M_j \leq C_3 M_{j-1}, \quad \sum_{i>j} i^{-3} M_i \leq C_4 j^{-2} M_j.$$

Then

(3.2)
$$\sum_{\bar{n}} P(|X_{\bar{n}}| \ge a_{\bar{n}}) < \infty,$$

$$(3.3) S_{\bar{n}}/a_{\bar{n}} \to 0 in probability$$

are equivalent to

$$(3.4) S_{\bar{n}}/a_{\bar{n}} \to 0 a.s.$$

Proof. It is enough to prove (3.2) and $(3.3) \Rightarrow (3.4)$. We assume, without loss of generality, that $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ are symmetric. Let us put

$$Y_{\bar{j}} = X_{\bar{j}} \big(\|X_j\| > a_{\bar{j}} \big) \quad \text{and} \quad T_{\bar{n}} = \sum_{\bar{j} \leq \bar{n}} Y_{\bar{j}}.$$

By the virtue of (3.2) and from the Borel-Cantelli lemma follows

$$(3.5) (S_{\bar{n}} - T_{\bar{n}})/a_{\bar{n}} \to 0 a.s. as \bar{n} \to \infty.$$

Therefore it is enough to prove $T_{\bar{n}}/a_{\bar{n}} \to 0$ a.s. as $\bar{n} \to \infty$. Let us put

$$V_{kl} = ||T_{E_{kl}}|| - E||T_{E_{kl}}||.$$

Thus by Th. 2.1 of de Acosta [1] we have

$$\sum_{k=1}^{\infty} P\left(\max_{l \in R_k} |V_{kl}|/d^k > \varepsilon\right) \le \sum_{k=l}^{\infty} \sum_{l \in R_k} P\left(|V_{kl}|/d^k > \varepsilon\right) \le$$

$$\le \frac{1}{\varepsilon^2} \sum_{k=1}^{\infty} \sum_{l \in R_k} E|V_{kl}|^2/d^{2k} \le \frac{4}{\varepsilon^2} \sum_{k=1}^{\infty} \sum_{l \in R_k} \sum_{\bar{j} \in E_{kl}} E||Y_{\bar{j}}||^2/d^{2k} \le$$

$$\le \frac{4C_2^2}{\varepsilon^2} \sum_{k=1}^{\infty} \sum_{l \in R_k} \sum_{\bar{j} \in E_{kl}} E||Y_{\bar{j}}||^2/a_{\bar{j}}^2 \le \frac{4C_2^2}{\varepsilon^2} \sum_{\bar{n} \in \mathbb{N}^r} E||Y_{\bar{n}}||^2/a_{\bar{n}}^2.$$

On the other hand

$$\sum_{\bar{k}} E \|Y_{\bar{k}}\|^2 / a_{\bar{k}}^2 = \sum_{\bar{k}} E \{ \|X\|^2 I(\|X\| < a_{\bar{k}}) \} / a_{\bar{k}}^2 \le$$

$$\le C + C \sum_{i \ge 1} i^{-2} m_i E \{ \|X\|^2 I(\|X\| < i) \} \le$$

$$\le C + C \sum_{j \ge 1} E \{ \|X\|^2 I(j - 1 \le \|X\| < 1) \} \sum_{i \ge j} i^{-2} m_i$$

for some constants C.

Now let us observe that by assumptions and Abel transform we get

$$\sum_{i > j} i^{-2} m_i \le C \sum_{i > j} i^{-3} M_i \le C j^{-2} M_j.$$

Hence

$$(3.6) \sum_{\bar{k}} E \|Y_{\bar{k}}\|^2 / a_{\bar{k}}^2 \le C + C \sum_{j \ge 1} j^{-2} M_j E \{ \|X\|^2 I(j - 1 \le \|X\| < j) \} \le C + C \sum_{j \ge 1} m_i P(\|X\| \ge i) \le C + C \sum_{\bar{n}} P(\|X\| \ge a_{\bar{n}}) < \infty.$$

Therefore by the Borel-Cantelli Lemma

(3.7)
$$\max_{l \in R_k} |V_{kl}|/d^k \to 0 \quad \text{a.s.}$$

It follows at once from (3.3) and (3.5) that $T_{\bar{n}}/a_{\bar{n}} \stackrel{P}{\to} 0$ and by Lemma 2.2

(3.8)
$$E \|T_{E_{kl}}/d^k\| \to 0 \text{ uniformly in } l \in R_k.$$

Now, let us observe that (3.7) and (3.8) imply

$$T_{E_{kl}}/d^k \to 0$$
 a.s. uniformly in $l \in R_k$

and applications of Lemma 2.1 complete the proof. \Diamond

Remark. Let us observe that condition (3.2) is essential. However, it is necessary for (3.4), but (3.3) does not imply (3.2). We will give appropriate example. Let $\{X_k, k \geq 1\}$ be a sequence of i.i.d. random variables with probability density function

$$f(x) = \begin{cases} k(1 + \ln|x|)/(x^2 \ln^2|x|), & \text{for } |x| \ge 2\\ \frac{1}{4}(1 + \ln 2)/(1 + \ln 2), & \text{for } |x| \le 2 \end{cases}$$

where constant $k = \ln^2 2/(1 + 2 \ln 2)$.

