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Abstract: Let G be a finite abelian group of order p*, where p is a prime.
If G is a direct product of three of its subsets 4, B, C, where B and C are
nonsubgroup cyclic or simulated subsets, then A4 is a direct product of a subset

and a nontrivial subgroup of G.

1. Introduction

Let GG be a finite abelian group. We will use multiplicative notation
in connection with abelian groups. We denote the identity element by e.
Let Ay,..., A, be subsets of G. If the product A;... A, is direct and
gives (7, then we say that the product Ay ... A, 18 a factorization of G.
We also call the equation G = A, ... A, a factorization of G. The above
definition is clearly equivalent to the following. Each g in GG 1s uniquely
expressible in form

g=ai...an, a1 € A, ..., a, € Ay,.

Sometimes another equivalent formulation is useful. The product A, ...

... A, gives G and in addition |G| = |A1|...|A,| holds. Here |A| de-
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notes the cardinality of the subset A of (. We also use the notation |«
to denote the order of the element a of G.

The subset A of (¢ 1s defined to be periodic if there 1s an element
g € G\ {e} such that g4 = A. Such an element g is called a period
of A. All the periods of A together with the identity element e form a
subgroup H of G. In fact A 1s a union of cosets modulo /. Therefore
A 1s a direct product H ), where [) 1s a set of representatives of A
modulo . Clearly D) 1s not necessarily defined uniquely.

Beside periodic subsets two other types of subsets play a role in
the paper. The subset A of (7 1s called cyelic if it consists of the elements
e,a,a2,...,a" "1 In order to avoid trivial cases we will assume that » >
> 2 and |a| > r. If |a| = r, then the cyclic subset A is equal to the cyclic
subgroup (a). If |a| > r, then A consists of the “first” r elements of {a).
Let a € G such that |a| = ». The subset A of G is called simulated if
it consists of the elements e, a,a?,...,a" 2, a" tu. If u = e, then the
simulated subset A is equal to the subgroup {a). If u # ¢, then A differs
from the subgroup {(a) in one element a"~'u.

It is proved in [3] that if a finite abelian group is a direct product
of cyclic subsets, then at least one of the factors must be periodic. By [1]
a similar result holds if the factors are simulated instead of being cyclic.
Rédei [4] proved that if a finite abelian group is a direct product of
normed subsets of prime cardinality, then at least one of the factors
must be a subgroup.

These theorems suggest the following problem. Let G=AB;...B,
be a factorization of the finite abelian group G, where each B; is either
cyclic or simulated and |A| is a product of two (not necessarily distinct)
primes. Does 1t follow that at least one of the factors A, By,..., B, 18
periodic? The main result of this paper gives an answer in the affirma-
tive in a particular case. Namely, let G be a group of order p*, where
pis a prime. If G = ABC is factorization of G, where B and C may
be cyclic or simulated, then at least one of the factors A, B, C' must be
periodic. The emphasis is on that |A| is not a prime and nothing is
assumed about the structure of A.

2. Preliminaries

If A and A’ are subsets of G such that for every subset B of G, if
G = AB is a factorization of GG, then G = A’B is also a factorization
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G, then we shall say that A is replaceable by A’
We will need the next three lemmas on replaceable factors. They
can be proved using the ideas of the proofs of Lemma 1 and 2 in [2].
Lemma 1. Let G be a finite abelian group and let A = {e,a,d?, ...
o, a" "t} be a cyclic subset of G. Then A can be replaced by A' =

= {e,a',a%,. ..,a(T_l)"} for each 1, whenever i 1s prime to r.
Lemma 2. The simulated subset A = {e,a,a* ...,a" "%, a" tu} of a
finite abelian group can be replaced by A' = {e,a,a?,...,a" "2, a" " tu'}
for each integer 4.

Lemma 3. The simulated subset A = {e,a,a®, ... ,a" 2 a""tu} of a fi-
nite abelian group can be replaced by A'={e,a,a? ..., a" ! alu,a’t! ...

coya" 7 foreach i, 1< i< r—1.

