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Abstract: Since they are closer related to the ring-theoretical concept of
ideals than arbitrary semiring ideals, two-sided k-ideals and h-ideals occur
in several statements on semirings. In this paper we investigate those ideals
and also left-sided ones in arbitrary semirings S with commutative addition.
For instance, we prove (for the first time without any restrictions) that an
ideal A of S is a maximal (left) k-ideal or h-ideal of S iff the congruence
class semiring S/k 4 of S determined by A has only two (trivial) ideals of this
kind. Concerning other results we refer to a survey in the second part of the

Introduction.

1. Introduction

A semiring as considered in this paper is an algebra S = (S, +,-)
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such that (5, +) is a commutative semigroup, (S,-) an arbitrary one,
both connected by ring-like distributivity. A semiring S may have an
identity e [a zero o], defined by es = se = s [o+ s = s] for all s €
€ S. An element ¢ € S is called multiplicatively (briefly: mult.) left
absorbing if as = a holds for all s € S. This yields ¢ +a = a, 1. e.
a is additively (briefly: add.) idempotent. There is at most one mult.
absorbing element O [add. absorbing element oo] in S, defined by Os =
=30 =0 [00+ s = o0o] for all s € S. Note that O and co as well as O
and o may coincide, and that a zero o [an add. absorbing element oo] of
a semiring need not even satisfy oo = o [oooo = o0].

Let (S, +) be a commutative semigroup, also called a semimodule
henceforth. For each subsemimodule A of (S, +) the k-closure Aof A
is defined by

A={acS|a+a =ay for some a; € A}
and the h-closure A of A by
A ={aeS|a+a +u=ay+uforsomea; € Ajué€ S}
These closures are again subsimimodules of (S, +) and satisfy A C A C

C A as well as A=Aand A = A. The zeroid Z of (S,4), defined
by
Z={2€S5]|z+4u=ufor someu € S},

is either empty or a subsemimodule. In the latter case one has 7 =
=7 and Z C A for each subsemimodule A of (S,4). Note also that
each idempotent element a of (S, +) is contained in Z and that Z may
coincide with 5.

A left ideal [ideal] A of a semiring S = (S, +,-) is a subsemimod-
ule of (S,+) satisfying sa € A [sa € A and as € A] for all « € A
and s € S. If Ais a left ideal or an ideal of S, the same holds for A
and A. Our main interest is with k-closed and h-closed left ideals or
ideals A = A and A = A of S, simply called (left) k-ideals and (left)
h-ideals. In particular, if the zeroid Z of (S,+) is not empty, Z = Z
is an h-ideal of S and the intersection of all left h-ideals A = A of
S. Each ideal A of a semiring S defines a congruence x4 on (S,+,-)
by

skas' =  s+4+a; =35 + ay for some a; € A.

The corresponding congruence class semiring S/k 4, consisting of the
classes [s].,, contains the k-closure A of A as one of its classes, and
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A is the mult. absorbing zero of S/k 4, regardless of whether S has a
zero o or a mult. absorbing element O (which yields A = [o],, or A =
= [O]x,, respectively). Moreover, one has k4 = s, whereas Ky = kg
implies A = B. Similarly, each ideal A of S defines a congruence 74
by

snas’ &= s+ a;+u=ay+uforsomea; € AucS.

Now S/n4 contains the h-closure A of A as its mult. absorbing zero,

andonehasmACnA—nA and nz =ng — A =8, Moreover, S/na
is add. cancellative. Finally,
380 <— s+ u=3s +ufor someuecS

defines the smallest congruence on (S, +,-) such that (S/4,+) is can-
cellative, which yields § C n4 for each ideal A of S. We note that the
congruences r4,n4 and § have appeared at first (for semirings with a
mult. absorbing zero) in [1], [4] and [2], and we also refer to [5] and
[3], I.7 and 1.8 in this context.

In Section 2 we consider at first left ideals and ideals which con-
sist of a single element and investigate the k-closure and the h-closure
of those ideals. Then we introduce a condition (C*) and obtain that a
semiring S satisfies (C*) iff S has no left k-ideals except S and, possibly,
one more consisting of a single element (cf. Th. 2.6 a)). This improves
results of [7], where a stronger condition (C') was shown to be suffi-
cient for a semiring S to contain only S and, possibly, {O} as k-ideals.
However, the latter implies (C') only with supplementary assumptions,
e. g. for mult. commutative semirings with an identity. Similarly, we
characterize in Th. 2.6 b) those semirings S which have no left h-ideals
except S and, possibly, the zeroid Z of 5.

