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Abstract: Several results from the area of infinite series are established
showing that some subsets of the interval [0, 1] for which certain series are

convergent are of first category.

1. Introduction

“Measure and Category” is the title of a well-known and highly
interesting book by J.C. Oxtoby; [8]. In it one finds numerous analogues
and non-analogues between measure and category. A non-analogue that
seems not widely known and does not appear in Oxtoby’s book is the
following. For each x € (0,1] let

oo

=y

n=1

be the non-terminating binary representation of x. The number z is
said to be normal to base 2, in case the following limit exists:
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It is known for quite some time that the Lebesgue measure of the set
Ny = {:L' € [0, 1”:1; : normal to base 2}

is equal to 1. On the other hand, it seems less well known that N is
a set of first Baire category. Hence, N, is large in measure but small
in category; in this case there is a non-analogue between measure and
category.

Another result concerning series is the following: It is long known

([4]) that if

2
>
n=1

converges then the random series

io: t+a,
n=1

converges for almost all choices of the signs + and —. More precisely:
If
x:ien(x) z € (0,1]
— 2n b b b

is again the non-terminating binary expansion of x, then the set

M = {:1; € (0, 1” Z(Zen(x) — 1)a, is convergent }
n=1

has measure one.

2. Results

Our first result shows that the set M just defined might be of the
first Baire category since the following is true:
Theorem 1. If

oo

Zan

n=1

18 not absolutely convergent, then the set
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A= { [0,1] ‘Z (2en(x 1)ayis convergent }

18 of the first category.
Proof. The set A can be expressed in the following form:

Aﬂ( { 01\‘22% n<%, ‘v’j>i2N}):
N=1

k=1
ﬂ ( U AN k)
the definition of the sets Ax i being 0bv1ous. It will be shown that each

k=1
An 1 is nowhere dense. Take any

x:Z;—Z where m > N.

>0
Since the series > a, is not absolutely convergent, there exists an
n=1
‘extension’
Y
" n
T =+ on
n=m-1
of = such that
8 8 1
SRR SWEE
n=m-1 n=m-1

holds. Denoting by
B(s) = {Z € [071”%(2) =x, for n=1,2,...,m and
en(z) =yn for nzm—l—l,m—l—?,...,s}

it follows that B(s) N Ay x = 0. Since the choice of © was arbitrary and
since the set B(s) is an interval, the sets Ay j are nowhere dense and
hence A is a set of first category.

If S = {Sk} is a sequence and if the arbitrarily chosen = € (0,1]
has the non-terminating binary representation

. i_o:l e,;(nx)

then the subsequence of S determined by x and denoted by S(x) is
defined to be {5, };;’1 where k; is the place where the j-th one appears
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in the sequence {e1(x),e2(x),... }. Buck and Pollard [2], have proved
in 1943 the following
Theorem A. If S ={Si} is a (C,1)-summable sequence for which

o @2
Ik
2
k=1
holds, then the Lebesgue measure of the set

{:1; e [0, 1”5(:1;)is (C, 1)-summable to the (C,1)-limit of S}

s one.

Sziisz [10] later, in 1968, gave a simple probabilistic proof of this
result using the strong law of large numbers of Kolomogorov. Recently,
the current authors rediscovered the fact that the category analogue of
the Th. A does not hold. Namely, if S = {Si} is a divergent sequence
and C' is a regular matrix summability method then the set

A= {z €(0,1]|S(z) is C-summable }

is of the first category. This result was first published in [6]. We are
indebted to Professor J. Fridy for pointing out this reference to us. He
also informed us about a paper by T. Keagy, [5], containing the following
two results.

Theorem Ki. If A s a non-Schur matriz with convergent column
and if S =Sk} is a divergent sequence, then the set {x € [0, 1”5(:1;) is
A-summable} is of the first category.

Remark. Since the class of non-Schur matrices with convergent col-
umns strictly contains the class of regular matrices, Th. Ky is a gener-
alization of the theorem mentioned above that appears in [6].
Theorem Ks. Let A be a non-Schur matriz with convergent columns
and let S = {Si} denote a divergent sequence. Then the set of A-
summable rearrangements of S 1s of the first category.

Remark. Here a word about terminology seems in order. Let 8 denote
the collection of all permutations of N, the set of natural numbers, i.e.
the collection of all injective mappings P of N onto itself. On 3 a metric

d is defined in the following way:
if P17P2€q3, then d(Pl,Pz):

< 0

in case P = Py

ifi=1,2...,7—1
and Pl(]) 7£ PQ(])

In the metric space (I3, d) B is then of the second category in itself; [3].

0
1
J
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Our next results — Th. 2, 2’ and 3 — are extensions of Th. Kj.
Every sequence S = {Si} is summed by some non-Schur matrix with
convergent columns; then the following holds:

{z € (0, 1”5(:1;) is A-summable for some non-Schur matrix

with convergent columns}

equals the interval (0,1]. Here it will be shown that if S = {Si} is a
divergent sequence, then there exists a collection 2 of non-Schur matri-

ces with convergent columns, having cardinality of the continuum, such
that the set

{:1; € (0, 1”5(:1;) is A-summable for some A € Ql}

is of first category.

