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Abstract: The paper is related to the article [1]. Tt is proved that a sequence
of L o- spline approximations of a given continuous function f in the interval

< a,b > converges in this interval uniformly to f (cf. [2]).

1. A sequence of L,,-spline approximations of a
given function f in the interval < a,b >

In the interval < a,b > of finite length L = b —a > 0 let
us consider a (real) function x3 = f(x1). Let n > 2 be a posi-
tive integer. We divide the interval < a,b > into n equal intervals
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by the dividing points a = xﬁl) < :1;52) < e < xﬁ") <

= b. We have l’gi) =a+ (¢ —1)h, ¢ =1,2,....,n+ 1, where h =
= L/n. We denote f(:zjgl)) = l’gl) and, further, P; = (xgl),xgl)),i =
= 1,2,...,n+ 1. For every n > 2 we have :z:gl) = f(a),:z;gn—i_l) =

= f(b).
Through the points Py, P, ..., Py, P41 we fit an unclosed in-
terpolation Lq g-spline (see [1], Section 6), whose i-th arc P;Piyq,1 =

wgn—l—l) _

=1,2...,n, is parametrized with the aid of the polynomials
@) vj =P(t) = (1,1,#,#%) 0 A}
' (7 =12).
where
. . . . . . T
T _ (i=1) () _(+1) _(i42) 3(i) p(i+1)
(1.2) Aij—C'o<:1;j A T Y RN > ,
—1 9 9 -1 4m1 —4m1
1 _ 1 _
(1.3) - 1 11 11 1 dmy dmy

6 1 -1 -1 1 —4my  4my

—1 3 —3 1 dmy 4my
(see [1], formula (5.2) for @ = 1, p = 0), where the parameter ¢ varies
in the interval < —1.1 >. For j = 1 and + = 1, or ¢ = n, we choose

:1:50) = a—h, or x§n+2) = b+ h. Further, it is possible to choose
the values :z:go) and xén—i_z) more or less arbitrarily, and we put Py =

0 0 n+2 n+2
:(l'g),l'g ))7Pn+2:(x§ ),J}g ))

In the matrix (1.3) my is a real number different from zero. Fur-

ther, b;l), b;z), ...... , b§n+2) are vectors from the vector space V? whose
components satisfy, for j = 1,2, the following system of linear equa-
tions:

16m1b,") + ;b = 25,

4mlb§1) + 16mlb§2) + 4mlb§3) = pgl),
4mlb§2) + 16mlb§3) + 4mlb§4) = p§2)7

4m B 4 16m b 4 dm B = ),
b £ 16m 0" = u;.
Here, the real numbers ¢;, d; satisfy the inequalities |¢;| < 16]mq], |d;| <
< 16|mq|. Further, z;,u; are arbitrary real numbers, and for k =
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=1,2,...,n we have
(1.5) p." = (Pr—1—Pr)—(Pr— Pr+1) — (Pry1— Pry2)+(Pry2— Prts)
(see [1 ] Section 3). For k = n we put P43 = (@ (n+3), (n+3)), where
(n+3) = b+ 2h; further, it is possible to choose the value :1;<n+3) more

or less arbltrarlly.

By (1.5) we easily verify that for j = 1 we have pgk) =0, k=
= 1,2...,n. Further, we put z; = 0, u; = 0 in the system (1.4) [for
J = 1]. Since the corresponding matrix of the system has a dominant
main diagonal due to the mentioned constraints concerning the numbers
c1, di, 1.e. the matrix is regular, the system possesses only the trivial
solution: bgk) =0,k=12,....,n+2 By (11), (1.2) [for j = 1] we

then have

ra+ (i —2)h7
a+(i—1)h
() 5 a-+:th .
x1 = PP(t) = (1,t,t*.t%) o Co at+ (it k]| =
(1.6) .
L 0 J
h h

where ng? is a function with definition domain < —1,1 > and range
< a+ (¢t —1)h,a+ih >. For the inverse function [ng?]_l < a+ (i —
— 1Dh,a 4+ th >—>< —1,1 > we then have

-1 2
(1.7) t= {ngﬂ (21) = Z(e1 —a) = (2 = 1).
Upon substitution of (1.7) into (1.1) [for j = 1] we then obtain
(1.8) T9 = ngi) o [Péj)]_l(xl) = rgj)(:zjl) = (1, %(:1;1 —a)—

2

—(2i - 1), [%(xl —a)— (2 - 1)]2 , %(:1;1 —a)— (20— 1)]3 ) 0

oC'o (a7 2 2 0 )