A mazimal k-ideal A of a semiring S is defined as a proper (i. e.
A C S) k-ideal which is maximal in the set of all proper k-ideals of
S. Mazimal left k-ideals and mazimal (left) h-ideals of S are defined
correspondingly. We deal with those ideals in Section 3 and give in
Th. 3.1 sufficient conditions on S such that each proper (left) k-ideal
or each proper (left) h-ideal is contained in a maximal one. In all four
cases, our condition is implied by the ascending chain condition for the
corresponding ideals, but less weaker and in many cases easily verified
(cf. Examples 3.2 and 3.3).

In the next part of Section 3 we deal with semiring-theoretical gen-
eralizations of the fact that a proper ideal A of a ring R is a maximal
ideal of R iff the congruence class ring R/A has only the trivial ideals
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{0} and R/A. Now it is well known that R/A, if one considers R as
a semiring, coincides with R/ 4. However, a proper ideal A of a semi-
ring S need not be a maximal ideal of S if S/k4 has only the trivial
ideals {O} and S/k 4 (cf. Prop. 3.8). Inspite of this we obtain (together
with results including also left ideals as well as S/n4) in Theorems 3.5
and 3.6 b): A proper k-ideal A = A of S is a maximal k-ideal of S iff
S/k 4 has only {O} and S/k 4 as k-ideals and a proper h-ideal A = A
of S is a maximal h-ideal of S iff S/k4 has only {O} and S/k4 as h-
ideals. We remark that these both statements, to our best knowledge,
have so far only been published with considerably restrictions on the
considered semirings, namely the first one in [7, Th. 2.9] for mult. com-
mutative semirings with an identity, and the second one in [5, Th. 3.11]
for semirings with a mult. absorbing zero, satisfying a certain condi-
tion (H). This may be caused by the disadvantage that k-ideals and
h-ideals are not preserved in general under semiring homomorphisms.
However, to prove the above statements one only needs that, for each
ideal A of S, the natural homomorphism ¢ of S onto S/k 4 maps certain
k-ideals [h-ideals] of S onto k-ideals [h-ideals| of S/k 4. We show this
in Lemma 3.4, the key result in this context, whereas condition (H) in
[5] restricts the considered semirings by the assumption that, for each
homomorphism ¢ as above, p(B) is h-closed for all h-ideals B of S.

We also mention the well known fact that a maximal (left) k-
ideal (or h-ideal) of a semiring S need not be a maximal (left) ideal
of S, and that the same holds for subsemimodules of a semimodule
(S,4). (A semiring proving all these statements occurs in the context
of Ex. 3.3.) Similarly, a maximal (left) h-ideal of a semiring S need not
be a maximal (left) k-ideal of S as we show in Ex. 3.9. In this case,
however, the situation changes if one only deals with subsemimodules
of a semimodule (S,+). According to Th. 3.10, each h-closed proper
subsemimodule of (5, 4) is a maximal h-closed subsemimodule of (5, +)
iff it is a maximal k-closed one.

In the following we denote by |A| the cardinal number of any set
A, and we assume |S| > 2 for general statements on a semiring S in
order to avoid trivial exceptions. We further write Ng = (Ng, +, -) for
the semiring of non-negative integers with the usual operations and IN
for Ny \ {0}. Finally, for each semiring S, we introduce the notion S’
by §" = S\ {O} if S has a mult. absorbing element O, and S’ = S

otherwise.
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2. Semirings with at most two i-ideals or r-ideals

We start with the following observations about (left) ideals con-
sisting of a single element:

Lemma 2.1. a) Let S be a semiring and a € S. Then A = {a} s a
left wdeal of S iff a 1s mult. right absorbing. This yields a + a = a and
hence A ={a} C Z for the zeroid Z of S.

b) A semiring S contains exactly one left ideal L satisfying |L| =1
iff S contains an ideal A satisfying |A| = 1, which in turn holds iff S
has a mult. absorbing element O. Clearly, one has L = A ={0} C Z
in this case. R

c) Let A = {a} be a left ideal of S. Then A = A wmplies a = O
and A = Z.

d) If S is an add. cancellative semiring, then either Z = () or
Z = {0} holds, where O s the mult. absorbing zero of S in the latter
case.