Of course, this result would be trivial in case all of the matrices in
2 had the same convergence field. In connection with this remark the
following example is informative.

Example 1. Let ¢ > 0. For t € [0,¢) define A; = ani(t) as follows:

1+ (=)t —-¢) for k=1,2,....n,
(=1)"t for k€ By(n),
) mu(n)
a"k(t) - (_1)11—1—15
— for ke B
—E or € Bs(n),
otherwise,

where By(n) and Bz(n) are for each n blocks of consecutive integers
satisfying:

a) Bi(n) lies to the ‘left’ of Ba(n);

b) n is less than each integer in By(n);

c¢) all of the blocks {Bl(n)‘n € N} and {Bg(n)‘n € N} are pairwise
disjoint;

d) m;(n) is the number of elements of B;(n), ¢ = 1,2;

e) the set |J (Bi(n)U By(n)) has natural density 0 in N;

n=1

f) lim m;(n) = oo for i =1,2.
n—>00

Ay is a regular matrix summability method for each ¢ € [0,¢). For
each such t let x4 denote a sequence of 0’s and 1’s satisfying
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1
z¢(k) — ¢ as n — oo, and
2=,
1
(k) —t as n — oco.
il 2,

From this it is easy to derive that:
x¢ is A¢-summable to 0 for ¢ € [0,¢),
but x, is not Ag-summable if 0 < ¢, s < ¢ and t # s hold.
In the sequel the following notations will be used:
K(A,e) = {B‘B is a non-Schur matrix with convergent

columns and [|A — B|| < ¢}

where

|C]] = sup (Z |Cpq|> if €= (cpq)-

Now our extensions of Th. K; will be presented.
Theorem 2. If A s a non-Schur matriz with convergent columns and
if S ={Sk} is a bounded divergent sequence, then the set

{:1; € (0, 1]‘5(:1;)is B-summable for some B € K(A,e)}

18 of the first category for some & > 0.

Proof. This proof follows the lines of the proof of Th. 3 in [5] and is
divided into the consideration of two cases. Let A = (A,,) and let
T(A,¢e) denote the set

{:1; € (0, 1)‘5(:1;) is B-summable for some B € K(A,as)}.

Further, J shall denote the collection of all subsequences of 5.
CASE I. Suppose row p of A is not absolutely convergent. If y € J
and y = {y,} is B-summable for some B € K(A,¢), B = (B,), then

there exists an N such that
J 1
prqu < 3 for every j >1> N.
q=t

From this follows that if ¢ > 0 is sufficiently small, then
J
Zapqu <1 forevery j>1>N.
g=1
Next, the following set is defined:
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J
> ap(S(2)g| > 1}

q=i

EN:{:L' € (0, 1” there exist 7 > ¢ > N such that

By the above
T(4.¢) C | ] E.
N=1

Moreover, in [5] it is shown that the set on the right side is of the first
category, so that the same must hold for T(A,¢).

CASE II. Suppose each row of A to be absolutely convergent. Now
Maddox (Lemma 1 in [5]) showed that if the matrix A is Schur there
exists a divergent sequence = such that each subsequence of z is A-
summable. Hence there is an y € J such that y is not A-summable.
Therefore, there exists a 6 > 0 such that to every positive integer N
integers jny > iy > N exist so that

(*)

holds. Next, let be

oo oo

Z UingYq — Z Ujnql¥q

g=1 g=1

>4

En = {:1: € (0, 1” there exists j > 1 > N such that

.
5 ("

Since each row of A is absolutely convergent and since S is bounded it

oo oo

Z aig(5(x))q _Z ajq(5(x))q

g=1 g=1

follows that each x € En is contained in an interval that is a subset of
Exn. By (%) and the fact that the columns of A converge follows that
each En is dense in (0,1).

Now suppose w € J, w being B-summable, B = (b,,) and B €
€ K(A,e). Then there exists an N such that

>0 >0 5
Z biqwg — Z bjqwg| < 4
g=1 g=1
is true for all j > ¢ > N. This implies that
>0 >0 5
Z QigWq — Z Ujqq| < 5
=1 =1

holds for every 7 > ¢ > N, if only ¢ is sufficiently small. Thus it has
been shown that
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T(Ae) C | J Ex
N=1

and hence T(A,¢) is of the first category. O

The following example shows that the condition of .S being bound-
ed in Th. 2 is necessary.
Example 2. Let S, = n, n = 1,2,... and suppose that y = {y,}
is any subsequence of S = {S,,}. By C denote the (C,1)-matrix. It
will be shown that for each ¢ > 0 there exists a regular matrix method
C. € K(C,¢) so that C. sums y to zero. For n > 2 the matrix method
C(n) is defined as follows: the first n — 1 rows of C(n) are the same as
those of C'. Then there exists a ¢, > n so that

1 < 1
g=1
Therefore there exists a A,,, 0 < A, < 1, such that
5 yq - Fyqn - v
g=1

The terms in the n-th row of C(n) are to be % in the first n places,

—)‘7" in the g,-th place and 0 in all other places. The remaining rows

are defined similarly yielding with C'(n) = (cj(gz))
c;’;)yq =0 forall p>n.
g=1

Obviously, each C(n) is regular and ||C' — C(n)|| — 0 as n — oo.