At some instances it will be convenient to work in the group
ring Z(G). If G is a finite abelian group, then Z(() consists of all
the elements deG Agg, where A4 is an integer. Addition and multiphi-
cation are defined between such sums in the same fashion as between
polynomials. To the subset A of G we assign the element A = ZaEA a
of Z(G). We will use the next argument several times. Let G = ABC
be a factorization of (&, where

B= {e,b, 62,...,67"_1}, C = {e,c, CQ,...,cs_Q,cs_lv}.
Replace C by (c) in the factorization G = ABC to get the factorization
(G = AB{c). This can be done by Lemma 2 with the choice of ¢ =
= 0. The factorizations ¢ = ABC and (¢ = AB{c) correspond to the

equations G = ABC and G = E@ respectively in the group ring
7Z(G). Subtracting the first from the second we get 0 = AB(c*™! —
—¢*~v) and so 0 = AB(e — v). From this by multiplying by e — b we
get the equation 0 = A(e — b )(e —v). Now using the ideas in the proof
of Th. 2 of [6] we can conclude that there are subsets U, V' of (¢ such
that A = U{b") UV {v), where the union is disjoint and the products are
direct. Analogous results hold when both B and €' are cyclic or both
are simulated. For easier reference we state them as a lemma.

Lemma 4. Let G = ABC be a factorization of the finite abelian group

G, where the factors B and C' are one of the following

B:{e’b’bg""’br_l}’ = {6,6,62,...,68_1}7
B={e 0% 0720}, O={e e, ... 7% Tl
B = {G,b,bz,, ..’b"—l}, C = {e’c, CQ,. H’CS—Q,CS—lv}.

Then there are subsets U,V of GG such that A can be represented in the
following forms respectively
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A=UEYUV(e), A=U)UV{), A=U{E)UV{),

where the unions are disjoint and the products are direct.

3. Result

Now we are ready to prove the main result of the paper. By
the fundamental theorem of the finite abelian groups each finite abelian
group is a direct product of cyclic groups of prime power order. If G
is the direct product of cyclic groups of prime power order ¢,..., 1,
respectively, then we say that G is of type (¢1,...,t,).

Theorem 1. Let p be a prime and G be an abelian group of order p*.
Let G = ABC be a factorization of G, where |A| = p?, |B| = |C| =
= p. Further the factors B and C are cyclic or stmulated. Then one of
A, B, C 1s periodic.

Proof. The type of G be can be

), @), %P7, ), (pppip)
We distinguish 5 cases depending on the type of G. Then we distinguish
3 subcases depending on both B and C' are cyclic; both B and C' are
simulated; B is cyclic and C' is simulated.
CASE 1. G is of type (p*). This case is settled by Th. 1 of [5]. If G
1s a finite cyclic group and G = A; ... A, 1s a factorization of GG, where
each |A;| is a prime power, then one of the factors is periodic.
CASE 2. Gisof type (p®, p). Let G = (&) X {y), where |z| = p*, |y| = p.
Subcase 2(a). Both B and C' are cyclic, that is,
B = {e,b, 62,...,bp_1}, C= {e,c,cz,...,cp_l}.
If b = e or ¢” = e, then we are done and so we assume that |b| > p?,
le| > p®. By Lemma 4, A = U{BP) U V{c?). Let b= 2%y” and ¢ = 27y’
be the basis representations of b and ¢. Now & = xP® and & = «P7.
The subgroups of {«”) form a chain. Hence (:cpz) C (aP*)y N (aP) =
= (b?) N{c?). Thus 27" is a period of A.
Subcase 2(b). Both B and C are simulated, that is,

B= {e,b, b2, . ..,bp_Q,bp_lu}, C= {e,c, 2. ..,cp_z,cp_lv}.
Here |b] = |¢| = p. If u = e or v = e, then we are done and so we assume
that |u| > p, |v| > p. By Lemma 2 we may assume that |u| = |v] = p.
The elements of G of order p generate the subgroup K = (;EPQ, y) of
order p?. Now K = BC is a factorization of K. By Rédei’s theorem
one of the factors B and ' is a subgroup of K.



Factoring abelian groups of order p* 201

Subcase 2(c). B is cyclic and C is simulated, that is,
B = {e,b, bz,...,bp_l}, C = {e,c, cz,...,cp_g,cp_lv}.