Proof. a) If A = {a} is a left ideal of S, clearly sa = a holds for all
s € S. Conversely, the latter yields a+a = a by multiplying s; + 55 = s3
by a.

b) If {a} is a left ideal of S, the same holds by a) for {at} and
each t € S. Hence {a} = {at} yields that « = O is the mult. absorbing
element of S. If such an element O exists, {O} is an ideal of S, again
by a). In this case, {O} coincides which each left ideal L = {a} of S
because of a = Oa = O.

¢) From {a} = A = A CZby a) we get A = Z and, since Z is
an ideal of S, also a = O by b).

d) Let S be add. cancellative. Then, for each z € Z, from z +u =
= u 1t follows that z is the zero o of S, which is well known to be mult.
absorbing if S is add. cancellative. ¢

Contrasting statement ¢) above, very less can be said in general
about (left) k-ideals consisting of one element. We illustrate this by the
following examples:

Example 2.2. a) Recall that each commutative and idempotent semi-
group (S, +) corresponds to an upper semilattice (5, <) by s < r <
s+r=rand s+r =sup{s,r} for all s,r € S. Defining s-r = r for all
s,7 € S, we obtain a semiring (S, +,-) for which each a € S determines
a left ideal A = {a}, and one has A = {s € S| s < a}. Hence A = 4
holds iff @ is minimal in (S, <) and A C A otherwise. By a suitable
choice of (9, <), the semiring (S, +,-) contains an arbitrary cardinal
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number of left ideals A = {a} satisfying A = A as well as A C A. An
extreme case corresponds to the addition s + s = s and s +r = oo
for all s # r of S and one element co € S picked out arbitrarily. The
latter is then add. absorbing, the left ideals A = {a} satisfy A = A4
for each a # oo, whereas A = S holds for each other left ideal A of
S. Note also that, for any semiring S as considered in this example,
A = S holds for each left ideal A = {a}, due to s+a+ (s+a)=a+
(s + a).

b) Let S be a semiring with a mult. absorbing element O and
hence A = {O} the unique (left) ideal of S consisting of one element.
Then, as one would expect, there are various examples such that A = A
or ACA=SorACACS is satisfied. For instance, the semigroup
(S,-) = (Z,-) of integers established with an addition s @ r = max{s,r}
(or s @ r = min{s,r}) provides a semiring S of the latter kind (cf. also
Ex. 2.7).

For each semiring S, a sufficient condition (C') was introduced in
[7] such that S contains at most two k-ideals, where S satisfies (C') iff,
foralla € §" and s € S,

s + s1a = sza holds for suitable s; € S.

Clearly, this condition corresponds to the elements s;a of the left
ideal Sa = {sa | s € S} of S. We need a condition (C*) correspond-
ing to the elements of the left ideal A generated by a € S, which are
sa,na and sa 4+ na for all s € S and n € N = {1,2,3,...} where
na is defined by Y0  a. To simplify our notation, we introduce an
operator domain T for S consisting of the elements s € S.n € N
and their sums s 4+ n, such that A = Ta = {ta | t € T} holds for
the left ideal A generated by a € S. We only remark that 7' may
be considered as a semiring (7, +,-) containing S as a subsemiring.
If S has a mult. absorbing zero o, T is the Dorroh semiring exten-
sion T = Nge + 5 with ¢ + 0 = ¢ as the identity and 0 + 0 = o
as the zero of T (cf. [3], I1.3). Otherwise, one has to adjoin a mult.
absorbing element, say w, to S and obtains T as Nge + (S U {w}) \
\{w}.

Definition 2.3. A semiring S satisfies condition (C*) iff for all a € 5’
and s € S

(2.1) s+ tia = taa holds for suitable t; € T,
and S satisfies condition (D*) iff for alla € S\ Z and s € S
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(2.2) s+ta+u=tya+ u holds for suitable t; € T and u € S.

The conditions (C') and (D) for S are obtained replacing ¢; € T in (2.1)
and (2.2) by s; € S.

Remark 2.4. a) If S has a right identity e, or at least elements
€1, ey satisfying © 4+ xe; = wey for all @ € S (a pair of this kind was
called a right identity pair in [6]), these four conditions can be sim-
plified: It is enough to check them for s = e, or for s = e¢; and s =
= €2.

b) One clearly has (C) = (C*) and (D) = (D*). The con-
verse implications hold if S has a left identity or at least a left identity
pair.

