Mathematica Pannonica
7/1(1996), 113 — 130

AROUND THE ROGERS-SHEPARD
INEQUALITY

Karoly Biiriiczky, Jr.

Mathematical Institute of the Hungarian Academy of Sciences,
1864 Budapest, P.O.Bozx 127, Hungary

Received November 1994

MSC 1991: 52 A 39, 52 A 40

Keywords: Difference body inequality, mixed volumes.

Abstract: We prove a stability version of the Rogers-Shepard difference body
inequality. In addition, we consider possible generalizations with respect to

mixed volumes, introducing various types of parametric bodies.

Acknowledgement: Would like to thank Peter Gruber and Endre
Makai for helpful discussions.

1. Introduction

In the late 50’s, Rogers and Shepard proved their celebrated in-
equality about the volume of the difference-body; namely, if C' is a
convex body in E? then

) vie-or= (3)ve

with equality if and only if C' is a simplex. The problem about the
stability of the Rogers—Shepard inequality has been recently posed in-
dependently by Peter Gruber and by Karoly Bezdek. We give a solution
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in a small neighbourhood of the simplex (see Th. 4.3). The estimates
are based on the Minkowski measure of symmetry whose basic prop-
erties are reviewed in Section 3. Note that we even provide a stability
version of the well-known fact that this measure is d if and only if C' is
simplex.

An earlier approach towards to the proof of (1) was suggested by
Godbersen in [4]. He conjectured the inequalities

(2) V(C,—C;i)§(?)V(C’)forizl,...,d—l,

which would readily yield (1). For the definition and basic properties
of the mixed volumes see Section 2. Equality holds in (2) if C' is a sim-
plex, and the inequalities are verified in [4] if C is a body of constant
width.

In the second half of the paper we consider various generalizations
of the Rogers—Shepard inequality and the Godbersen inequalities. In
Sections 5-6, the meanprojections and the affine surface-area of Buse-
mann of the difference body are investigated.

The topic of the last two sections originated from the theory of
packings (actually, similar connections brought Rogers’” and Shepard’s
attention to this problem). The question is what p ensures that the
volume of K + (C — C) is at most V(K + pC). For such a p, the
parametric density of any finite packing of C' is at most the packing
density of C (see [1]).

2. Mixed volumes

Denote the family of compact, convex sets by K¢. According to
the theorem of Minkowski (see [2]), for Ki,... ,K,, € K¢ the function
V(IMEL + ... + A\ Ky is a homogeneous polynomial of degree d for
non-negative Ay, ..., Ap. The mixed volume V(Ky,... ,K4) (where we
allow repetition) is defined so that the coefficient of A1 -...-A4 in this poly-
nomial is d'V(K7,... , K4). The mixed volume is actually well-defined.
It is non-negative and symmetric, monotonic, positive linear and contin-
uous in its variables. In addition, it is invariant under volume-preserving
affine transformations (applied simultaneously to Ky, ..., K;). We have
V(K1,...,K;) # 0if and only if there exist segments s; C I; whose
directions span E€.

As it is frequently done, we use the breviation
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—_—
V(Ix JIK,C, .0, 0)=V(K,Cs).
Note that V (X, .. ) V(K) and 1fB is the unit ball then V (I, B; 1)
is proportional to the mean (d — i)-projection of I (say V(K, B;1) to
the surface-area).

Let K € K% We denote its support function by hx(u) and its
face with outer normal u by Fi (u). In addition, we use v(-,... ,-) for
the (d —1)-dimensional mixed volume. Then for polytopes Py, ..., Pj_4
the mixed volumes can be calculated with the help of the formula (see

2])

. 1
(3) V(Prooo Par. K) =~ Y o(Fp(u).... Fr,(u)) hic(u).
uESd_l
Observe that the summand on the right hand side is non-zero only for
finitely many v € S,

3. About the Minkowski-measure of symmetry

Denote by ¢(C) the minimal A > 0 such that —C C a + A\C for
some x. It is well-known that ¢(C) = ¢(—C) is a measure of symmetry
for C in the sense of Griinbaum (cf. [6]), and satisfies (see [7])
Theorem 3.1. For any convez body C, we have 1 < ¢q(C') < d where
q(C) =1 if and only if C is centrally symmetric and ¢(C') = d if and
only if C 1s a d-simplez.