Despite this example, for unbounded sequences we have the fol-
lowing result:
Theorem 2'. If A 1s a non-Schur matriz with convergent columns and
if S = {Sk} s an unbounded sequence, then for every e > 0 there exists
a collection A, having cardinality of the continuum, A C K(A,¢e), such
that the set

{:1; € (0, 1”5(:1;)is B-summable for some B € Ql}

18 of the first category.

Proof. Let ¢ > 0 and let p be any positive integer. There exists an
A" = (ay,), A" € K(4, 5) such that row p of A" is not eventually zero.
There also exists a collection 2 € K(A,¢), 2 having cardinality of the
continuum, such that if B € 2 and a},, # 0, then [b,,| > Flal,|. Let

next be:
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En = {:L' € (0, 1” there exists an n > N such that

[apn(S())u| > 1}.
Clearly, each Ex is dense in (0,1] and if « € Ey then an interval
containing x is contained in Ey. The set

{:1; € (0, 1”5(:1;)is B-summable for some B € Ql}

>0
is obviously a subset of |J E§ and is therefore of the first category. ¢
N=1
We now turn our attention to theorems dealing with rearrange-

ments of sequences. If S = {S5,} and P € B, let S(P) denote the
rearrangement of S by P, i.e. (S(P))x = Sp(x) for each k.
Theorem 3. If A s a non-Schur matriz with convergent columns and
if S ={Sk} is a bounded divergent sequence, then the set

U(Ae) = {P € ‘B‘S(P) is B-summable for some B € K(A,e)}

is of the first category in (P, d) for some e > 0.

Proof. CASE I. Suppose row p of A is not absolutely convergent. If
y = (yq) € H, where H is the collection of all rearrangements of S, y
being B-summable for some B € K(A,¢), B = (byy), then there exists
an N such that

J
1 S
prqu < 3 for every j >1> N.
q=1
From this follows that, for ¢ > 0 sufficiently small, the inequalities

j

D bpgyg| <1 forall j>i>N hold.

g=1
Now let

J

> apg(S(P)),|>1}.
g=1
Notice that if P € En, P’ € B and P(q) = P'(q) for all ¢ =1,2,...,7,
then P’ € En. Hence, by the definition of the metric d on B, E is
an open set. Furthermore, by the argument used by Keagy in proving

Th. 4 in [5], it follows that each Ex is dense in . Therefore it has
been shown that U(A,e) € (J E§ holds for sufficiently small ¢ and
N=1

EN:{P € ‘13‘ there exist 7 > ¢ > N such that

that |J E§ and also U(A,¢) is of the first category.
N=1
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CASE II. Suppose each row of A is absolutely convergent. In this
case the proof then follows exactly that in Case II in Th. 2. In place of
the lemma of Maddox in [5], the following result of Keagy, [5], is used:
If A is a non-Schur matrix and if S = {St} is a divergent sequence then
there exists a P € P such that S(P) is not A-summable.

Example 2 shows also that the requirement that S is bounded in
Th. 3 is necessary. However, we again do have the following
Theorem 3'. If A 1s a non-Schur matriz with convergent columns and
if S = {Sk} s an unbounded sequence, then for every e > 0 there exists
a collection A of cardinality of the continuum, A C K (K, &) such that
the set

{Pe ‘B‘S(P)is B-summable for some B € A}

18 of the first category.

The proof of this result is the same as that of the proof of Th. 2, only
with @ replaced by P and (0, 1] replaced by B. ¢

Two final remarks 1. The rearrangement analogue of Th. 1 was
proved by Agnew in [1]. 2. A recent result of the type of results
presented here is by Miller and can found in [7].

References

1] AGNEW, R. P.: On rearrangements of a series, Bull. Amer. Math. Soc. 46
g
(1940), 797-799.

[2] BUCK, R. C. and POLLARD, H.: Convergence and summability properties of
subsequences, Bull. Amer. Math. Soc. 49 (1943), 923-931.

[3] HOZO, 1. and MILLER, H. I.: On Riemann’s theorem about conditionally
convergent series, Mat. Vesnik 38 (1986), 279-283.

[4] KAHANE, J. P.: Some Random Series of Functions, Cambridge University
Press, 1985.

[6] Keagy, T. A.: Summability of certain category two classes, Houston Journ. of
Math. 3 (1977), 61-65.

[6] KEOGH, F. R. and PETERSEN, G. M.: A universal Tauberian theorem,
Journ. London Math. Soc. 33 (1958), 121-123.

[7] MILLER, H. I.: Generalization of a result of Borwein and Ditor, Proc. Amer.
Math. Soc. 105 (1989), 889-893.

[8] OXTOBY, J. C.: Measure and Category, Springer—Verlag, New York, 1971.

[9] SZUSZ, P.: On a theorem of Buck and Pollard, Z. Wahrscheinlichkeitstheorie
verw. Gebiete 11 (1968), 39-40.



