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�� Introduction

In the late 

�s� Rogers and Shepard proved their celebrated in�
equality about the volume of the di�erence�body� namely� if C is a
convex body in Ed then

��� V �C � C� �
�
�d

d

�
V �C��

with equality if and only if C is a simplex� The problem about the
stability of the Rogers	Shepard inequality has been recently posed in�
dependently by Peter Gruber and by K�aroly Bezdek� We give a solution
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in a small neighbourhood of the simplex �see Th� ����� The estimates
are based on the Minkowski measure of symmetry whose basic prop�
erties are reviewed in Section �� Note that we even provide a stability
version of the well�known fact that this measure is d if and only if C is
simplex�

An earlier approach towards to the proof of ��� was suggested by
Godbersen in ���� He conjectured the inequalities

��� V �C��C� i� �
�
d

i

�
V �C� for i � �� � � � � d� ��

which would readily yield ���� For the de�nition and basic properties
of the mixed volumes see Section �� Equality holds in ��� if C is a sim�
plex� and the inequalities are veri�ed in ��� if C is a body of constant
width�

In the second half of the paper we consider various generalizations
of the Rogers	Shepard inequality and the Godbersen inequalities� In
Sections 
��� the meanprojections and the a�ne surface�area of Buse�
mann of the di�erence body are investigated�

The topic of the last two sections originated from the theory of
packings �actually� similar connections brought Rogers� and Shepard�s
attention to this problem�� The question is what � ensures that the
volume of K � �C � C� is at most V �K � �C�� For such a �� the
parametric density of any �nite packing of C is at most the packing
density of C �see �����

�� Mixed volumes

Denote the family of compact� convex sets by Kd� According to
the theorem of Minkowski �see ����� for K�� � � � �Km � Kd the function
V ���K� � � � � � �mKm� is a homogeneous polynomial of degree d for
non�negative ��� � � � � �m� The mixed volume V �K�� � � � �Kd� �where we
allow repetition� is de�ned so that the coe�cient of ���� � ���d in this poly�
nomial is d�V �K�� � � � �Kd�� The mixed volume is actually well�de�ned�
It is non�negative and symmetric� monotonic� positive linear and contin�
uous in its variables� In addition� it is invariant under volume�preserving
a�ne transformations �applied simultaneously to K�� � � � �Kd�� We have
V �K�� � � � �Kd� �� 
 if and only if there exist segments si � Ki whose
directions span Ed�

As it is frequently done� we use the breviation
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V �K� � � � �K�

iz �� �
C� � � � � C� � V �K�C� i��

Note that V �K� � � � �K� � V �K� and if B is the unit ball then V �K�B� i�
is proportional to the mean �d � i��projection of K �say V �K�B� �� to
the surface�area��

Let K � Kd� We denote its support function by hK�u� and its
face with outer normal u by FK �u�� In addition� we use v��� � � � � �� for
the �d����dimensional mixed volume� Then for polytopes P�� � � � � Pd��
the mixed volumes can be calculated with the help of the formula �see
����

��� V �P�� � � � � Pd���K� �
�

d

X
u�Sd��

v�FP��u�� � � � � FPd���u�� hK�u��

Observe that the summand on the right hand side is non�zero only for
�nitely many u � Sd���

�� About the Minkowski�measure of symmetry

Denote by q�C� the minimal � � 
 such that �C � x � �C for
some x� It is well�known that q�C� � q��C� is a measure of symmetry
for C in the sense of Gr�unbaum �cf� ����� and satis�es �see ����
Theorem ���� For any convex body C� we have � � q�C� � d where

q�C� � � if and only if C is centrally symmetric and q�C� � d if and

only if C is a d
simplex�

We always assume� unless otherwise stated that C translated so
as to satisfy

��� �C � q�C�C�

Note that this way the origin is contained in intC� We deduce by the
de�nition of q�C� and by ��� the existence of some v�� � � � � vm � �C
such that o � conv fv�� � � � � vmg and