Here we may assume that |b| > p® and |e|] = || = p. By Lemma 4,
A=UdmYuV{v). fU =0 or V=0, then A is periodic and so we
assume that U # @ and V' # 0. If |b] = p®, then |U||{b*}| > p® and hence
V = 0. We assume that |b| = p?. Therefore (b*) = (:cPQ). Ifve (;vpz),
then {v) = <£L’p2> and so A is periodic. Thus we assume that v ¢ <$p2>.

Replace C' by (e} in the factorization G = ABC to get the factor-
ization ¢ = AB{c). Let us compute A{c}.

Ale) = (U(:EPQ) U V(U>) () = U{a”" Ye) UV{w){c).

The product AB{c) is direct so the products (wpz)(c) and {v)(c) must
be direct. They both must be equal to K. Note that :cpz,v form a
basis for K. By Lemma 3 in C' ¢ can be replaced by ¢' for each ¢,
1 <i<p—1, so we have p — 1 choices for ¢. Namely, ¢ may be aprU",
1<i<p—1. Now

C = e, 2P ot 2T (2P (=2 (= 1p (P 1) ).
There isa jsuch that 1 < j<p—2and ji=(p—1)i+1 (mod p) since
(j +1)i =1 (mod p) is solvable. Let ¢t € U. The product t(:rp2)C’ 18
direct since 1t is part of ABC. Compute (:cpz)C’. Note that the sets
<$p2>mjpzvji — <$p2>vij and Cl<mp2>m(p—1)p2v(p—1)i+l — <mp2>v(p—1)i+1
are parts of (mpg)C and they have the same elements. This is a contra-
diction.
CASE 3. G is of type (p?,p?). Let G = {2} x (y), where |z| = p?,
yl =p
i Subcase 3(a). Both B and C are cyclic, that is,

B = {e,b, 62,...,bp_1}, C= {e,c,cz,...,cp_l}.

If b = e or ¢” = e, then we are done and so we assume that |b| = p?,
le| = p%. Let L = (b). If ¢ € L, then L = BC is a factorization of I

and so by Rédei’s theorem one of the factors is a subgroup of L. Thus
we may assume that ¢ € L. We may choose &, y to be b, ¢ respectively.
Now
B = {e,:r,:tQ,...,:tp_l}, C = {e,y,yQ,...,yp_l}.
We show that if G = ABC 1s a normed factorization, then
AcC (P, y) or AC {x y").
To show this let a’,a € A and a'a™! = 2%y®. f p{ o and pt 3, then
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a' = az®y” contradicts the factorization G = AB'C’' what we get from
the factorization G = ABC by replacing B, C' by B, (', where

B = {e,ma,mza,...,:ﬁ(p_l)a}, o= {e,yﬁ,yzﬁ,...,y(p_l)ﬁ}.
This replacement is possible by Lemma 1. Let a = #%y® € A. The

previous argument with a’ = e gives that p|o or p|3. If p|a for each a €
€ A, then A C («?,y). Similarly if p|3 for each a € A, then A C («, y").

Thus we may assume that there are @ = «%y”,a’ = afo"yﬁl € A such
that p|a, le( 3 z?nd pta, plg, then pt (o —a), pt (5 —3) So
a'a”t = 2% ~%y? ~F leads to a contradiction.

Let M = {«?,y) and N = {z,y"). f AC (¢, y) = M, then M =
= AC' is a factorization and so A(e — y7) = 0 shows that yP is a period
of A. Similarly if A C {(z,y"} = N, then N = AB is a factorization and
so A(e — @P) = 0 shows that #? is a period of A.

Subcase 3(b). Both B and C are simulated, that is,

B= {e,b, bz,...,bp_z,bp_lu}, C = {e,c, cz,...,cp_z,cp_lv}.
Here |b| = |¢|] = p and we may assume that |u| = p, [v| = p. The
elements of G of order p generate the subgroup K = («”,y”) of order
p2. Now K = BC is a factorization of K. By Rédei’s theorem one of
the factors B and (' is a subgroup of A

Subcase 3(c). B is cyclic and C is simulated, that is,

B = {e,b, bz,...,bp_l}, C = {e,c, 62,...,cp_2,cp_lv}.
Here we may assume that |b| > p® and |c| = |v| = p. By Lemma 4,
A=U®)Yu V(). f U =0 orV =0, then A is periodic and so we
assume that U # @ and V # 0. If v € (b7}, then {v) = (b") and so A
is periodic. Thus we assume that v € (b*). Now b”, v form a basis for
K = {aP y¥).