¢) Also (C) = (D) and (C*) = (D*) are obvious, and the con-
verse implications are true if S is add. cancellative. To see the latter,
observe that such a semiring satisfies Z =0 = S = 5" and Z # (| =
Z = {o} as well as 0o = O.

Now we come to statements depending on one of these conditions.
We leave it to the reader to take notice of consequences resulting from
the following statements together with Remark 2.4 or with supplemen-
tary assumptions on the considered semirings as e.g. mult. commuta-
tivity.

Lemma 2.5. A semiring S satisfying condition (C*) contains at most
one left ideal A consisting of a single element.

Proof. By way of contradiction, assume that {a} # {b} are left ideals
of S. Then S has no mult. absorbing element by Lemma 2.1 b), and we
can apply (C*) to a and to b. The former yields s +a = a for all s € S
and hence b + a = a, and the latter a + b = b in the same way. So we
get a = b contradicting {a} # {b}. ¢

Theorem 2.6. a) If a semiring S satisfies condition (C*), it contains
at most two left k-ideals, which are in fact two-sided ones, namely S
and, possibly, the ideal {O} consisting of the mult. absorbing element
O of S. Conversely, if S contains no other left k-ideals, S satisfies
(C*). However, if such a semiring has a mult. absorbing element O,
the k-ideals {O} and S may coincide, where {O} = S holds iff O is also
add. absorbing, and {O} = {O} otherwise.

b) If a semiring S satisfies (D*), it contains at most two left h-
wdeals, which are in fact two-sided ones, namely S and, possibly, the
zeroid Z = Z(S) of S. Conversely, if S contains no other left h-ideals,
S satisfies (D*). However, if such a semiring has a zeroid Z # ), both
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cases Z C S and Z = S are possible.

Proof. a) Assume at first (C*) for S and let A = A be a left k-ideal
of S. If |[A] = 1 holds, we get A = {O} by Lemma 2.5 and Lemma
2.1 b). Otherwise A contains an element a € S’, and s + t1a = tsa
for each s € S by (C*) implies A = S. Conversely, let S and, possi-
bly, {O} be all left k-ideals of S. Then each a € S’ generates a left
ideal A = Ta of S satisfying A = S. Thus, for each s € S, there
are t1,t2 € T such that s 4+ tja = tza holds, which proves (C*) for
S. Now assume (C*) for a semiring S with a mult. absorbing ele-
ment O. Then the k-ideal {O} coincides either with {O} or with S
as proved above, and we show in Ex. 2.7 that both cases may ap-
pear. Clearly, m = S is equivalent with s + O = O for all s €
€s.

b) Again we start assuming (D*) for S. Since Z C A holds for
each left h-ideal A = A (regardless whether Z # () holds or not), we
may assume that A contains an element « € S\ Z. Then s+ tja +
+u = tga + u by (D*) implies A = A=35. Conversely, let S and,
possibly, Z be all left h-ideals of S. Then each a € S\ Z generates
a left ideal A = Ta of S satisfying A = S, which proves (D*) for

S. Examples for semirings according to the last statement of b) follow

below.

Example 2.7. a) It is well known that each semiring H can be ex-
tended to a semiring S = H U {O} by adjoining an element O ¢ H
once as a mult. absorbing zero O = o and once as a twofold absglioing
element O = oco. In the first case S satisfies {0} = {O} and {O} =
= Z(5) = {0} U Z(H), in particular Z(S) = {O} or Z(S) = S by
choosing Z(H) = () or Z(H) = H, respectively. In the latter case one
has {O} = S and hence {/O\} =9.

b) A simple way to obtain semirings S as above satisfying (C')
and hence (C*), (D) and (D*) is to choose (H, +,-) as a semifield with-
out a zero (i. e. a semiring such that (H,-) is a group). In par-
ticular, there are semifields H which satisfy Z(H) = 0 (e. g. the
add. cancellative semifield (H, +,-) of positive rational numbers with
the usual operations) or Z(H) = H (e. g. each add. idempotent
semifield as (H,®, ) where a & b = max{a,b} replaces the usual ad-
dition).

