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Abstract: A lattice L is called cocompact if its dual L is compact. If M is
a R-module the lattice S (M) of all the submodules of M is cocompact iff M
is finitely cogenerated. Most of the properties of these modules are proved in

the latticial general setting.

1. Introduction

A complete lattice L is called cocompact if each discover of 0 has a
finite subdiscover, i.e. for every subset X of L such that A X = 0 there
is a finite subset /' of X such that A ' = 0. Obviously, L is cocompact
iff the dual L° is compact. An element a € L is called cocompact if the
sublattice a/0 is cocompact.

The following characterization is well-known: a lattice L 1s ar-
tinian iff for each subset A of L there 1s a finite subset £ of A such that
AF=AA Hence
Remark 1.1. Every artinian lattice is cocompact.

Remark 1.2. If I is a cocompact lattice, for each 0 # a € L the
sublattice a /0 is also cocompact.

Our main result 1s Th. 2.2: Let L be an algebraic lattice. L is
cocompact iff the socle s(L) is compact and essential in L.

In the sequel we will use only complete lattices /. and the fol-
lowing definitions: a non-zero element e 1s called essential 1f for every
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element a € L, a A e = 0 implies a = 0 and superfluous dually; the
socle s(L) of a lattice is defined as the join of all the atoms of L and,
dually, the radical r(L) as the meet of all the maximal elements (dual
atoms) of L; a lattice L is called atomic if for every 0 # a € L the
sublattice a/0 contains atoms, inductive if for each a € L and every
chain {b;} Viel, anb =0= aA(V b) =0 and every sub-
el
lattice (interval) of I has this property, (R%’) if for every a # 1, a
essential in I, 1/a contains atoms, reducible if the socle s(L) = 1, and
torston 1if for each a # 1, 1/a contains atoms (see [1], [2] and [3]). As
in [1] we use the following definitions: we say that a set {a;}icr of
clements of a lattice is independent if a; A (\/ a;) = 0 for all ¢ € I;

el

ji
in this case we denote the join \/ a; by € a; and call it the direct
el tel

sum (join). For all the notions (such as: compact element, essential,
pseudocomplement 1n a lattice and algebraic, artinian, pseudocomple-
mented or upper continuous lattice) and notation we refer to [4], [5]

and [6].

2. Results

Lemma 2.1. Let a be an essential element of a lattice L. If af0 is

cocompact then L 1s also cocompact.

Proof. Let {ai}ieI be a family of non-zero elements of L such that

A @; = 0. The element a being essential in I, we have a A a; # 0 and

el

0=aA (/\ ai) = A (a Aa;). Hence {a Aai}ie[ is a discover of 0 in
tel el

a/0, and a/0 being cocompact there is a finite subset F' C I such that

0= A(ana;)=an| A ai). Finally, a being essential, A a; = 0

tEF tEF tEF

and L 1s cocompact. ¢

Lemma 2.2. [In an algebraic, modular, reducible lattice the radical

r(L)=0.

Proof. We verify that for each atom s, s Ar(L) = 0 (this suffices in a re-

ducible lattice, which is also atomic). Reducible, inductive lattices being

complemented (each algebraic lattice is upper continuous, each upper

continuous lattice is inductive), let m be a complement of s. Using

modularity, one easily proves that m i1s maximal in L. Hence sAm =0
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implies s Ar(L) = 0. ¢

Lemma 2.3. [In an algebraic cocompact lattice L the socle s(L) 1s

essenttal in L (more can be proved; see the last theorem).

Proof. Let a € I be such that s(1) Aa = 0 or, equivalently, s(a/0) = 0.

The sublattice a/0 being algebraic, the socle is also the join of all the

essential elements (of a/0) and so, being cocompact 0 = A e; for a
teF

finite family of essential elements {e;};., of a/0. Hence 0 is essential

in a/0 and so a = 0. $

Remark 2.1. In every atomic lattice the socle is essential. If the lat-

tice L 1s inductive then the converse is also true. Indeed, if a # 0 then

0#s(L)Aa €s(L)/0 an inductive and reducible lattice. Using Th. 9.2

from [1], each element of L is a direct sum of atoms. Hence a/0 contains

atoms.

So, cocompact algebraic lattices are atomic. Moreover, one can
prove that algebraic cocompact (R3) lattices are torsion lattices (cf.[2]).
Proposition 2.1. A laitice L is artinian iff for cvery a # 1 the sub-
lattice 1/a is cocompact.