We always assume, unless otherwise stated that €' translated so
as to satisfy

(4) —-C Cq(C)C.

Note that this way the origin is contained in intC'. We deduce by the
definition of ¢(C) and by (4) the existence of some vg,... v, € 0C
such that o € conv {vg,... ,v,} and

(5) —q(C)v; € OC

for e = 0,... ,m. Observe that there exist parallel supporting hyper-
planes in v; and —¢(C) v; and denote by u; the outer unit-normal vector

to C at v;. It also follows that o € conv {ug, ... ,u;,} and
(6) h_c(u;) = q(C) he(ui)
fori=0,...,m

Let T be some d simplex whose centroid is the origin. Denote
by o(C) the minimum of A such there exists some affine transforma-
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tion A satisfying A(T) € C C A(NT). Taking A(T) to be the d-
simplex of maximal volume shows that o(C') satisfies 1 < o(C) < d+
+ 2 (cf. [8], Th. 3). Note that o(C) = d if C = —C, and so most
probably o(C') < d with equality if and only if C is centrally symmet-
ric.
Theorem 3.2. Let C' be a convez body satisfying d—% <qg=q(C)<d.
Then p p
—q
. <o(C) < 1+(d+1)1_d(d_q).
Remark. The lower bound holds for any C' (no need for the restriction
on ¢(C)) and can not be improved in general.
Proof. Since —T is covered by a translate of po(C)T, the relation
po(C) > d readily follows. The fact that this estimate is the best
possible shown by the example of €' = conv(—=%T U T) for some 1 <
< o < d. Here readily o(C) < o and ¢(C) < d/o, which in turn yields
that po(C) =d.
Let vg,...,vyn € OC be the points appearing in (5). Turning

to the upper bound for o(C), first we prove by induction on k (k <

d) that if o € conv{vg,...,vx} then ¢(C) < k. Set w; =
= —¢q(C)v;. The claim readily holds for & = 1, so assume that T =
= conv {wo, ... ,wy} is a k-simplex and k > 2. Denote H; the half
space in affT whose bounding hyperplane divides the distance between
w; and the opposite facet of T' in the ratio ¢(C) to 1. Then o € NH;
since v; is not contained in relintT’, which in turn yields that ¢(C') <
< k.

We may assume by Charatheodory’s theorem that o € conv {vg, ...

. ,vq}, and so conclude that ¢(C) < d (see also Th. 3.1). Assume in
addition, that ¢ = ¢(C) > d — %, and hence T = conv {wg, ... ,wq} is a
d-simplex. Translate C' so as that the center of mass of T is the origin
and denote by s the common point q_%lvi + —w;. Recall that s € Tp

q+1
where Ty = ﬂi:07,,,7dH;|' = —%T. We deduce that vg € 17 = wg +

+ %(Tg — wp), and in particular,

(7) vo € conv {y,wy,... ,wq}

_d+l

where y = wg 1s the vertex of T outside of T.

Let @ be a point of C' contained, say, in pos{wy,... ,wgs}. We
deduce by (7) that y ¢ int conv{z,wq,... ,wq}, and hence v —y ¢
¢ intpos{y — wy,... ,y —wg}. On the other hand, some simple cal-
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culations show that the line aff {o,w; } intersects aff {y,v2,... ;vq} in a
oint contained in =D 7 Tt follows that « € D 7 which
p T—d2tdq *- T—d2tdq >

in turn yields the upper bound for o(C'). {
Remark. If ¢(C) =d — ¢ and ¢ < 21_d then we deduce the estimate

(8) 1—|—§§0(C)§1—|—2(d—|—1)5.

