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Abstract: A simple procedure is developed in order to calculate all evo-
lutionarily stable strategies not involving at most three pure strategies. By
means of this procedure especially all evolutionarily stable strategies of an at
most four-dimensional payoff matrix can be determined.

Applying game-theoretical methods to problems in population dy-
namics, Maynard Smith and Price ([15]) introduced the notion of an
evolutionarily stable strategy (ESS). Such a strategy is in some sense
robust against new strategies invading the population. For literature
concerning theoretical investigations on ESS’s cf. e.g. [1]-[14] and [16].
The aim of this paper is to give a simple necessary condition for ESS’s
and to show how one can determine for a given payoff matrix all ESS’s
with “large” support.

In the following let n denote a positive integer and let I =
= {i1,...,is} © N := {1,...,n} with i; < ... < i,(0 < s < n).
If not stated otherwise, all indices run from 1 to n. Let A = (a;;) and
B = (b;;) be real matrices with b;; = 1 and b;; = b;; for all ¢, j. Further
let a,b,c € R and put

1 1 a b
C’:=( (11> and D:=|a 1 ¢
@ b ¢ 1
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Let R™ denote the set of all n-dimensional real row vectors. For a
vector z and an index : let z; denote the component of z corresponding
to 7. By 2T < yT(z,y € R™) we mean z; < y; for all 7 (here and
in the following T denotes transposition). Put S := {z € R"|z; >
> 0forallzand Y z; = 1}. p € S is called a Nash-equilibrium of A
if pApT > zApT for all z € S. Let N(A) denote the set of all Nash
equilibria of A. p € N(A) is called an ESS of A if pAzT > zAz7T for all
z € S\ {p} with zApT = pApT. Let E(A) denote the set of all ESS’s of
A. For z € R™ define the support supp z of z by supp z := {i|z; # 0}.
Put S(I) := {z € S|supp = = I}. For every i let e; denote the unique
element of S({:}). A is called strictly I-copositive if zAzT > 0 for all
z € R*\ {(0,...,0)} with z; > Ofor all i € I. A is called strictly
copositive if it is strictly N-copositive. Observe that in case |I| < 1
strict I-copositiveness coincides with positive definiteness.

A fundamental problem in evolutionary biology is the determina-
tion of E(A) for a given payoff matrix A. The following lemma says
that for the sake of determining N(A4) or E(A) we can restrict ourselves
to matrices having 0 in their main diagonal:

Lemma 1 (Cf [3]) N(A) = N((a,-j —-CL]'J')) and E(A) = E((ai]‘ —ajj)).
Proof. > (z; —yi)(aij — aj;)zj = (zx —y)T Az for all z,y,z € S.
,J
A further simplification of the problem of determining E(A4) is
provided by the following lemma:

Lemma 2 (cf. [2] and [13]). The supporis of two different ESS’s yof A
are incomparable.

Proof. Assume there exist two distinct ESS’s p, q of A with supp p C
C supp ¢. From gAq” = 3 qi(e;AgT) < Y qi(qAqT) = qAqT it follows
that e;AqT = qAq” for all i € supp ¢. Since supp p C supp ¢, we would
have pAgT = Y pi(e;AqT) = ¥ pi(¢AqT) = qAqT and hence, because
of ¢ € E(A), also gApT > pApT. But this contradicts p € E(4). ¢
Next we want to characterize the Nash equilibria of A:

Theorem 3 (cf. [13]). Let p € S(I), assume k € I and put py :=
.= —ex ApT. Then t. f a. e.:
(i) pe N(A).
(i) (a) and (b) hold:

(a) (Po,Piys--- ,Pi,) 18 a solution of
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Proof. (i) = (ii):

pApT = S pi(e;ApT) < Y pi(pApT) = pApT shows that e;ApT =
= pApT = exApT = —py for all i € I and that e;ApT < pApT =
= ey ApT = —p, for all i. ‘
(ii) = (i): :
zApT = Y zi(eiApT) < Y wi(—po) = L pi(—po) = L pi(eidp”) =
= pApT forall z € S. '

Now we are going to show a way of calculating all ESS’s of A:
Theorem 4 (cf. [1] and [4]). Let p € S(I), assume k € I and put
po := —exApT. Then t. f a. e.:

(i) p € E(A).
(ii) (a) - (c) hold:

(a) (po,pi,s--- ,pi,) 18 the unique solution of (1) over R;

(b) (po,-.. ,pn) satisfies (2);

(C) if |J| > 1 then (aik +akj —aij — akk)i,jej\{k} 18 strictly (J\I)—

copositive, where J := {i|(ex — e;)ApT = 0}.