�
� �q�C� vi � �C

for i � 
� � � � �m� Observe that there exist parallel supporting hyper�
planes in vi and �q�C� vi and denote by ui the outer unit�normal vector
to C at vi� It also follows that o � conv fu�� � � � � umg and

��� h�C�ui� � q�C�hC�ui�

for i � 
� � � � �m�
Let T be some d simplex whose centroid is the origin� Denote

by ��C� the minimum of � such there exists some a�ne transforma�
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tion A satisfying A�T � � C � A��T �� Taking A�T � to be the d�
simplex of maximal volume shows that ��C� satis�es � � ��C� � d �
� � �cf� ���� Th� ��� Note that ��C� � d if C � �C� and so most
probably ��C� � d with equality if and only if C is centrally symmet�
ric�
Theorem ���� Let C be a convex body satisfying d� �

d 	 q � q�C� � d�
Then

d

q
� ��C� � � � �d� ��

d� q

�� d�d� q�
�

Remark� The lower bound holds for any C �no need for the restriction
on q�C�� and can not be improved in general�
Proof� Since �T is covered by a translate of ���C�T � the relation
���C� � d readily follows� The fact that this estimate is the best
possible shown by the example of C � conv ���

dT � T � for some � �
� � � d� Here readily ��C� � � and q�C� � d
�� which in turn yields
that ���C� � d�

Let v�� � � � � vm � �C be the points appearing in �
�� Turning
to the upper bound for ��C�� �rst we prove by induction on k �k �
d� that if o � conv fv�� � � � � vkg then q�C� � k� Set wi �

� �q�C�vi� The claim readily holds for k � �� so assume that T �
� conv fw�� � � � � wkg is a k�simplex and k � �� Denote H�

i the half
space in a�T whose bounding hyperplane divides the distance between
wi and the opposite facet of T in the ratio q�C� to �� Then o � 	H�

i

since vi is not contained in relintT � which in turn yields that q�C� �
� k�

We may assume by Charatheodory�s theorem that o � conv fv�� � � �
� � � � vdg� and so conclude that q�C� � d �see also Th� ����� Assume in
addition� that q � q�C� � d� �

d � and hence T � conv fw�� � � � � wdg is a
d�simplex� Translate C so as that the center of mass of T is the origin
and denote by s the common point q

q��vi �
�

q��wi� Recall that s � T�

where T� � 	i������ �dH
�
i � �d�q

q��T � We deduce that v� � T� � w� �

� q��
q �T� � w��� and in particular�

��� v� � conv fy�w�� � � � � wdg
where y � �d��

q w� is the vertex of T� outside of T �

Let x be a point of C contained� say� in posfw�� � � � � wdg� We
deduce by ��� that y �� int conv fx�w�� � � � � wdg� and hence x � y ��
�� int pos fy � w�� � � � � y � wdg� On the other hand� some simple cal�
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culations show that the line a� fo�w�g intersects a� fy� v�� � � � � vdg in a

point contained in �d����d�q�
��d��dq T � It follows that x � �d����d�q�

��d��dq T � which

in turn yields the upper bound for ��C�� �
Remark� If q�C� � d� � and � 	 �

�d then we deduce the estimate

��� � �
�

d
� ��C� � � � ��d� �� ��

	� The stability of the Rogers�Shepard inequality

Before giving an estimate of the right order for the stability of
the Rogers	Shepard inequality �see Th� ���� in a neighbourhood of the
simplex let us see what to expect� The relation �C � q�C�C yields
that
��� V �C��C� �� � q�C�V �C��

Let � � q � d and let T be some simplex having the origin as its center
of mass� Then for C � conv �T � �qT �� q�C� � q and equality holds
in ���� Observe that the conjecture ��� of Godbersen would yield the
following estimate� If q�C� � d� � then

V �C � C� �
��

�d

d

�
� �d�

�
V �C��

In particular� we have an exact upper estimate if d � �� and hence�
�d
d

�
� �
�

Proposition ���� Let C be a convex body in the �
space and set q�C� �
� q � � � �� Then V �C � C� � ��
 � ���V �C�� and equality holds if