4. The stability of the Rogers-Shepard inequality

Before giving an estimate of the right order for the stability of

the Rogers—Shepard inequality (see Th. 4.3) in a neighbourhood of the
simplex let us see what to expect. The relation —C C ¢(C)C yields
that
(9) V(C.—C:1) < g(C)V(C).
Let 1 < g < d and let T be some simplex having the origin as its center
of mass. Then for C' = conv (T U —¢T), ¢(C) = ¢ and equality holds
in (9). Observe that the conjecture (2) of Godbersen would yield the
following estimate: If ¢(C') = d — ¢ then

V(C -0 < ((if) - 2d5> V().

Indparticular, we have an exact upper estimate if d = 3, and hence
1) = 20.

é(i'Z)position 4.1. Let C be a convez body in the 3-space and set ¢(C') =
=q=3—¢c. Then V(C —C) < (20 — 6¢)V(C), and equality holds if
C = conv (TU—qT) where T is a simplex having the origin as its center
of mass.

For general d, we use the original ideas of C. A. Rogers and
Shepard. In their paper [9] (see also Section 8, assuming that K is
a point), they essentially establish a formula of the type V(C — C) =
=(1- A(C’))(de>V(C'). Letting A(z) = min{A > 0|z € A(C — C)}, we
have

(10) A(C)=

In other words, A(C') measures that how much “smaller” is (1 — A\(x))C
than (@ + C) N C in average.

Set & = A(b — ¢) for some b,c € C and 0 < A < 1. In addition,
assume that for a point y outside of C, we have z = Ao+ (1 — Ny € C
and A¢+ (1 — A)y € C. Then some simple consideration show that
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(11) ze€(x+C)NCI\b+ (1 = \)(C =b).

This observation, taking A to be close to A(x), is applied to give a lower
bound for the right hand side of (10).

Proposition 4.2. Let d > 4 and ¢(C) = d — ¢ for some convex body
C. There exist some eg,co > 0 such that 1f 0 < & < g then

V(C = C) < (1 coc) <2dd> V(C).

Proof. The idea of the proof runs as follows: “Normalize” C' so that
the simplex T in the proof of Th. 3.2 is regular having edge-length one,
and construct a certain cylinder M, independent of C' (up to congru-
ency). For # € M and A be close to A(x), find a small cone N in
(x + C)N C not in (1 — N\)C satisfying V(N) > we for some con-
stant w. Finally, verify that the difference between the volumes of
(1 — AM(x))C and of (1 — N\)C is at most %w e, and so (10) yields the
proposition. Since the constant ¢y resulting from our method is small
anyway, we estimate rather generously the constants arising along the
way.

Assume that

1
Sty

and hence (8) holds. We use the notation of the proof of Th. 3.2. Ac-
cording to this, vg,... ,vq and wq, ... ,wy are points of JC such that
there exists an s € conv{vg,...,v4} satisfying w; — s = ¢(C)(s — v;)
for ¢ = 0,....,d. In addition, for each pair v; and w; there exists
supporting hyperplanes to C' with opposite outer-normals. Since our
problem is affine invariant, we may assume that the d-simplex T =
= conv{wp,... ,wq} is regular having edge-length one and the origin

is the center of mass of T. Note that V(T) = \/_V‘; j‘;', the height of T is
A/ d;'—dl and by the proof of Th. 3.2,

CCl+2(d+1)e]T C <1+1> T.

(12)

d

Denote by F; the facet of T opposite to w; and by n; an outer-
normal to C at v; such that —n; 1s an outer-normal to C' at w;. Assume
that vy is the farthest from 7" among vg, ... ,vs and let L be the linear
(d — 1)-space parallel to Fy. Among w1, ... ,wq, there exists one, say
w1, so that the angle of —Ywy — wy (which is in L) and the projection
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of ng onto L is at most T —arcsing—. Let K be the right circular (d —
— 1)-cone in L with apeX 0, Whose helght is ﬁ and the maximal angle
of any x € K and ——wo —wi 1s arc smd T The condition on wq yields

that vy + I does not intersect intC' (see Fig. 1).