¢) There are semirings S (in particular mult. commutative ones)
with a mult. absorbing element O such that
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{oycior={or=26s)cs
holds, where |Z(S)| > 2 can be chosen arbitrarily. Such a semiring

S can be obtained as an inflation of any semiring U satisfying {/O\} =
= {0} C U for the mult. absorbing element O of U by adjoining at
least one shadow s of O (i. e. an element s ¢ U which behaves like O

in all sums and products, cf. [3], [.2). If {O} and U are all left h-ideals

of U, then {/O\} and S are all left h-ideals of S. In this case, according
to Th. 2.6, S satisfies (D*) but not (C*).

For a semiring S with a mult. absorbing zero o = O satisfying
(C) it was shown in [7], that ab = O implies a = O or b = O. Due
to Th. 2.6 a), the same holds for each mult. absorbing element O of S
which is not add. absorbing. The proof is similar to that of the following
statement:
Proposition 2.8. Assume Z # 0 and (D) for a semiring S. Then
ab € Z for a,b € S implies a € Z orbe Z.
Proof. By way of contradiction, we assume ab € Z fora ¢ Z and b ¢ Z.
Then s 4+ s1a + u = sya + u according to (D) yields sb + syab + ub =
= sqab + ub, i.e. sb € 7 = ZforalscS. Applying again (D), we
obtain r+s1b4+u = seb+u,i.e. r € 7 = Z for each r € S, contradicting
ad Z. ¢

3. Maximal k-ideals and i-ideals

According to the Introduction, a (left) k-ideal A = A of a semi-
ring S is called a maximal (left) k-ideal of S if, for each (left) k-ideal
B =DBof S, AC B C S implies B = S. Maximal (left) h-ideals
A=A of S are defined in the same way. Note that a k-ideal A of S
may be a maximal k-ideal or a maximal left k-ideal of §. Clearly, the
latter implies the former, and the corresponding implications holds for
h-ideals. The semiring S of all 2 x 2-matrices over the semifield Hy
of all non-negative rational numbers disproves both converse implica-
tions: S has only two ideals, both h-closed (and hence k-closed), but
an infinite number of h-closed left-ideals. Similarly, a (left) h-ideal A
of S may even be a maximal (left) k-ideal, which yields that A is a
maximal (left) h-ideal of S. The converse implication is disproved in
Ex. 3.9.

Theorem 3.1. a) Let S be a semiring. Then each proper k-ideal [h-



156 H.J. Weinert, M.K. Sen and M.R. Adhikari

ideal] of S s contained in a mazimal k-ideal [h-ideal] of S if there
exists a finitely generated ideal F of S satisfying F = S [ﬁ =5].

b) The same statements hold for left ideals of S.
Proof. From the four statements, we only show that on k-ideals and
that on left k-ideals simultaneously. So we assume F = S for a (left)
ideal F of S generated by {a1,... ,a,} € S. Let A = A be a proper
(left) k-ideal of S and B the set of all (left) k-ideals B = B of S sat-
isfying A € B C 5, partially ordered by inclusion. Consider a chain
{B; | 1 € I} in ®B. One easily checks that C' = |J,c.; B; is a (left)
k-ideal of S. We claim C' = C C S. Otherwise, C' = S would imply
{ai,...,a,} € C and hence {ay,...,a,} C B; for a suitable j € I.
But the latter implies F C B; and thus S = F C B; = B;, con-
tradicting B; C S. So we have A C C = C C S,i. e. C € B,
and Zorn’s Lemma yields that B has a maximal element as we were to
show. ¢

In Th. 3.1 we have dealt with four types of ideals of a semiring
S, namely left or two-sided k- or h-ideals of S, and we could have also
included two more, namely all left and all two-sided ideals. The used
conditions are that S, considered as an ideal of one of these four (or six)
types, is finitely generated. In particular, each of these conditions holds
if S has a (right) identity or is a finitely generated semiring. Moreover,
each of these conditions is implied by the ascending chain condition
for ideals of the corresponding type, since this is equivalent with the
statement, that all ideals of S of that type are finitely generated. The
following Ex. 3.2 presents a semiring which satisfies our condition for all
six types of ideals, but none of the ascending chain conditions. However,
also our conditions are not necessary for the corresponding statements
in Th. 3.1 as we show in Ex. 3.3.
Example 3.2. Let S = Ny[zy,23,...] be the polynomial semiring in
the set {x; | 1 € N} of indeterminates over Ny. Then S is mult. commu-
tative and add. cancellative, such that left and two-sided ideals coincide
as well as k-closed and h-closed ones. Since S has an identity, the ideal
$=9=23 is finitely generated. For each n € N, the ideal A, of S
generated by 1, ... ,x, consists of the elements > ._, fiz; for arbitrary
fi € S, from which A, = A, = ;4:,1 is obvious. Thus the chain A; C
C Ay C As C ... disproves the ascending chain condition for all ideals
under discussion.
Example 3.3. Let S be the homomorphic image of the semiring
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No[z1,2,...]\ N defined by the relations z;z; = 0 and 27 = «; for all
t # 7. Then S consists of the elements