2 272 ”

where r( 2 ngi) o [ng?]_l is a function with domain < a+ (¢ —1)h,a+
+h >.
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For the chosen number n a given #; €< a,b > we determine
the number ¢ = [(@1 — a)/h] + 1, where the square bracket denotes the
integer part of the respective real number. If x; runs through the interval
< a,b), the ¢ assumes the values i = 1,2,...,n. We have 1 — 1 = [(21 —
—a)/h] < (z1—a)/h < [(x1—a)/h]+1 =1i,ie at(i—1)h < 21 < a+ih.
We put

E(xl_a)—(2¢—1):2x1}:a Vl_“}q:

(1.9) h T —a Ty —a)) def /T1 —a
:2{ ; —{ A H:< h >

In the interval < a + (¢ — 1)h,a + th) it is then possible to represent
(1.8) in the form

T = rfj)(:pl) =
1 —a 1 —a\? jx1 —a\3
(1.10) - 1’< h >< h >< h > i
. . . . . . T
oC o <xgl_1),xgl),xél+1),xgl+2),bgl),bgl—i_l)) )
Hence, for © = n this yields

(1.11) riM () = lim (" (z) =

1 —b—

A ]

T
= (1 1,1 1) oCo <xgn—1)7 l‘én), xén+1)7 wén—|—2)7 bén)7 bgn—i—l)) _

1 mn— " "
— —(0,0,16,0,0,0) 0 <x§ DRSO

T
n—+2 n n+1

n+1
= 25" = f(b).
By the symbol 7, we denote a function r, :< a,b >— R' with the
following properties:

rn|<a—|—(i—1)h,a—|—ih) = rgll) for ry, for ¢ = 1727 sy T2y
rn(b) = f(D).
By the symbol r,|; we denote the restriction of the function r, to the

interval I = =< a+ (¢ —1)h,a+ih). By (1.11) we have r,(b) = r%n)(b).

(1.12)
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2. Estimate of the norm of the inverse matrix of
system (1.4)

Under the assumption that |cy| < 16|my ], |da| < 16|m| the matrix
A = (agp) of the system (1.4) [for j = 2] has a dominant main diagonal,

ie.
min{|akk| — Z |akh|} =
(2.1) k h#k
= min{8|m1|, 16|m1| — |cz|, 16|m1| — |d2|} = ¢ > 0.

For the operator norm of the respective inverse matrix A™!, i.e. for a
norm induced by the first norm of a vector, the inequality || 47| < ¢!
holds.

This can be easily proved. Let us put b =
p= (Zg,pgl),pgz), e ,pgn), uz)T. Then the matrix representation of this
system is A o b = p, consequently b = A7 o p. Let

1 2 n—+2
RN Sl )

Y

o [
Then
n—+2 n+2
I = 4081 = x| S ouatl?] 2 | 3 | =
h=1 h=1
= ammbém) + Z amhbgh)‘ Z |bgm)||amm| - ‘ Z amhb;h)‘ Z
h#m htm
> 05 | amen | = [0 D Jamn] > HbH-m}én{|akk|—Z |akh|} — |Iblq.
h#m h=tk
Hence it already follows that
- A~ o pl| [0 1
(2.2) [A7H = sup =" = sup <q .
po [Pl Aobzo ||[A 0D

3. Uniform convergence of L, -spline approxima-
tions of a given continuous function f in the interval
< a,b>

Let f be a continuous function in the interval < a,b > of finite
length L = b — a > 0. Then it 1s uniformly continuous in this interval.
Thus, to a given ¢ > 0 there exists &6 > 0 such that for all points
zl, 2] €< a,b > whose distance |2} — 7| is less than é we have
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(3.1) £~ F) < =
We put

a2 o1 [2] 1),

where the square bracket denotes the integer part of the respective real
number. We divide the interval < a,b > into n > ng equal intervals
of length h = L/n. By Section 1 it is possible to choose the second

coordinates of the points Py = (a — h,xgo)), Poys == (b+ h,xgn—i_z)),
Ppys = (b+2h, xén+3)) more or less arbitrarily. Thus, we shall assume
that

% | (n 2
o = fla)| < T | - )| < T
9 9
(n+2)  (nt3)| _ 2¢
) ) 9
holds. Further, by (3.1), (3.2), we have [see (1.5)]
1 2 n
lpll = max { 2], 10571 571 5™, s b <

(3.4)
< max{|2]. [ua], 8/9}.