Wy
W
) M-+w;y
S
N, ¥
Yo
Vi b(x)
Fig. 1
Denote the volume of the unit d-ball by x4, and set
13 _ kd—2
(13) = g

The right circular cylinder M has height ¢ 1/2 and the radius of its base
is 32dw We assume that the axis of rotatlon for M is parallel to vy —wy
and the centers of the bases of M are distance Z\/_ 2 and %\/_ 2 from o
along the halfline (0, v; — wy).

Let @ € M. Denote by b(x) the point of dC such that © =
= X(:z;)(b(:z;) — wy) for certain X(l‘) > 0. The definition of M yields
that i < X(l‘) < %. The “excess cone” N is defined with the help of the
cone

1
Ny = vg + conv (3(1)0 — wl),K> )
If y € Ny then y ¢ int C, and we deduce by the bounds on X(l‘) and
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some elementary calculations that X(:z;)b(:z;) +(1-— X(:L'))y and X(:L')wl +

+ (1 — A(x))y are contained in C. It follows by (11) that

N = Ma)b(z)+(1=Nx))No C [(z+C)NCI\b(x)+ (1= N(2))(C —b(x)).
The maximality property of vg yields that the distance of vy from Fy is

at least
Loy d e
q(C) d 2(d+1) 2d2°

We deduce that V(No) > 575552 ¢, and hence V(N) > V(i No) > we.

Our final estimate is to compare the volume of (1 — A(x))C to the

volume of (1 — A(z))C. Denote the point ﬁ x of 9(C — C) by u(z).

Then V(C) < (1 + %)dV(T) < 1 yields that

5 1w
v«l—xwxm—v«r—xwxm<(l_X@) .

()

Now observe that pos(C — v1) contains a cone with axis pos{w; — v}
such that the maximal angle of its points and wy —vq is arc tge. It follows
that the angle (b(x),v1,w1) is at least arcctge, and since the segment
conv {wy,wy + u(x)} is contained in the strip bounded by the parallel
supporting hyperplanes at v; and wy, the angle (wy + u(x),v1,wy) is at
most m—arcctge. We deduce by @ € M that the angle (b(x),wy,v1) is
at most arc tgﬁw, which in turn yields that

@l \'_ (T mEes) e
i —wil) \1= e
Combining all these together implies by (10) that
A(C) > %V(M)e,
and the Proposition follows. {

Now we are ready to state the stability version of the Rogers-
Shepard inequality.
Theorem 4.3. Let d > 3. There exist some e1,¢; > 0 such that if
o(C) =14 ¢ for some convezr body C and 0 <& < ey then

(1— de) (if) V(C) < V(C—C) < (1—cre) (if) V(C).
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Proof. Assume that T is a simplex such that T C C C (1 +¢)T. Then
1 2d
vic-C)>V(T-T) > Ao <d>V(C'),

which in turn yields the lower bound for V(C — C'). On the other hand,
we deduce the existence of ¢; by Prop. 4.2 and by (8). O

Remark. Since in the Rogers-Shepard inequality equality holds only for
the simplex, we have the following result related to Th. 4.3: If V(C —
—C)=(1-¢) <2dd>V(C') and ¢ is small then there exist a simplex T and
an x such that T C C —a C (1 + ¢e)T for some constant ¢ depending
only on d.

5. Inequalities with parameter-bodies

In this section, we introduce some “parameter-bodies” for the
Rogers—Shepard-type inequalities. If these bodies are zonoids then we
use the fact that the mixed volumes can be represented wvia projec-
tions.