In the factorization G = ABC replace C' by (¢} to obtain the
factorization ¢ = AB{c}. Compute A{c}).

Ale) = (UYL V() (e) = U(B") () U V{u){e).
Both (b7}{c) and (v)}{c) must be direct and equal to KA. Note that b”, v
form a basis for K. By Lemma 3 in C' ¢ can be replaced by ¢ for each
i,1<i<p—1,so we have p — 1 choices for ¢. Namely, ¢ may be bv¢,
1<:<p—1. Now
C = {e, byt B2y bR p=2) b(p—l)pv(p—l)i-l-l}‘

There is a j such that 1 < j < p—2and ji = (p—1)i + 1 (mod p)
since (j +1)i =1 (mod p) is solvable. Let ¢t € U. The product #{b?)C
is direct since it is part of ABC. Compute (b7)C. Note that the sets
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<bp>bjpvji - (bp>vjp and <bp>b(p—1)pv(p—1)i+1 — <bp>v(p—1)i+1
are parts of (b} and they have the same elements. This is a contra-
diction.

CASE 4. G isof type (p?, p, p). Let G = (&) x {y) x (2}, where |z| = p?,
vl = |z = p.

Subcase 4(a). Both B and C are cyclic, that is,

B={ebb*... 00"}, C={ercc®....c" "}

Here we may assume that |b] = p?, |c| = p?. By Lemma 4, A = U{b) U
UV{cP). Let b =a*y":" and ¢ = 2%y 2" be the basis representations
of b and . Now 6" = 2P and ¢ = #P®. The subgroups of {7} form a
chain. So (&P} = {b*) = {cP). Thus = is a period of A.

Subcase 4(b). Both B and (' are simulated, that is,

B= {e,b, b2, . ..,bp_Q,bp_lu}, C = {e,c, . ..,cp_z,cp_lv}.
Here |b| = |¢| = p and by Lemma 2 we may assume that |u| = p, |v| =
= p. Replace B, C by (b}, {c) in the factorization G = ABC to get the
factorization G = A(b){c). This gives that the product {b){c) is direct.

If u,v € (b, c), then BC = (b, ¢} is a factorization and so by Rédei’s
theorem we are done. We assume that u & (b,c) and v € (b, c, u}, that
is, v = b%cPu” Now

B= {e,b, bz,...,bp_z,bp_lu}, C = {e,c, 62,...,cp_2,cp_lbacﬁuw},

A=UluyuV{p*cu).
Here we assume that U # @ and V' # 0 since otherwise A is periodic.

Assume first that 8 = 0. If v = 0, then @ # 0. By Lemma 2 we
may assume that @ = 1. Let £ € V. The product #{b) B is direct since
the product ABC is direct. On the other hand b € (b) and b € B. This
is a contradiction.

If v # 0, then by Lemma 2 we may assume that v = 1. If @ = 0,
then u 1s a period of A. Thus we assume that o # 0. Let t € V. The
product {(b%u)B is direct. The elements plr—latp=1 o p 2 pp—2
belong to (*u}B. So (p—1l)a+p—1#0,1,2,...,p—2 (mod p) and
hence (p—1)a+p—1=p—1 (mod p). Thus a = 0. But we know this
1s not the case.

Secondly assume that 7 # 0. By Lemma 2 we may assume that
3 =1. Now

C = {e,c, .. .,cp_z,cp_lbacu”} = {e, e, c?,. ..,cp_z,bauw}
Let ¢t € U. The product #{u) BC' is direct. Clearly (u)BC = (b, u)C.
But this a contradiction since b*u” € (b, u) and b*u? € C.
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Subcase 4(c). B is cyclic and C is simulated, that is,
B = {e,b, bz,...,bp_l}, C = {e,c, cz,...,cp_g,cp_lv}.
We may assume that |b| = p? and |¢| = |[v| = p. By Lemma 4, A =
= UP)UV{v). We assume that U # @ and V' # B since otherwise A is
periodic.