f= Z n;x;, almost alln; € Ny equal 0,
ieIN
ie. S is the direct sum of its subsemirings S; = Noxz; = {nz; | n €
€ No}, which are isomorphic to (Ng, +, -) and have x; as their identity.
As in the above example, S is mult. commutative and add. cancella-
tive.

Now let A be an ideal of S. Then f € A for f = Y . nniw;
implies fx; = n;x; € A, such that A is the direct sum of ideals A; of
S;. Obviously, one has A = A and hence A = A iff A; = A; holds for
all these ideals A; of S;. It is well known that the k-ideals of INy are
the ideals mNg = {mn | n € Ny} for all m € Ny, and that mNy is a
maximal k-ideal iff m is a prime number p. (Note in this context that
each maximal k-ideal pINg of Ny is properly contained in the unique
maximal ideal Ny \ {1} of Ny.) Consequently, each k-ideal A = A of
S is characterized by a sequence (m;);en of integers m; € Ng, where
A is the direct sum of the k-ideals A; = m;Nox; of S;. Moreover, if
A = A corresponds to (m;)ieny and B = B to (k;);cn, then A C B
is equivalent to k;|m; for all « € N. Hence B = B is a maximal k-
ideal of S iff (k;);en consists of one prime number, whereas all other k;
equal 1, and each proper k-ideal A = A of S is contained in a maximal
one. (Similarly one obtains that each proper ideal of S is contained in
a maximal one.)

On the other hand, let F' be a finitely generated ideal of S. Then
only a finite number of elements x; occur in the summands nx; of the
elements of F. This yields F = Fcs.

Our next point is to characterize maximal k-ideals [h-ideals] A of
S by corresponding properties of the semirings S/x 4 and S/n4, which
needs some preparations. Let ¢ : § — ¢(5) be a surjective homomor-
phism of a semiring S. Recall that each (left) ideal B of S is mapped
onto the (left) ideal p(B) of ¢(S), whereas ¢ 1 (C) = {s € S | p(s) €
€ C}is a (left) ideal of S for each (left) ideal C' of ¢(S). Moreover,
it is well known that ¢~1(C) is a (left) k-ideal or a (left) h-ideal of S
if C is such an ideal of ¢(S). However, for a (left) k-ideal or a (left)
h-ideal B of S, the (left) ideal @(B) of ¢(5) need not be k-closed or
h-closed, respectively. But the latter is true with supplementary as-
sumptions.
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Lemma 3.4. a) Let A be a proper ideal of S and consider the natural
homomorphism ¢ : S — @(S) = S/ka given by ©(s) = [s]x,. Assume
A C B for a (left) k-ideal or a (left) h-ideal B of S. Then ¢(B) is a
(left) k-ideal or a (left) h-ideal of S/k a, respectively.

b) Consider in the same way the homomorphism ¢ : S — @(S5) =
= S/na and assume A C B for a (left) h-ideal B of S. Then ¢(B) is
a (left) h-ideal of S/na.

Proof. We only show a) for a (left) h-ideal B of S satisfying A C
C B, since the other statements follow in the same pattern. We write
[s] for [s],, and suppose [s] + [b1] + [u] = [b2] + [u] for some s,u € S
and b; € B. This yields (s + by + u)ra(bs +u), i. e. s+ b + a1 +
+u = by + az + u for some a; € A. This and b, + a; € B imply
s € B = B and thus [s] € ¢(B). Hence ¢(B) is a (left) h-ideal of
S/ka. O

Theorem 3.5. A proper k-ideal A = A of a semiring S is a mazimal
(left) k-ideal of S iff S/ka has only trivial (left) k-ideals, which means
that the ideals {A} and S/k 4 are all (left) k-ideals of S/ka.