By (2.1), (2.2), (3.4), we then have
k — _ _
B < 1Bl = 147" o pll < AT llpll < ¢ lpll <
(3.5) _ max{|za], |uz|, 82/9}
~ min{8|m|, 16]m1| — [c2], 16[m1| — |d2[}
for k =1,2,...,n+2. In what follows we shall assume that |z5| < 8¢/9,
lua| < 82/9, |ea| < 8|myl, |d2| < 8|my|. Then we have max{|z3|, |us|, 8¢/
/9} = 8¢/9, min{8|my|, 16|my| — |ea|, 16|m1| — |d2|} = 8|my]|, and thus
we have, by (3.5),
5

3.6 A

m1|

for k=1,2,....,n+ 2.
For n > ng [see (3.2)] and z €< a,b), we have for the respective

(z—a)/h]+ +1: [a" " —z| < 6 for k =i, i+1,i+2,i+3. By (3.1),

1=
(3.3), we then have |:1;( - _ f(z)| < <2¢/9for k=1,i4+1,i4+2,71+43.
For these numbers k& we thus have
2
(3.7) 25D = £(2) + Ay_1, where |Aj_ 1|<§
By (1.10), (3.7), for the function r, [see (1.12)] in the interval < a +

+ (¢ — 1)h,a + ih) we have:
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oo (2 (2 22

( )‘|‘Az 1_

~1 9 9 -1 4dm —4m (2) + A
11 —11 11 -1 —dmy —4dmy FE) + A |
6| 1 -1 -1 1 —dmy dmy | O | )+ A | T

~1 3 =3 1 4my  4my b

b(i‘H)

Ty —a Ty —a\?2 jx1 —a\3
= () ) ) )
h h h
4 (1) _ (1+1)
16f(2)—Aim1+ 9A+ 9A11—Aipo —|—4m162‘ 4m162‘

i Al_l—llAl—FllAH_l—AH_z — 4mlbél) — 4mlbél+1)
16 Aii— A= A1+ Aipe — 4mlbgl) + 4mlbgl+1)
A1+ 3A— 3A A + 4mlbgl) + 4mlbgl+1)

For z1 = =z we thus have

1 i |
= E{ — A1+ 9A; + 9441 — Ajgo + 4m1bg) _ 4m1bé +1)_|_
+<z ; a> {Ai_l —1IAG + 11A 41 — Ajpg — 4mg b — 4mlbéi+1)} N
zZ—a

2 . .
() [ A = A = A A — 4+ 4ma Y|+

403
-|-<Z “ {— A1 +3A; = 3A 11+ Ao + 4m1b( % + 4my b(l—i—l)} }
(

h
Since —1 < {(z —a)/h) < 1 [see (1.9)], i.e
z—a
. <
39 (=)=
(3.8) implies, applying (3.6), (3.7), (3.9) that
562 32|my| ¢
1 o(2) — D= -

holds for all n > ng and arbitrary z €< a,b). Since for every n > 2
we have r,(b) = f(b) [see (1.12)], (3.10) is valid for all n > ng and
arbitrary z €< a,b >. Consequently, the following theorem holds.

Theorem. Let | be a function continuous in the interval < a,b > of fi-
nite length L =b—a > 0, and let e > 0 be given. Then for the sequence
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(ry)n=2 of L1 o-splines (1.12), each of which is constructed in the prece-
dent sense for an arbitrary chosen number my # 0, further for arbitrary
chosen numbers |zo| < 82/9, |uz| < 82/9, |ca| < 8|my|, |d2| < 8|my| [see
(1.4) for j = 2] and arbitrary chosen values xgo),xgn—i_z),xgn—i_?)) in (3.3),
(3.10) s valid for sufficiently large n and arbitrary z €< a,b >, i.e.
the sequence converges uniformly to the function f in the interval <
< a,b >. In other words, for almost all n the mentioned Ly o-spline
approzimations l, = {(21,22) € R*|la < 21 < byay = ry(21)} of the
curve I = {(x1,22) € R*|la < 21 < b,ay = f(a1)} lie in its Euclidean
netghbourhood with diameter 2¢.

Analogous conclusion can be derived for a case of continuous vec-
tor function f == (f1, f2,-++, fm—1) :< a,b >— R™™1 'm > 2 integer.
Example.Consider the function x5 = f(z1) = 0.0012} + 21 in the

interval < 0,10 >, L = 10. For z{,z} €< 0,10 > we have |f(2]) —
"2

)] = [ — A 10.001 [ 4 el 4 ]+ 1] < (L3 — o]
for |2} — 2] < § = (2¢/9)(1.3)~! we then have |f(z}) — f(2!)] < 2¢/9
[see (3.1)]. Then for the sequence (ry),=2 of Ly g-splines (1.12), each
of which is constructed in the sense of the derived theorem, we have
(3.11) lrn(2) — f(2)] < ¢

for all n > ng = max{1,[30/6] + 1} [see (3.2)] and arbitrary z €<
< 0,10 >. For instance, for ¢ = 0.9 we have ng = 196. Since the
estimate (3.10) is in a sense "rough”, we may expect inequality (3.11)
to hold for all z €< 0,10 > for substantially smaller ny > 1.
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