C � conv �T ��qT � where T is a simplex having the origin as its center

of mass�
For general d� we use the original ideas of C� A� Rogers and

Shepard� In their paper ��� �see also Section �� assuming that K is
a point�� they essentially establish a formula of the type V �C � C� �

� �����C��
�
�d
d

�
V �C�� Letting ��x� � minf� � 
 jx � ��C � C�g� we

have

��
� ��C� �
�

V �C��

Z
C�C

fV ��x � C� 	 C�� V ���� ��x��C�g dx�
In other words� ��C� measures that how much  smaller! is �����x��C
than �x � C� 	 C in average�

Set x � ��b � c� for some b� c � C and 
 	 � 	 �� In addition�
assume that for a point y outside of C� we have z � �b� �� � ��y � C
and �c� ��� ��y � C� Then some simple consideration show that
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���� z � ��x � C� 	 C� n b� ��� ���C � b��

This observation� taking � to be close to ��x�� is applied to give a lower
bound for the right hand side of ��
��
Proposition ���� Let d � � and q�C� � d � � for some convex body

C� There exist some ��� c� � 
 such that if 
 � � 	 �� then

V �C � C� � ��� c���

�
�d

d

�
V �C��

Proof� The idea of the proof runs as follows�  Normalize! C so that
the simplex T in the proof of Th� ��� is regular having edge�length one�
and construct a certain cylinder M � independent of C �up to congru�
ency�� For x � M and � be close to ��x�� �nd a small cone N in
�x � C� 	 C not in �� � ��C satisfying V �N� � � � for some con�
stant �� Finally� verify that the di�erence between the volumes of
�� � ��x��C and of �� � ��C is at most �

�� �� and so ��
� yields the
proposition� Since the constant c� resulting from our method is small
anyway� we estimate rather generously the constants arising along the
way�

Assume that

���� � 	
�

�d�d� ��
�

and hence ��� holds� We use the notation of the proof of Th� ���� Ac�
cording to this� v�� � � � � vd and w�� � � � � wd are points of �C such that
there exists an s � conv fv�� � � � � vdg satisfying wi � s � q�C��s � vi�
for i � 
� � � � � d� In addition� for each pair vi and wi there exists
supporting hyperplanes to C with opposite outer�normals� Since our
problem is a�ne invariant� we may assume that the d�simplex T �
� convfw�� � � � � wdg is regular having edge�length one and the origin

is the center of mass of T � Note that V �T � �
p
d��p
�
d
d�
� the height of T isq

d��
�d and by the proof of Th� ����

C � �� � ��d� ����T �
�
� �

�

d

�
T�

Denote by Fi the facet of T opposite to wi and by ni an outer�
normal to C at vi such that �ni is an outer�normal to C at wi� Assume
that v� is the farthest from T among v�� � � � � vd and let L be the linear
�d � ���space parallel to F�� Among w�� � � � � wd� there exists one� say
w�� so that the angle of ��

dw� � w� �which is in L� and the projection
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of n� onto L is at most �
�
�arc sin �

d�� � Let K be the right circular �d�
� ���cone in L with apex o� whose height is �

�d and the maximal angle

of any x � K and ��
d
w��w� is arc sin �

d�� � The condition on w� yields

that v� �K does not intersect intC �see Fig� ���

0

s

M+w

w

1

1

1

w0

b(x)

x+w

0

1v

N

v

+

Fig� �

Denote the volume of the unit d�ball by 
d� and set

���� � �

d��

�d d�d��
�

The right circular cylinder M has height �
	

p
� and the radius of its base

is �

�d�� We assume that the axis of rotation for M is parallel to v��w�

and the centers of the bases of M are distance �
�

p
� and 


	

p
� from o

along the hal"ine �o� v� � w���
Let x � M � Denote by b�x� the point of �C such that x �

� e��x��b�x� � w�� for certain e��x� � 
� The de�nition of M yields

that �
� 	

e��x� 	 

� � The  excess cone! N is de�ned with the help of the

cone

N� � v� � conv

�
�

d
�v� � w���K

�
�

If y � N� then y �� intC� and we deduce by the bounds on e��x� and
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some elementary calculations that e��x�b�x� � ��� e��x��y and e��x�w��

� �� � e��x��y are contained in C� It follows by ���� that

N � e��x�b�x�����e��x��N� � ��x�C�	C�nb�x�����e��x���C�b�x���
The maximality property of v� yields that the distance of v� from F� is
at least �

�

q�C�
� �

d

�s
d

��d� ��
�

�

�d�
�

We deduce that V �N�� �
�d��

�dd�d��
�� and hence V �N� � V ���N�� � � ��

Our �nal estimate is to compare the volume of ��� e��x��C to the
volume of �� � ��x��C� Denote the point �

��x� x of ��C � C� by u�x��

Then V �C� 	 �� � �
d �
dV �T � 	 � yields that

V ��� � ��x��C� � V ���� e��x��C� 	

�
�� ��x�

�� e��x�
	d

� � �

�

� ku�x�k
kb�x� � w�k

�d
� ��

Now observe that pos�C � v�� contains a cone with axis posfw� � v�g
such that the maximal angle of its points and w��v� is arc tg�� It follows
that the angle �b�x�� v� � w�� is at least arc ctg�� and since the segment
conv fw�� w� � u�x�g is contained in the strip bounded by the parallel
supporting hyperplanes at v� and w�� the angle �w��u�x�� v�� w�� is at
most ��arc ctg�� We deduce by x � M that the angle �b�x�� w�� v�� is
at most arc tg �

�
p
�d
�� which in turn yields that� ku�x�k

kb�x� �w�k
�d

	

�
� � �

�
p
�d
� �

�� �

�
p
�d
� �

	d

	 � �
�

�
��

Combining all these together implies by ��
� that

��C� �
�

�
V �M� ��

and the Proposition follows� �
Now we are ready to state the stability version of the Rogers�

Shepard inequality�
Theorem ���� Let d � �� There exist some ��� c� � 
 such that if

��C� � � � � for some convex body C and 
 � � 	 �� then

��� d��

�
�d

d

�
V �C� � V �C � C� � ��� c���

�
�d

d

�
V �C��
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Proof� Assume that T is a simplex such that T � C � �� � ��T � Then

V �C � C� � V �T � T � � �

�� � ��d

�
�d

d

�
V �C��

which in turn yields the lower bound for V �C �C�� On the other hand�
we deduce the existence of c� by Prop� ��� and by ���� �
Remark� Since in the Rogers�Shepard inequality equality holds only for
the simplex� we have the following result related to Th� ���� If V �C �
�C� � ��� ��

�
�d
d

�
V �C� and � is small then there exist a simplex T and

an x such that T � C � x � �� � c ��T for some constant c depending
only on d�


� Inequalities with parameter�bodies

In this section� we introduce some  parameter�bodies! for the
Rogers	Shepard�type inequalities� If these bodies are zonoids then we
use the fact that the mixed volumes can be represented via projec�
tions�
Theorem 	��� Let C � Kd and let Zn��� � � � � Zd� n � �� � � � � d � ��be
zonoids� Then

V �C�C� � � � � C�C�Zn��� � � � � Zd� �
�
�n

n

�
V �C� � � � � C�Zn��� � � � � Zd��

and equality holds if C is an n
simplex�

Proof� By the continuity of mixed volumes� it is su�cient to consider
the case where all the Zi�s are zonotopes� and by linearity we may as�
sume that the Zi�s are segments in general position� Let L be the linear
n�space orthogonal to each Zi� Since V �C� � � � � C�Zn��� � � � � Zd� is pro�
portional to the n�volume of the projection of C onto L� the theorem
follows by the original Rogers�Shepard inequality� �

As the unit ball B is a zonoid� the corresponding result for the
mean projections is a direct consequence�
Corollary 	��� For any C � Kd satisfying dimC � n� n � �� � � � � d�
� �� we have