Proof. Assume that the ideal A is a maximal (left) k-ideal of S and
{A} € C = C C S/ka for a (left) k-ideal C of S/xa. (Recall that
A = A is the mult. absorbing zero and hence {A} a k-ideal of S/r 4.)
Let ¢ : S — ¢(5) = S/ka be the homomorphism defined by ¢(s) =
= [s]x,- Then, as remarked above, B = ¢~ !(C) is a (left) k-ideal of
S, and one has A C B. This yields B = S by the maximal property
of A and hence C = ¢(B) = ¢(S) = S/rka. Conversely, assume that
{A} € C = C C S/r4 implies C = S/ 4 for each (left) k-ideal C' of
S/k4 and consider a (left) k-ideal B = B of S such that A C B C
C S. Then, by Lemma 3.4 a), C = ¢(B) is a (left) k-ideal of S/ 4,
clearly satisfying {A} C C. So we get C = S/k4, i.e. each [s]x, €
€ S/ka equals some [b],, € ¢(B). Now s + a3 = b+ ay for some
a; € A C B implies s € B = B for each s € S, which proves B =
=5.¢

Theorem 3.6. a) A proper h-ideal A = A of a semiring S s a
mazimal (left) k-ideal of S iff S/ka has only trivial (left) k-ideals.
This implies that S/na has only trivial (left) k-ideals, but not con-
versely.

b) A proper h-ideal A = A of S is a mazimal (left) h-ideal of S
iff S/ka has only trivial (left) h-ideals, which in turn holds iff S/na has
only trivial (left) h-ideals.
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Proof. a) Since A = A implies A = A, the equivalence is a spe-
cial case of Th. 3.5. Using that S/n4 is a homomorphic image of S/
/K 4, we obtain the implication directly from the remark before Lemma
3.4. We show in Ex. 3.9 b) that the converse implication does not
hold.

b) These are two statements corresponding to Th. 3.5, and the
proof of the latter can be transferred to both with near at hand modi-
fications. ¢
Remark 3.7. Recall that a (one- or two-sided) semiring ideal of a
ring R need not be a ring ideal of R in the usual meaning, which is
the case iff A is k-closed and hence h-closed. Moreover, for such an
ideal A = A = A of R, both semirings R/rk4 and R/n coincide
with the ring R/A. Hence we obtain from Th. 3.5 (and also from
Th. 3.6) that a proper ring ideal A of a ring R is a maximal (left)
ideal of R iff R/A has no (left) ideals except its trivial ones. As al-
ready mentioned in the Introduction, the direct translation of this ring-
theoretical result to semirings fails to be true, and we state in this
context:

Proposition 3.8. Let A be a proper ideal of a semiring S. If A 1s
a mazimal (left) ideal of S, then S/ka and S/na have no (left) ideals
except their trivial ideals. However, if the latter holds, A need not be a
mazimal (left) ideal of S.

Proof. Let the ideal A be a maximal (left) ideal of S. Recall that the
k-closure A is one k4-class and the mult. absorbing zero of S/k 4. If
A = S holds, S/r4 consists of a single element and there is nothing
to prove. Otherwise, let C be a (left) ideal of S/k 4 satisfying {A} C
C Cand ¢ : S — ¢(5) = S/ka the natural homomorphism. Then
B = ¢ YC) is a (left) ideal of S satisfying A C A C B. By the
assumption on A, this yields S = B and hence C = S/k4. In the
same way one obtains that S/na has no (left) ideals except {A} and
S/na.

Concerning the converse, consider the semiring S = Ny with the
usual operations. For each prime number p, the ideal A = pINy is not a
maximal ideal of Ny as already stated in Ex. 3.3. However, the semir-
ings No/rka and No/na coincide and are isomorphic to the field Z/(p)
and so without non-trivial ideals. ¢
Example 3.9. a) We give an example of a mult. commutative semiring
S which has only two h-ideals, namely its zeroid Z and S, but an infinite
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chain of k-ideals B; satisfying
A=ZcCB CByC...C5S.