Proof. Assume p € E(A). Then, by Th. 3, (po,Piy».--,pi,) is a
solution of (1) over R. Suppose, there exists another solution of (1)
over R. Then there would exist such a solution (qo, gi,,- .- ,4:,) With
g;i > 0 for all 2 € I. But then ¢ € R™ defined by ¢; ;=0 for alls ¢ I
would be an element of S\ {p} with ¢Ap” = —py = pApT and pAqT =
= —qo = qAqT contradicting p € F(A). Hence (1) is uniquely solvable
over R. The rest of the proof follows from Th. 3 and [12].
Remark. Let F denote the matrix in (1) and assume k € I. Then |F|
can be expanded in the following way: Subtract the row corresponding
to k from the rows corresponding to the elements of I \ {k}, expand
the resulting determinant along the first column, subtract the column
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corresponding to k£ from the columns corresponding to the elements
of I'\ {k} and expand the resulting determinant along the first row.
This shows |F| = (—1)|(a;x + ax; — aij — akk)ijer\{x}|, the latter
determinant being positive in case there exists some p € E(A) with
support I, according to [12]. Hence (—1)'{|F| > 0 in this case and
therefore, using Cramer’s rule, (a) and (b) can be translated in this
case into equations and inequalities involving certain determinants.
The next problem is to decide whether a given quadratic matrix

is I-copositive. First we remark that for the sake of investigating strict
I-copositiveness of a quadratic matrix we can restrict ourselves to sym-
metric matrices having 1 in their main diagonal:
Lemma 5 (cf. [11]). T. f. a. e.:
(1) A s strictly I-copositive.
(ii) (a) and (b) hold:

(a) aj; > 0 for all i;

(b) (ZEdaiiy i strictly I-copositive.

2y@iag;
Proof. We have a;; = e,-Ae;-F for all ¢, and in case a;; > 0 for all ¢ we

havé‘z %(l‘h/aii)(fﬂj, /ajj) =z AzT for all z € R™.
2,J

The following lemma shows how one can reduce strict I-copositive-
ness of an n-dimensional matrix in case n > max(1, |I|) to strict I-
copositiveness of a matrix of dimension n — 1:
Lemma 6. Assumen >1 and k¢ I. Then t. f. a. e.:
(1) B s strictly I-copositive.
(ii) (b,'j — bikbjk)i’j;ék 18 strictly I-copositive.
Proof. zBzT = (:Ilk-i— Z bikmi)Q + Z (bij_bikbjk)wil'j for all z € R™.

i#k t,J#k

By Lemma 6, strict I-copositiveness of an n-dimensional matrix
can be reduced to strict [-copositiveness of a matrix of dimension
max(1,|I]). Hence, in order to settle the case |I| < 3 completely, one
has to characterize strict copositivity of matrices of dimension two and
three. This is done by the following theorem:
Theorem 7 (cf. [11]).
(1) C s strictly copositive iff a > —1.
(ii) D is strictly copositive iff a,b,c > —1 and (a+b+ ¢ > —1 or

|D| > 0 (or both)).

Proof. (i) follows from zCzT = (z; —z3)? +2(a+1)z, 2, for all z € R?
and (ii) was proved in [11].
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Concluding remark. By the described method, for a given n-dimen-
sional payoff matrix all ESS’s with a support of cardinality > n —3 can
be determined. Especially, all ESS’s of an at most four-dimensional
payoff matrix can be calculated in this way.

References

ABAKUKS, A.: Conditions for evolutionarily stable strategies, J. Appl. Prob.
17 (1980), 559-562.

BISHOP, D. T. and CANNINGS, C.: Models of animal conflict, Adv. Appl
Prob. 8 (1976), 616-621.

BISHOP, D. T. and CANNINGS, C.: A generalized war of attrition, J. Theor.
Biol. 70 (1978), 85-124.

BOMZE, I. M.: On supercopositive matrices and their application to evolution-
arily stable strategies, Techn. Report 29, Inst. for Statistics and Informatics,
Univ. of Vienna, 1985.

BOMZE, I. M. and POTSCHER, B. M.: Game theoretical foundations of
evolutionary stability, Springer Lect. Notes Economics Math. Syst. 324, Berlin,
1989.

CANNINGS, C. and VICKERS, G. T.: Patterns of ESS’s II, J. Theor. Biol.
132 (1988), 409-420.

CANNINGS, C. and VICKERS, G. T.: Patterns and invasions of evolutionarily
stable strategies, Appl. Math. Comput. 32 (1989), 227-253.

HAIGH, J.: Game theory and evolution, Adv. Appl. Prob. 7 (1975), 8-11.

HOFBAUER, J. and SIGMUND, K.: The theory of evolution and dynamical
systems, Cambridge Univ. Press, Cambridge, 1988.

LANGER, H.: When are pure strategies evolutionarily stable? ZAMM 69
(1989), T63-T64.

LANGER, H.: Strictly copositive matrices and ESS’s, Arch. Math. 55 (1990},
516-520.

LANGER, H.: A characterization of evolutionarily stable strategies, Math.
Pann. 4/2 (1993), 225-233.

MAYNARD SMITH, J.: The theory of games and the evolution of animal
conflicts, J. Theor. Biol. 47 (1974), 209-221.

MAYNARD SMITH, J.: Evolution and the theory of games, Cambridge Univ.
Press, Cambridge, 1982.

MAYNARD SMITH, J. and PRICE, G. R.: The logic of animal conflict, Nature
246 (1973), 15-18.

VICKERS, G. T. and CANNINGS, C.: Patterns of ESS’s I, J. Theor. Biol.
132 (1988), 387-408.