V �C�B� d� n� �
�
�n

n

�
V �C � C�B� d� n�

and the inequality is the best possible�

Remark� Here equality holds if and only if C is an n�simplex� If C
�dimC � n� is not an n�simplex� then its projection to some open neigh�
bourhood of linear n�spaces is again not an n�simplex� Since the mean
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projections can be represented as the average of the n�volumes of the
n dimensional projections of C with respect the Haar�measure on the
linear n�spaces� it follows that strict inequality holds in Cor� 
���

Now we allow the parameter�bodies to be any centrally symmetric
body� In this case much less can be said� Surprisingly� if we do not
have too many centrally symmetric parameter�bodies than the trivial
estimate coming from �C � q�C� is optimal�

Proposition 	��� Let C be a convex body and n 	 d
�� Then for

any centrally symmetric K�� � � � �Kn � Kd and for any family of convex

bodies Cn��� � � � � Cd��� the inequality

V �K�� � � � �Kn� Cn��� � � � � Cd����C� �
� q�C�V �K�� � � � �Kn� Cn��� � � � � Cd��� C�

holds� For a given C� q�C� can not be replaced by a smaller constant

in general�

Proof� The inequality readily holds by �C � q�C��

Assume that replacing q�C� by some �� the inequality holds for
any suitable choice of Ki and Ci� We deduce by ��� the existence of
u�� � � � � uk � Sd�� such that o�conv fu�� � � � � ukg� the family u�� � � � � uk
is minimal with respect to this property and h�C�ui� � q�C�hC�ui��

De�ne T be a k�simplex whose outer �k � ���face�normals in a�T
are u�� � � � � uk so that the origin is the centroid of T � and set M � T 	
	 ��T �� As our problem is a�ne invariant� assume that T is a regular
simplex�

First consider the case when k � d� and let K� � � � � � Kn � M
and Cn�� � � � � � Cd�� � T � Assume that v�FT �u�� FK �u��n� �� 
 for
some u � Sd��� Then the relation dimFT �u� � d � � � n � �

��d �
� �� implies that FT �u� is not father from the origin than FT ��u�� and
hence FK �u� � FT �u�� We deduce that dimFT �u� � d� �� or in other
words� that u � ui for some i � 
� � � � � d� Now ��� and ��� yield that
� � q�C��

Therefore assume k 	 d and let P be some centrally symmetric
�d�k��polytope orthogonal to T � It will be convenient to set Qi �M if
i � n and Qi � T if i � n� �� � � � � d� �� Now de�ne Ci � Qi � �dP if
i � d� �� k and Ci � Qi�

�
�P if i � d� k� � � � � d� � for some positive

�� and �nally let Ki � Ci for i � �� � � � � n�

Observe that the bodies Ci�s are de�ned so that V �C��� � �� Cd��� C�
is a Laurant polynomial in � whose highest order term is �d�d���k� and
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lim
���

V �C�� � � � � Cd����C�

V �C�� � � � � Cd��� C�
�
V �P� � � � � P�Qd�k � � � � � Qd����C�

V �P� � � � � P�Qd�k� � � � � Qd��� C�
�

�If k � d� � then P naturally does not appear on the right hand side��
Now applying a similar argument in a�T as for the case k � d� one
concludes that again � � q�C�� �

Corollary 	��� Let n 	 d
�� Then for any centrally symmetric

K�� � � � �Kn�Kd and for any family of convex bodies Cn���� � �� Cd��� C�
we have the inequality

V �K�� � � � �Kn� Cn��� � � � � Cd����C� �
� dV �K�� � � � �Kn� Cn��� � � � � Cd��� C��

Here equality holds if C is the d
simplex whose centroid is the origin�

K� � � � � �Kn � C 	 �C and Cn�� � � � � � Cd�� � C�

Remark� The condition n 	 d
� is needed to ensure that d is the
best possible constant� Say if n � d� � then V �K�� � � � �Kd����C� �
� V �K�� � � � �Kd��� C�� Let d � � and n � �� De�ne C � C
 to be
��simplex whose centroid is the origin and K� � K� � C 	 �C� This
cast is a candidate to be the optimal one� and V �K��K�� C
��C� �
� ���V �K��K�� C
� C��

�� The a�ne surface area

We have already seen that there exist a Rogers	Shepard�type in�
equality for the mean projections� We now consider the case of the so
called Minkowski�surface area S�C� with respect to a centrally sym�
metric convex body N �see ����� Denote by N� the intersection body
assigned to N � It is a centrally symmetric convex body� and S�C� �
� V �C�N�� ��� So we want to have an upper bound for the quotient
V �C �C�K� ��
V �C�K� �� where C and K are any convex bodies with
K � �K� In the rest of the section� we present results supporting the
following conjecture�

Conjecture 
��� For any convex bodies C and K with K � �K� we

have the inequality

V �C � C�K� ��

V �C�K � ��
�

d��X
i��

�
d� �

i

��
d

minfi� d � ig
�
�

With the help of ���� it is easy to establish that equality holds if
C is a d�simplex whose centroid is the origin and K � C 	 �C� Note
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that the expression on the right hand side is asymptotically the same as
�
�

�
�d
d

�
�
With respect to lower bounds� the Alexandrov	Fenchel inequality

yields that

����
V �C � C�K� ��

V �C�K � ��
� �d���

with equality if C � �C� Note that one can have equality in ���� also
in some other cases� For example� in E
 take K to be the cube ���� ��


and C to be regular simplex whose vertices are the vertices of K having
even number of � as coordinates�

Turning to Conj� ���� the case d � � follows right away by Cor� 
���
Theorem 
��� If d � � or � then Conjecture ��� holds for any convex

bodies C and K with K � �K� We have equality if C is a d
simplex

and K � C 	 �C where we assume that the origin is the centroid of

C� If d � � then this is the only case for equality up to a homothety of

K�

Proof� The only statement to prove is the necessary condition for d �
� �� So let C and K be convex bodies which satisfy K � �K and
V �K�C��C� � �V �K�C�C�� Then C is a ��simplex by Prop� 
�� and
Th� ���� We may assume that C is a regular simplex and hK�u�� �
� hC�u�� where u�� � � � � u
 � S
 are the outer normals of the faces of
C� Denote by G the symmetry group of C�

First assume that G is also contained in the symmetry group of
K� The convex body M � C 	 �C is a regular octahedron containing
K which satis�es V �M�C�C� � V �K�C�C� by ���� and hence also
V �M�C��C� � V �K�C��C�� Note that v�FC�u�� F�C �u�� �� 
 if u is
perpendicular to a pair of opposite edges of C� in which case FM �u� is
a vertex of M � Now K � M and V �M�C��C� � V �K�C��C� yield
by ��� that K � M �

Turning to the general case� de�ne

K� �
�

jGj
X
g�G

g�K��

Then K� also satis�es V �K�� C��C� � �V �K�� C�C�� and hence K� �
� M by the considerations above� As the M has at least as many
vertices as K� K must be an a�ne octahedron� On the other hand� any
face�normal ofK is a face�normal ofM � and we conclude thatK �M � �
Remark� If d � � then V �K�C�C��C� � �V �K�C�C�C� yields that
C is a ��simplex but there are various choices for K� For example�
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removing a pair of opposite vertices of C 	 �C� one can take as K the
convex hull of the remaining vertices�

For d � 
� the following statements support Conj� ����
Proposition 
��� Let C and K be convex bodies with K � �K�

�i� V �C�C�K� �� �
p
d

�
��d� ��

d� �

�
V �C�K� �� 	 �d��V �C�K� ���

�ii� Conj� ��� holds if C is a d
simplex�

Proof� John�s theorem �see �
�� provides an ellipsoid E such that E �
� K �

p
dE� As E is a zonoid� i� follows by Th� 
���

Now let C be a regular d�simplex whose centroid is the origin and
denote by G the symmetry group of C� By the linearity of the mixed
volumes� it su�cient to verify the conjecture for