In particular, A = Z 1s a mazimal h-ideal of S, but not a mazrimal k-
ideal. For this purpose, let (H,+,-) be the semifield of positive rational
numbers with the usual operations and (N, +,-) the semiring defined
on (N,<) by s +r = max{s,r} and s-r = min{s,r}. Clearly, the
direct product of these semirings, defined on H x N = {(0,s) | 0 €
€ H,s € N} by component-wise operations, is again a semiring. We
consider the semiring S = (H x N) U {0}, obtained from H x N by
adjoining a mult. absorbing zero o = O. Now (0,s) + O # O and
(0,8) + (o,7) # (0,r) for all (o,s),(0,7) € H x N shows that the ideal
{O} is the zeroid Z of S. Next let B be any ideal of S which con-
tains at least one element (3,b) # O. Then (3,b)(3 'o,c¢) € B shows
that (3,b) € B implies (0,¢) € B for all 0 € H and all ¢ € N such
that ¢ < b. Moreover, B = S holds since each (0,8) € Hx N for
some s > b satisfies (o,3) 4+ (01,b) + (p,8) = (02,b) + (p,s) if one
chooses o; € H according to 0 + 01 = 05. This proves that A = 7 =
= 7 is a maximal h-ideal of S. Now we define B, = {(o,¢) € H x
x N | ¢ <n}U{O} for each n € N. Clearly, B, is an ideal of 5,
and B, = B, holds since (g,7) + (01,¢1) = (02,¢2) implies r < n.
Thus A = Z 1s contained in the chain By C By C ... of k-ideals of
S.

b) We use this example to complete the proof of Th. 3.6 a). For
A = Z, the congruence k4 is obviously the identical relation on S and
hence S/ka =2 S. On the other hand, (o, s)na(e,r) holds for elements
of Hx N iff o = p, since (0,8)+ O + (¢, u) = (0,7) + O + (1, u) implies
o = o, whereas s + u = r + u is satisfied e. g. for u = s + r. Hence
S/na4 is isomorphic to the semifield (Hp, +,-). Therefore, S/n4 has no
(left) ideals except {A} and S/na, whereas S/k4 = S has an infinite
number of k-ideals.

¢) We denote one of the mult. non-commutative semirings of
Ex. 2.2 a) by (S1,+,-) and consider the semiring S = (Hp x S1) U
U {0} in the same way as above. Then A = Z = {O} and S are
the only ideals of S and the mazimal h-ideal A = Z s now also a
mazimal k-ideal of S. Moreover, one checks that A = Z 15 also a
mazimal left h-ideal, but not a mazimal left k-ideal of S. The lat-
ter follows since B, = {(0,s) € Hx S1 | s < a} U {0} is a left k-
ideal of S for each a € S;. Corresponding to part b), one has again
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S/ka =2 S and S/na = Hy and thus another example in the context of
Th. 3.6 a).

As a contrast to the fact that a maximal (left) h-ideal of a semiring
need not be a maximal (left) k-ideal illustrated by the above examples
we show for subsemimodules of a semimodule:

Theorem 3.10. Let S = (S,4) be a semimodule and A = A CcSa
mazimal h-closed subsemimodule of S. Then A is also k-closed in S, 1.
e. AC B=DBCS implies B=2S for each k-closed subsemimodule B
of S.

Proof. We proceed by showing two auxiliary statements for a maximal
h-closed subsemimodule A of S.

i) For each r € S\ A and each s € S there are a; € A, n; €
€ N and u € § satisfying s + a3 + n1r + u = ag + ner + u. To prove
this, let C' be the subsemimodule of S generated by A and r. From
A C C and the assumption on A we have C = S, which yields s +
4+ ey +v =cy+ v for somec; € C and v € S. Since C consists of
the elements a € A, nr € Nr and all sums a 4+ nr of those elements,
we can add any of these sums a + nr to s 4+ ¢; + v = ¢2 + v and ob-
tain 1).

ii) For each s € S there is some m € N such that ms € A holds.
We go by contradiction and assume ms ¢ A for all m € N and some
s € S. Applying i) to r =2s € S\ A and s we get

a; + (2ny + 1)s +u =az +2ngys + u

for suitable a; € A,n; € N and u € S. Because of 2n; +1 # 2n, we may

assume 2ny + 1 > 2ny without loss of generality, 1. e. 2n1 +1 = 2ny, 4+ d
for some d € IN. This yields

ds 4+ a1 + (2ngs +u) = az + (2n2s + u),
which implies ds € A= A, contradicting our assumption ms ¢ A for

all m € N.

To complete our proof, we consider any k-closed subsemimodule
B = B of S containing A properly and the subsemimodule C' generated
by A and some r € B\ A. Then we have A C C C B = B, and we
obtain B = S by showing C' = S. Indeed, for each s € S we have

s+ay +nir+ mu=ag+ ner + mu
according to 1), where mu € A holds by ii) for at least one m € N. This
states s 4+ ¢; = ¢ for each s € S and suitable ¢; € C,i. e. C = S.
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