Theorem 5.1. Let C € K¢ and let Zpiq,... , Zg, n=1,...,d—1,be
zonoids. Then

V(C—=C,....,C—C,Zps1,... . Z4) < (2”

n)V(C,... CoZns1s. .. Za),
and equality holds if C' is an n-simplez.
Proof. By the continuity of mixed volumes, it is sufficient to consider
the case where all the Z;’s are zonotopes, and by linearity we may as-
sume that the Z;’s are segments in general position. Let L be the linear
n-space orthogonal to each Z;. Since V(C,... ,C, Z,41,... ,Z4) is pro-
portional to the n-volume of the projection of C' onto L, the theorem
follows by the original Rogers-Shepard inequality. ¢

As the unit ball B is a zonoid, the corresponding result for the
mean projections is a direct consequence.
Corollary 5.2. For any C € K¢ satisfying dimC >n, n=1,... ,d —
— 1, we have

2
V(C,B;d—n) < ( n)V(C—C,B;d—n)
22

and the iequality 1s the best possible.

Remark. Here equality holds if and only if C' is an n-simplex. If C'
(dim C' > n) is not an n-simplex, then its projection to some open neigh-
bourhood of linear n-spaces is again not an n-simplex. Since the mean
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projections can be represented as the average of the n-volumes of the
n dimensional projections of C' with respect the Haar-measure on the
linear n-spaces, it follows that strict inequality holds in Cor. 5.2.

Now we allow the parameter-bodies to be any centrally symmetric
body. In this case much less can be said. Surprisingly, if we do not
have too many centrally symmetric parameter-bodies than the trivial
estimate coming from —C C ¢(C') is optimal:

Proposition 5.3. Let C be a convex body and n < d/2. Then for
any centrally symmetric Ky, ... , K, € K and for any family of convex
bodies Crq1,...,Cq—1, the inequality
V(I(l, ce ,I(n, Cn_|_1, ce 7Cd—17 —C) <

< (](C) V(I(l, ce ,I(n, Cn_|_1, ey Cd—h C)
holds. For a given C, ¢(C) can not be replaced by a smaller constant
n general.
Proof. The inequality readily holds by —C C ¢(C').

Assume that replacing ¢(C) by some p, the inequality holds for
any suitable choice of K; and C;. We deduce by (6) the existence of
Ug, . .. ,up € S471 such that o€ conv {ug, ... ,u}, the family ug, ... ,uy
is minimal with respect to this property and h_c(u;) = ¢(C) he(u;).

Define T be a k-simplex whose outer (k — 1)-face-normals in affT
are ug, ... ,uy so that the origin is the centroid of 7', and set M = TN
N (=T). As our problem is affine invariant, assume that 7' is a regular
simplex.

First consider the case when k = d, and let Ky = ... = K,, =
and Cpy1 = ... = Cy—1 = T. Assume that v(Fr(u), Fx(u);n) # 0 for
some u € SY7!. Then the relation dim Fp(u) > d—1—n > L(d -
— 1) implies that Fr(u) is not father from the origin than Fr(—u), and
hence Fi(u) C Fr(u). We deduce that dim Fr(u) = d — 1, or in other
words, that v = u; for some 1 = 0,... ,d. Now (3) and (4) yield that
p=4q(C).

Therefore assume k < d and let P be some centrally symmetric
(d — k)-polytope orthogonal to T'. It will be convenient to set Q); = M if
i<nand Q; =T ifi=n+1,...,d—1. Now define C; = Q; + \P if
1 <d—1—kand C; = QH—%Pifz’ =d—k,...,d—1 for some positive
A, and finally let K; = C; fori=1,... ,n.

Observe that the bodies C;’s are defined so that V/(Cq,...,Cq—1,C)

is a Laurant polynomial in A whose highest order term is A“¢=1=%) and
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lim V(Cl, ,Cd_l,—C) _ V(P, ,P, Qd—ka--- 7Qd—17_0)‘
A—0o0 V(Cl, ,Cd_l,C) V(P, ,P,Qd_k,... ,Qd_l,C)
(If K = d — 1 then P naturally does not appear on the right hand side.)
Now applying a similar argument in affT as for the case k = d, one
concludes that again p > ¢(C). ¢
Corollary 5.4. Let n < d/2. Then for any centrally symmetric
Ki,... ,K,eK® and for any family of convex bodies Cpy1,...,Cq_1,C,
we have the mequality
V(I(l, ce ,I(n, Cn_|_1, ce 7Cd—17 —C) <
< dV(IX’l, ce ,I(n, Cn_|_1, ce 7Cd—17 C)
Here equality holds if C' 1s the d-simplex whose centroid is the origin,
K =... ,I(n =CnN-C and Cn_|_1 =... 7Cd—1 =,
Remark. The condition n < d/2 is needed to ensure that d is the
best possible constant. Say if n = d — 1 then V(Ky,... ,K4—1,—-C) =
= V(K1,...,K4-1,C). Let d = 4 and n = 2. Define C = C5 to be
4-simplex whose centroid is the origin and K7 = Ky = C N —C. This
cast is a candidate to be the optimal one, and V(K1, K, C3,—C) =
=32 V(I(l R .[(27 C3, C)