Proof. Each sublattice of an artinian lattice 1s clearly artinian and so,
by the Remark 1.1, 1s cocompact. Conversely, let ... < a, < ... <

< as < a; be an ascending chain of elements in L. If « = A a, then
neN
{@n}, ey 18 surely a discover of a in 1/a. The sublattice 1/a being co-
compact there is a finite subset F' C N such that « = A a,. Hence
nek
@ = a,, where m = min(F') and a,,4; = a,, for each { € I, so the chain
is finite and L is artinian.
Proposition 2.2. [If for an element a of an modular inductive lat-
tice L the sublattices a/0 and 1/a are cocompact then the lattice I is
cocomnpact.
Proof. If « = 0 nothing remains to be proved. If a # 0 let 0 =
= A b a discover of 0 in L. Then A{aAb) = aA(Ab) =aA
el el iel
A0 = 0, is a discover of 0 in a/0. By cocompacity, there is a finite
subset F' of [ such that 0 = A(aAb) =aA(A b). I A b =
iEF tEF tEF
= 0 (e.g. if a is essential in L) the proof is complete. If A & # 0
EF
then let ¢ be a pseudocomplement of @ which contains A b;. We have
1EF
A bi €c/0=c/flanc) = (aVe)/a C 1/a (the isomorphism is given
EF
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by modularity). The sublattice 1/a being cocompact, (a V ¢)/a and

hence ¢/0 are also cocompact. 0 = A (¢ A b;) being a discover of 0
el
in ¢/0 there is a finite subset G of [ such that 0 = A (¢ A b)) = cA
ieG

A(NA bi). Now, forb= A b wehave b < A by <cand cAb < cA
1EG 1EFUG 1EF

A (A b)) = 0 so that b = 0, and we have the required finite discover
i€EG

of 0.

This is a purely laticial proof which avoids the injective hull, a
non-latticial notion (see [7]).

Consequence 2.1. A direct sum of cocompact elements in an induc-
trve modular lattice ts cocompact.

Proof. If a/0,6/0 are cocompact and a &b = 1 (b is a complement of
a) then by modularity 5/0 = b/(a Ab) = (aVb)/a = 1/a and we use the
previous Prop. 2.2.

Proposition 2.3. Let L be an algebratc cocompact lattice with the
radical v(L) = 0. Then L 1s reducible and compact.

Proof. From the third lemma we already know that L 1s atomic. The
lattice I being algebraic the radical is also the union of all the super-
fluous elements. Hence the condition r(L) = 0 implies that the only
superfluous element of L 1s 0. Equivalently, for each 0 # a € L there
is an # # 1 such that « V& = 1. In particular, each atom has a com-
plement (maximal if I is also modular). Indeed, if s is an atom, as
mentioned, there is an m # 1 such that s Vm = 1. But s Am € {0, s}
and s Am = s implies s < m or m = 1. Hence s Am =0 and s has a
complement.

Now if the socle s(L) # 1 then let # # 1 be such that s(L)vae =1
(L # 0 atomic implies s(L) # 0). One gets an atom which would not
be contained in s(L), contradiction. Hence L is reducible.

Finally, I being cocompact, the radical r(Z), which is the inter-
section of the maximal elements, and so is a discover of 0, must give a
finite subdiscover of 0 by, say n maximal elements. The compacity of L
follows now by induction on n. One verifies that each cover of 1 has a
finite subcover . The dual analogon of this proof 1s detailed in the proof
of the next theorem. ¢
Theorem 2.1. Let L be an algebraic, reducible and modular lattice.
Then the following conditions are equivalent: (a) L is compact; (b) L
is cocompact; (c) 1 is a fimte direct sum of atoms.
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Proof. (a) = (¢): L being reducible and inductive we have 1 = € s;,

el
with s; atoms (see [1]). But {s;},.; is a cover for 1, compact element,
so a finite subset I' C I exists such that 1 = € s;.

1EF
n
(c) = (b): If @ s; = 1 we prove that every discoverof 0 = A q;
=1 [1=¥4
has a finite subdiscover by induction on n. If n = 1 the assertion 1s

obvious. We assume that the assertion is true for each lattice such that
1 is a direct sum of at most n — 1 atoms. First, observe that there 1s
a k € [ such that ag A s, = 0. Indeed, otherwise a; A s, = s, for
every i € [ or s, < A a;, contradiction. The element aj is also a
el

direct sum of at most n — 1 atoms (the modularity is needed for the
use of the Jordan—Holder theorem). By the induction hypothesis a fi-
nite subset of the family {a; A ag };.; has the intersection 0. Hence L is
cocompact.

(b) = (a) follows from Lemma 2.2 (which assures r(Z) = 0) and
Prop. 2.3. ¢
Remark 2.2. The implication (¢) = (a) follows easily: in an upper
continuous lattice every atom 1s compact and finite unions of compact
elements are compact.
Theorem 2.2. Let L be an algebraic lattice. Then L is cocompact iff
the socle s(L) s compact and essential in L.
Proof. If L is cocompact and a # 0 then clearly a/0 is also cocompact.
Hence the sublattice s(L)/0 is cocompact and reducible. By Th. 2.1
a/0 is also compact, i.e. s(/) is compact in L. The essentialness fol-
lows from Lemma 2.3. Conversely, if s(I) is compact then s(L)/0 is
reducible and compact and hence cocompact, again by the above theo-

rem. The socle s( L) being also essential in L, L is cocompact by Lemma
2.1. ¢
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