It is easy to see that $\sum_{i=1}^{n} X_i/n \to 0$ in probability but condition (3.2) is not satisfied.

Corollary 3.1. Let $a_{\bar{n}} = |\bar{n}|^{1/p}$, $1 \leq p < 2$ then $M_j = O(j^p(\log j)^{r-1})$ (cf. Smythe [10]) and (3.1) is satisfied. Convergence of series (3.2) is equivalent to $E||X||^p(\log_+||X||^{r-1}) < \infty$.

Thus by Th. 3.1 we can obtain immediately result of Fazekas [2].

The following corollary is not only generalization of Marcinkiewicz SLLN but give us a better and deeper understanding of strong laws for random variables with multidimensional indices.

Corollary 3.2. Let $a_{\bar{n}} = n_1^{1/p_1} \cdot \ldots \cdot n_r^{1/p_r}, 1 \leq p_i < 2, 1 \leq i \leq r, t = \max(p_1, \ldots, p_r), q = \operatorname{card}\{i : p_i = t, 1 \leq i \leq r\}.$ Thus $M_j = \operatorname{O}(j^t(\log_+ j)^{q-1})$ and (3.2) imply $E\|X\|^t(\log_+ \|X\|^{q-1}) < \infty$. Then the following are equivalent:

(i)
$$S_{\bar{n}}/n_1^{1/p_1}\cdot\ldots\cdot n_r^{1/p_r}\to 0$$
 a.s. as $\bar{n}\to\infty$;

(ii)
$$S_{\bar{n}}/n_1^{1/p_1} \cdot \ldots \cdot n_r^{1/p_r} \stackrel{P}{\to} 0 \quad as \quad \bar{n} \to \infty.$$

Furthermore, let us observe that for r=1 all increasing to infinity, positive sequences $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ have the weak star property and assumption (3.1) implies the well-known Feller condition $\sum_{k \geq n} a_k^{-2} = O(n/a_n^2)$.

Th. 3.1 and corollaries are established for separable Banach space $(B, \| \ \|)$. In what follows we will assume geometric conditions on the space $(B, \| \ \|)$.

Theorem 3.2. Let Banach space (B, || ||) be of type 2, $\{X_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$, $\{a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ are such as in Th. 1 and $EX_{\bar{n}} = 0$, $\bar{n} \in \mathbb{N}^r$. If moreover (3.1) and (3.2) are satisfied then

 $S_{\bar{n}}/a_{\bar{n}} \to 0$ a.s. as $\bar{n} \to \infty$.

Proof. A family $\{x_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ is said to be Cauchy if for every $\varepsilon > 0$ we have $d(x_{\bar{n}}, x_{\bar{m}}) < \varepsilon$ whenever $\bar{n}, \bar{m} \geq \bar{k}_{\varepsilon}$ for suitably chosen \bar{k}_{ε} in \mathbb{N}^r . Since B is of type 2 one can prove using estimation as in (3.6) that, $\{Y_{\bar{n}}/a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ is a Cauchy family. Hence $\{Y_{\bar{n}}/a_{\bar{n}}, \bar{n} \in \mathbb{N}^r\}$ convergence in L^2 , then converges almost surely. Further, by multidimensional version of Kronecker Lemma and arguments as in proof of Th. 3.1, we deduce the assertion of Th. 3.2. \Diamond

Acknowledgement. The author wishes to thank the referee for many helpful comments.

References

- [1] ACOSTA, A.: Inequalities for B-valued random vectors with applications to the strong law of large numbers, Ann. Probability 9 (1981), 157-161.
- [2] FAZEKAS, I.: Marcinkiewicz strong law of large numbers for *B*-valued random variables with multidimensional indices, Proc. of 3rd Pannonian Symp. on Math. Stat., Akadémiai Kiadó, Budapest, 1983, 53–61.
- [3] GUT, A.: Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, *Ann. Probability* 8 (1978), 298-313.
- [4] KLESOV, O. I.: Strong law of large numbers for sums of independent, identically distributed random variables with multidimensional indices, *Mat. Zamiet.* 38 (1985), 915–929.
- [5] LI, D., WANG, X. and RAO, M. B.: The law of the iterated logarithm for independent random variables with multidimensional indices, *Ann. Probability* **20** (1992), 660-674.
- [6] LI, D., WANG, X. and RAO, M. B.: Almost sure behaviour of F-valued random fields, Probab. Theory Relat. Fields 93 (1992), 393-405.
- [7] MIKOSH, T.: On the strong law of large numbers for random fields (Russian), Vestnik Leningrad Univ., ser. mat., mech., astr. 19 (1984), 82-85.
- [8] MIKOSH, T. and NORVAISA, R.: Strong law of large numbers for fields of B-valued random variables, Probab. Theory and Relat. Fields 74 (1987), 241-253.
- [9] NEVEU, R.: Discrete parameter martingales, North-Holland, 1975.
- [10] SMYTHE, R.: Sums of independent random variables on partially ordered sets, Ann. Probability 2 (1974), 906-917.