6. The affine surface area

We have already seen that there exist a Rogers—Shepard-type in-
equality for the mean projections. We now consider the case of the so
called Minkowski-surface area S(C') with respect to a centrally sym-
metric convex body N (see [3]). Denote by N* the intersection body
assigned to N. It is a centrally symmetric convex body, and S(C) =
= V(C,N*;1). So we want to have an upper bound for the quotient
V(C—-C,K;1)/V(C, K;1) where C and K are any convex bodies with
K = — K. In the rest of the section, we present results supporting the
following conjecture:

Conjecture 6.1. For any convez bodies C' and K with K = —K, we
have the inequality

e () (o)

=0

With the help of (3), it is easy to establish that equality holds if
C' is a d-simplex whose centroid is the origin and K = C N —C. Note
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thatd the expression on the right hand side is asymptotically the same as
12
: ( ‘ >VVith respect to lower bounds, the Alexandrov—Fenchel inequality
yields that
V(C — C? I(; 1) > 2d—1

V(C,K:1) — ’
with equality if ¢ = —C. Note that one can have equality in (14) also
in some other cases. For example, in E? take K to be the cube [-1,1]?
and C to be regular simplex whose vertices are the vertices of K having
even number of 1 as coordinates.

Turning to Conj. 6.1, the case d < 4 follows right away by Cor. 5.4.

Theorem 6.2. If d = 3 or 4 then Conyecture 6.1 holds for any convez
bodies C' and K with K = —K. We have equality if C' s a d-simplex
and K = C N —C where we assume that the origin is the centroid of
C. If d = 3 then this is the only case for equality up to a homothety of
K.
Proof. The only statement to prove is the necessary condition for d =
= 3. So let C' and K be convex bodies which satisfy K = —K and
V(K,C,—C) =3V (K,C,C). Then C is a 3-simplex by Prop. 5.3 and
Th. 3.1. We may assume that C is a regular simplex and hx(ug) =
= hc(ug) where ug, ... ,us € S3 are the outer normals of the faces of
C'. Denote by G the symmetry group of C.

First assume that G is also contained in the symmetry group of
K. The convex body M = C' N —C is a regular octahedron containing
K which satisties V(M,C,C) = V(K,C,C) by (3), and hence also
V(M,C,—C)=V(K,C,—C). Note that v(Fc(u), F_c(u)) # 0 if u is
perpendicular to a pair of opposite edges of C, in which case Fis(u) is
a vertex of M. Now K C M and V(M,C,-C) = V(K,C,—C) yield
by (3) that K = M.

Turning to the general case, define

Ky = é Z g(K).
geG
Then Ky also satisfies V(Kg, C,—C) = 3V (Lo, C,C), and hence Iy =
= M Dby the considerations above. As the M has at least as many
vertices as K, I must be an affine octahedron. On the other hand, any
face-normal of K is a face-normal of M, and we conclude that K = M.
Remark. If d = 4 then V(K,C,C,-C) = 4V (K,C,C,C) yields that

C' is a 4-simplex but there are various choices for K. For example,

(14)
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removing a pair of opposite vertices of C' N —C', one can take as K the
convex hull of the remaining vertices.

For d > 5, the following statements support Conj. 6.1:
Proposition 6.3. Let C and K be convex bodies with K = —K.