Let ¢ € U. The product ¢{b*)C is direct since it is part of the
product ABC. If ¢ € ('), then ¢ = b for some 7, 1 < ¢ < p — 1.
This leads to the contradiction ¢ € (b?) and ¢ € C. Thus we assume
that ¢ ¢ (b?). We distinguish two cases depending on v € (b, c) or
v & (b7, c).

If v € (b?, ¢}, then v = b**c®. If B = 0, then A is periodic by b?.
If 3 # 0, then by Lemma 2 we may assume that 7 = 1. Now

C = {e, e, c® .. P72 cp_lbpo‘c} = {e, e, ... P2 bp(‘"}.

Let t € U. The product ¢{b")C is direct since it is part of the product
ABC. But b € (b*) and b** € C' is a contradiction.

Turn to the case when (b*,c,v) is of type (p,p,p). From the
factorization G = ABC' it follows that 0 = AC(e — b*) and so AC
is periodic by #”. Consequently V{(v)C is periodic by #”. Note that
(V)C' = {c,v). Ift €V, then e € t='V{v)C' = t7'V{e,v). Now (b} C
C t7'V{e,v). As t7'V{c,v) is a union cosets modulo {c,v) and the
elements of (b”) are incongruent modulo {e,v), it follows that p® =
= |(bp)<c, v)‘ < ‘t_1V(c, v)‘ = |V|p?. This gives that |V| > p and so we
get the contradiction that U = §.

CASE 5. (G is of type (p, p, p, p). Each element of G\ {e} is of order p
and so a cyclic subset of GG i1s a subgroup of G. Thus the only case we
should consider is when both B and C are simulated, that is,

B= {e,b, b2, . ..,bp_Q,bp_lu}, = {e,c, 2. ..,cp_Q,cp_lv}.
Here |b| = |c¢| = p and we may assume that |u| = p, |v| = p. Replace
B, C by (b),{c) in the factorization ¢ = ABC to get the factorization
G = A({b){c). This gives that the product (b){c) is direct. So the group
(b, ¢, u, v) is one of the types (p, p), (p,p,p); (p, P, P; D)

Turn first to the case when (b, ¢, u, v) is of type (p,p). Now u,v €
€ (b, c). Further BC' = (b, ¢) is a factorization and so by Rédei’s theorem
we are done.

Secondly consider the case when (b, ¢, u, v} is of type (p,p,p). We
assume that u & (b, ¢) and v € (b, ¢, u), that is, v = b*c’u” Now
B = {e, b b2, ... b2 bp_lu}, C = {e, e, c?, . .. P72 cp_lbo‘cﬂuﬁf},
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A=UluyuV{p*cu).
Here we assume that U # @ and V' # 0 otherwise A is periodic.

Assume first that 7 = 0. If v = 0, then o # 0. By Lemma 2 we
may assume that o = 1. Let ¢t € V. The product #{b)B is direct since
the product ABC is direct. On the other hand b € {b) and b € B. This
1s a contradiction.

If v # 0, then by Lemma 2 we may assume that v = 1. If @ = 0,
then u is a period of A. Thus we assume that o # 0. Let t € V. The
product (b*u)B is direct. The elements plp=Latp=1 o p p2 pP=2
belong to (*u}B. So (p—1)a+p—1#0,1,2,...,p — 2 (mod p) and
hence (p—1)a+p—1=p—1 (mod p). Thus e = 0. But we know this
1s not the case.

Secondly assume that 3 # 0. By Lemma 2 we may assume that
8 =1. Now

C = {e,c, A, .. .,cp_Q,cp_lbO‘cuW} = {e, ¢, ¢, ..,cp_Q,bO‘uW}
Let t € U. The product #{u) BC' is direct. Clearly (u)BC = (b, u)C.
But this a contradiction since b*u™ € (b, u) and b*u" € C.

Finally turn to the case when {b, ¢, u, v} is of type (p, p, p, p). From
the factorization G = A{b){c) it follows that A is a complete set of
representatives modulo (b, ¢) and so

A= {uivjaij 0<q,j<p—1,a; € (b,c)}.
We may assume that e € A, that is, agg = e. We also know that
A =Ulu) U V{v).