K� �
�

jGj
X
g�G

g�K��

We may assume that the supporting hyperplanes of C containing its
facets are also supporting hyperplanes of K�� Then K� � C 	�C� and
the relations V �C�K�� �� � V �C�C 	 �C� �� and V �C � C�K�� �� �
� V �C � C�C 	 �C� �� yield the theorem� �


� Parallelbodies

A possible generalization of the inequality of Rogers and Shepard
is the following� Find the smallest � such that for any compact� convex
set K and convex body C� we have the inquality

��
� V �K � �C� � V �K � C � C��

IfK is a point then ��
� reduces to the original di�erence body problem�

and hence the inequality holds for � �
�
�d
d

���d
� As

�
�d
d

���d
	 �� one may

hope to �nd a � independent of the dimension d� In general� it is not
possible �see Cor� ����� and so we assume in Section � that K has lower
dimension�
Theorem ���� Let C be a convex body� Then for � � q�C� � � and

for any K � Kd� the inequality

V �K � �C� � V �K � C � C�
holds� and the lower bound for � is the best possible�

Proof� The inequality follows right away by ���� Now assume that ��
�
holds for any convex body K� Replacing K by �K for large �� the
formulae
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V ��K � �C� ��dV �K� � d�d���V �K�C� �� �O��d��� and

V ��K �C � C� ��dV �K� � d�d���V �K�C� ���

� V �K��C� ��� �O��d���
yield that

���� � � � �
V �K��C� ��

V �K�C� ��
�

We deduce by ��� the existence of u�� � � � � uk � Sd�� such that
the family u�� � � � � uk is minimal with respect to the property o �
� conv fu�� � � � � ukg and h�C�ui� � q�C�hC�ui�� De�ne T be a k�
simplex whose outer �k����face�normals in a�T are u�� � � � � uk and let
P be some �d � k��polytope orthogonal to T � Since for large � and for
K � T � �P � ��� yields that

V �K��C� ��

V �K�C� ��
�
�d�k

Pk
i�� h�C�ui�v�FT�P �ui�� � O��d�k���

�d�k
Pk

i�� hC�ui�v�FT�P �ui�� � O��d�k���
�

the inequality � � q�C� � � follows by ��� and ����� Note that in the
case k � d� the use of � and P is unnecessary� �

Taking C to be a d�simplex in Th� ��� yields
Corollary ���� Let � � d � �� Then for any K � Kd and for any

convex body C� the inequality

V �K � �C� � V �K � C � C�
holds� and the lower bound for � is the best possible�

�� The low dimensional case

In this section� we consider lower bounds for � such that ��
� holds
in the case when the dimension of K is small� The next proposition is
the main ingredient of the proof of Th� ����
Proposition ���� For any � � 
� K � Kd and for any convex body C�

V �K � �C� �
i�dX
i��

�
d

i

�
�i
�
d� i

i

���
V �K�C � C� i��

The proof follows the line of the classical paper ��� of Rogers and
Shepard� Consider the double integral

I �

ZZ
�C�y � x��K�C �y� dy dx�

Changing the order of integration yields that
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���� I �

Z
�K�C�y�

Z
�C�y � x� dx dy � V �K � C� � V �C��

On the other hand� set D � C � C and de�ne ��x� � minf� � 
 jx �
� K � �Dg� We claim that if ��x� � � then

����

Z
�C�y � x��K�C �y� dy � ��� ��x��d V �C��

First assume that ��x� � 
� and let a � K and b� c � C so that x � a�
���b� c� for � � ��x�� Note that �b���� ��C and �c� �����C are
contained in C� which in turn yields that

a � �b � ��� ��C � K � C�

x� �c� ��� ��C � x �C�

where a��b � x��c� This proves the claim for � � 
� The case � � 

readily holds�

Combining ���� and ���� yields that

���� V �K � C� �
Z
V �K�D�

�� � ��x��d dx�

Lemma ����Z
V �K�D�

��� ��x��d dx � V �K� � d

Z �

�

��� ��dV �K � �D�D� �� d��

Proof� De�ne for 
 � � � ��

f��� �

Z
V �K�	D�

�� � ��x��d dx�

Note that ��x� is continuous and

d

d�
V �K � �D� �

d

d�

i�dX
i��

�
d

i

�
V �K�D� i��i

� d

i�dX
i��

�
d� �

i� �

�
V �K�D� i��i��

� dV �K � �D�D� ���

It follows that f ���� � �����ddV �K ��D�D� ��� which in turn yields
the lemma as f�
� � V �K�� �

We deduce by replacing C by �C in Lemma ��� and ���� that
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��
�

V �K � �C� � V �K� � d

i�dX
i��

�
d� �

i � �

�
�iV �K�D� i�

Z �

�

�� � ��d�i�� d��

Finally� the simple identityZ �

�

��� ��d�i�� d� �
�

i

�
d� i

i

���
yields the inequality

V �K � �C� � V �K� �

i�dX
i��

�
d

i

�
�i
�
d� i

i

���
V �K�D� i�� �

Remark� The proof shows that if K and C are homothetic d simplices
then equality holds in Prop� ����

Next we prove that if dimK � m 	 d then the optimal � in ��
�
approximately is of order d
�d�m��
Theorem ���� �i� For any K � Kd with dimK � m 	 d and for any

convex body C�

V �K � �C� � V �K � C � C� for � � e

�
� �

d

d�m

�
�

�ii� Assume that d � �
 and m � ��
��d� Then there exists a K � Kd

with dimK � m 	 d and some convex body C such that

V �K � �C� 	 V �K � C � C� for � � �

� ln d
d�m

� d

d�m
�

Proof� Note that V �K �D� �
Pi�d

i��

�
d
i

�
V �K�D� i� for D � C �C and

V �K�D� i� � 
 for i 	 d�m� Thus by Prop� ���� it is su�cient to check
the condition

� �
�
d� i

i

���i

for i � d�m� � � � � d� Using the Stirling formula

����
ii

ei

p
�� i 	 i� 	

ii

ei

p
�� �i� ���

we conclude the estimate�
d� i

i

���i

	

�
� �

i

d

�d�i�
� �

d

i

��
d� i � �

��di

���i

	 e

�
� �

d

d�m

�
�

On the other hand� assume that k � d
�d � m� � �
 for some
m 	 d� We need some constants in the course of the proof� namely�
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� �



����d�m� ln

d

d�m

�
and � �

��

m� ��
�

Let T be an m�simplex and let Q be some centrally symmetric �d �
�m��body whose a�ne hull is orthogonal to T � and de�ne K � T and
C � �T �Q�

First observe that by ���� we have the formula

Vm�T � ��T � �T �� �

mX
j��

�
m

m� j

��
m

j

�
�� � ��m�j�j Vm�T �

�
mX
i��

�
m

i

��
m� i

i

�
�i Vm�T ��

Thus we investigate the quotient

����
V �K � �C�

V �K � C � C�
�

�� � ���m�d�m�Pm
i��

�
m
i

��
m�i
i

�
�i
�
�d�m

�

Applying the Stirling formula for i � � �where � � �� results in the
estimate�

m

�

��
m� �

�

�
�
 �

�
m� �

m� �

�mr
m� �

���m� �� ���� � ���
�

�
�
m� �

m� �

�m
�

��
�

We claim that for � � �
�
k
 lnk�

����

�
m�

m�



m
�




�� � ���m
�
�d�m

�d�m
�

Observe that this claim yields �ii� in the light of �����

As � 	 m
�� it is su�cient to verify�
� �

�

m


m��d�m�

�
�������d�m�

�

m

�
�

On the left hand side� we deduce by d
�d �m� � �
� �
m 	 
�
 and
� � ����d�m� ln d
�d�m� that

m

d�m
ln
�
� �

�

m



� ��� � ln�� � 
�
�


�

ln

d

d�m
� ln ��
 � ln

d

d�m
�

As � � d�m on the right hand side and �
�
���d�m�����d�m� 	 ��
� the

claim ���� now follows� which in turn yields the theorem� �
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