@wa—CJQUgvﬂcf:f§vmunm<4“anKgy

(i1) Cong. 6.1 holds if C is a d-simplew.
Proof. John’s theorem (see [5]) provides an ellipsoid E such that E C
C K C VdE. As E is a zonoid, i) follows by Th. 5.1.

Now let C' be a regular d-simplex whose centroid is the origin and
denote by G the symmetry group of C'. By the linearity of the mixed
volumes, it sufficient to verify the conjecture for

. 1 .
Koy =+ Z g(K).
Gl 2=
We may assume that the supporting hyperplanes of C' containing its
facets are also supporting hyperplanes of Ky. Then Kg C C' N —C', and
the relations V(C, Ko;1) = V(C,C N —=C;1) and V(C — C,Kp;1) <
<V(C —-C,Cn —=C;1) yield the theorem. ¢

7. Parallelbodies

A possible generalization of the inequality of Rogers and Shepard
is the following: Find the smallest p such that for any compact, convex
set I and convex body C', we have the inquality

(15) V(K +pC) > V(K +C - C).

If K is a point then (15) reduces to the original difference body problem,

and hence the inequality holds for p = <2dd>1/d. As <2dd>1/d < 4, one may

hope to find a p independent of the dimension d. In general, it is not
possible (see Cor. 7.2), and so we assume in Section 8 that K has lower
dimension.
Theorem 7.1. Let C be a conver body. Then for p > ¢(C)+ 1 and
for any K € K¢, the inequality

VIK+pC)>V(K+C-C)
holds, and the lower bound for p is the best possible.
Proof. The inequality follows right away by (4). Now assume that (15)
holds for any convex body K. Replacing K by AK for large A, the
formulae
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VAK 4 pC) =\V(K) + d\“"pV(K,C;1) + O(A\"™?)  and
VIAK +C — C) =)V (K) + d\ Y V(K C; 1)+
+V(K,-C;1)) + 0(\7%)

yield that
V(K,-C;1)

16 >14+ —.
(16) Pt Y E G

We deduce by (6) the existence of ug,... ,u; € S?~! such that
the family wg,...,us 1s minimal with respect to the property o €
€ conv{ug,... ,ux} and h_c(u;) = q(C)hc(u;). Define T be a k-
simplex whose outer (k — 1)-face-normals in aff T are ug, ... ,uj and let

P be some (d — k)-polytope orthogonal to T. Since for large A and for
K =T+ \P, (3) yields that
V(K,~C;1)  NFSE Choc(ui)o(Pryp(ui)) + O(ATF1)
VIE,Ci1) Nk S0 he(ui)o(Fryp(us) + O(A—F1)
the inequality p > ¢(C) + 1 follows by (6) and (16). Note that in the
case k = d, the use of A\ and P is unnecessary. ¢
Taking C' to be a d-simplex in Th. 7.1 yields
Corollary 7.2. Let p > d+ 1. Then for any K € K% and for any
convez body C', the inequality
VIK+pC)>V(K+C-C)
holds, and the lower bound for p is the best possible.

Y

8. The low dimensional case

In this section, we consider lower bounds for p such that (15) holds
in the case when the dimension of K is small. The next proposition is
the main ingredient of the proof of Th. 8.3.

Proposition 8.1. For any p >0, I € K¢ and for any convez body C,
i=d

V(K +pC) >y (CZZ) o (dj Z) _IV(K, C—C:i).

=0
The proof follows the line of the classical paper [9] of Rogers and
Shepard. Consider the double integral

I= / / vely — 2)xweoly) dy de.

Changing the order of integration yields that
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10 1= [xwecl) [xely =) dedy = V(K +C)-V(C),

On the other hand, set D = C' — C and define A\(z) = min{\ > 0] €
€ K + AD}. We claim that if A(x) <1 then

(18) / vely — o) xrrcly)dy > (1— M) V(O).