Here we assume that U/ # @ and V' # @ since otherwise A is
periodic. As the roles of u and v are symmetric, we may assume that
e € U. Then {u) C A. This means that a;o = e foreach ¢, 0 <i < p—1.
Let u"vjaij € V{v). Now uivjaij@) C A. This gives that a;;’s are
equal for each j, 0 < 7 < p—1. As a;p = e, we have a;; = e for each j,
0<j<p—1. Then u'v/a;;{v) = u'(v). Therefore u' € V{v). On the
other hand u' € U{u). This is a contradiction since V{v) and U{u) are
disjoint.

This completes the proof. ¢

4. Examples

In this section we exhibit examples to show that the conditions of
the problem proposed in the introduction cannot be relaxed in general.
Let G = H?=1 (x;), where |2;| = r; > 3. Set
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TO = {6, &3, Sﬂg, .. C)Z'gs 2 T3 1%4}
_ 2 Tro— 2 Tz 1

T = {6,25‘2,2[32, N ST :(55}

== ri—1 = (352)

Now we define A, B, C by
A= T()(J?Q) U $1T1<2E3> U ZE%TQ(CES) .U l’;l_lTrl_1<ZL‘3>,

—_ 2 r4— 2 T4 1
B= {e,;c4,:134,.. , 2y :(52}

C = {6,;5‘5,33?,.. 9325 2 TE 1$3}
We claim that G = ABC 1s a factorlzatlon of (. In order to verify this
first we show that
T0<£EQ>BO = T1<ZL'3>BO = = Trl— <$3>BO = (2?2, L3, X4, 2?5).

Indeed,

: To{e2) BC = Th(ea, 24)C = (@0, 25, 24)C = (w2, T3, T4, 5),
an

T1<£E3>OB = T1<£1’33, £E5>B = (SBQ, €3, ZE5>B = <ZL‘Q, £33, L4, ZL‘5>.

The remaining cases can be verified in a similar way. Now

ABC = (Tolas) Uz Th{zs) UeiTo{es) U... U2 7' T, 1 {z3)) BC =
= To{as) BO Uy 1) {3) BC U xm(wg)Bo U...Ual™ ' {es)BO =
={e e, el ... 2] Pao, ws, s, 25) = (w1, 22, 23, 24, 25) = G

It i1s clear that B, C are not periodic. The subset A is not periodic
since 1t 1s a disjoint union of periodic subsets which have no period in

common. To make the example more concrete let us choose rq, ..., r5 to
be 3. In this case (i is of type (3, 3,3,3,3), B, C are simulated subsets
|A| = 3% and none of the factors is periodic. In the special case when
r1,...,r5 are pairwise relatively primes G is a cyclic group.

In the next example the factors B and C are cyclic. Let G = () X
X {y), where |z| = rst, |y| = uv, and r, s,t,u,v > 2. Set
TO _ {€’ yu’ y2u y(v—?)u (v 1)u T}

rs 2rs {—2)rs t—1)rs
le{e,:v L ...,:ﬁ( ) ,m( ) y},

TQ == T,-_l = (:BT'S).
Now define A, B, (/ by
A=Ty{e" YUz {y*) U ;BQTQ(y”) U...u :L'T_lTT_l(y“),

B= {e, AT LU m(s_l)T}, C = {e, ¥, y°, . ..,y”_l}.
Clearly B, C' are not periodic and A is not periodic since it is a disjoint
union of periodic subsets without common period. We claim that G =
= ABC is a factoring of G. In order to verify this claim we first show
that
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To(a"*)BC = Ti(y*)BC = To{y")BC = --- = T, 1 {y") BC = («", y).
Indeed,

To(x"*) BC = To(a")C = (", ), and Ty (y*)CB = To(y)B = (2", y).
The remaining cases can be verified in a similar way. Using these facts

ABC = (Tn(a") UeTi(y") U Ta{y") U. .. Ue" "' T, 1 (y*)) BC =
= To(e"*)BC U Ty (y*)BC U 2®To(y*)BC U.. . Ua"'T,_ (y*)BC =

= {e,m,mQ,...,mr_l}(mr,y) =(zx,y)=0G.
If we choose r,s,t,u,v to be 2, then & is of type (2%,2%), |A| = 2%,

|B| = |C| = 2. If rst, and uv are relatively primes, then G is a cyclic
group.
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