First assume that A(z) > 0, and let « € K and b,c € C so that = a +
+ A(b—¢) for A = A(x). Note that \b+ (1 — \)C and A\c+ (1 — \)C are
contained in C', which in turn yields that

a+ b+ (1-NCCK+C,

t+Aie+(1-NC Czx+C,

where a + A\b = =+ Ac. This proves the claim for A > 0. The case A =0
readily holds.

Combining (17) and (18) yields that
(19) V(K+C)> / (1 — M) de.
V(K+D)

Lemma 8.2.

1
/ (1= MNaz)de =V(K) + d/ (1—p)V(K 4 uD,D; 1) dp.
V(K+D) 0

Proof. Define for 0 < p <1,
fio=[  =@)dn
V(K+uD)

Note that A(z) is continuous and

dV( ¢ +uD,D;1).

It follows that f'(u) = (1 — p)?d V(K + uD, D; 1), which in turn yields
the lemma as f(0) = V(K). O
We deduce by replacing C' by pC in Lemma 8.2 and (19) that
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(20)

1

V(K +pC) > V(K +dz< )pVIxDl)/O(l—/,L)d/,Li_ld/,L.

Finally, the simple identity

/01<1 ) dp = Z(djl)l

yields the inequality

V(K + pC) > V(I +Z<> <d+l> IV(K,D;i). o

Remark. The proof shows that if K and C' are homothetic d simplices
then equality holds in Prop. 8.1.
Next we prove that if dim K < m < d then the optimal p in (15)
approximately is of order d/(d — m).
Theorem 8.3. (i) For any K € K¢ with dim K < m < d and for any
convez body C,
d
VIK+pC)>2V(K4+C-C) for p26<1+d7>.
—m
(i1) Assume that d > 25 and m > %d. Then there exists a K € K¢
with dimK < m < d and some convex body C such that

1 d
4 4 _ < . .
V(K +pC)<V(K+C—C) for ,0_21nd_dm y -

Proof. Note that V(K + D) = S2/=2 (Y)V(K, D;i) for D= C' — C and
V(K, D;i) = 0 for i < d—m. Thus by Prop. 8.1, it is sufficient to check

the condition
N 1/i
p = (dJ.r Z)
7

fori=d—m,...,d. Usmg the Stlrhng formula

(21) —\/ v <! < —27 (1 + 1),

we conclude the estimate ‘

d+i\""* i\ d\ (d+i+1\"" d
14— I+4=- )| —— 1+ —.

<@> <<+d> +a Srdi L
On the other hand, assume that k& = d/(d — m) > 25 for some

m < d. We need some constants in the course of the proof; namely,
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a2

d
M m
Let T be an m-simplex and let @) be some centrally symmetric (d —
— m)-body whose affine hull is orthogonal to T, and define K’ =T and
C=wl+Q.

First observe that by (2

a:{1.9(d—m)l ] and w =

m — a2

we have the formula

~—

Y

() (Jarorosn

$(2) (o

=0

I

V(T + (wT — wT)) =

31

Thus we investigate the quotient

(22) V(K +pC) (14 pw)mp?—™
VIE+C=0) (L, (1) (" )wi) 20-m”

=0

Applying the Stirling formula for i = o (where o > 6) results in the
estimate

m m 4+ « m + « m m 4+ «
w® > >

G2 )= (552) Vameatae 2

L (mrey"

“\m-—u« 3a
We claim that for p = 1k/Ink,

(#22) 55y

(1_|_pw)m 2d—m'

Observe that this claim yields (ii) in the light of (22).
As p < m/a, it is sufficient to verify

(23)

m/(d—m) 1/(d—m)
(1 N 3) L Ba) 7™ m
m 2 o
On the left hand side, we deduce by d/(d — m) > 25, o/m < 0.5 and
a>1.6(d—m)lnd/(d —m) that

« In(1+0.5)
In{l14+ — 1.6 - | Inl. |
d—mn<+m>> 6 0.5 nd—m>n 5+nd—m

As o > d—m on the right hand side and £(3(d — m))t/(d=m) < 1.5, the

claim (23) now follows, which in turn yields the theorem. {
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