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Abstract: Let n be a positive integer, g, be the unique = € (%, %) with
e?tl — 3z +1 =0, and ¢ € (0,g,]. We found a set Ag of reals with the

following property (P): Every solution f : R — R of the functional equation
1
flgw)= U= 1)+ fle+1) + 2/ (@)]

] and is bounded in a neighbourhood of

which vanishes outside of [— ﬁ, quq

a point of that set vanishes everywhere. It is also observed that for ¢ € {0, %
the set [ Jo7 4 Ay, which equals then

{ i e(n)g™ : e€{-1,0, 1}N},

is the largest one with property (P).

Following R. Schilling [9] we consider solutions f : B — R of the

functional equation

) floz) = 1=l = 1)+ (e +1) + 27 ()]
such that
(2) fl&y=0 for |z|>Q

where g is a fixed number from the open interval (0, 1) and
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Q—l_q

In what follows any solution f : B — R of (1) satisfying (2) will be
called a solution of Schilling’s problem.

If
(3) 3g<1— V24 V4

then according to [7] the zero function is the only solution of Schilling’s
problem which 1s bounded 1n a neighbourhood of a point of the set

(4) {eiqi : neNU{0,+oo}, e € {—1,1}}.

This generalizes in particular [1; Th. 1]. It is the aim of the present
paper to obtain such a result with the set (4) replaced by a larger one.
However, we are not able to enlarge (4) for all ¢’s satisfying (3) but, on
the other hand, for ¢ < % we succeeded in finding even the largest set
to be put in the place of (4) (cf. Cor. 1).

Given a positive integer n and ¢ € (0, 1) consider the set Ay of all
he real numbers of the form

1
(5
L K o . P M
& Z( Zq =k VUm0 Yol v (G )+ M + 5 L Z qg™”.
k=1 m=1

=1

St

—

where ¢ € {—1,1}, M, L are non-negative integers, Ki,..., K €
e{l,...;ntand v: {1,..., L} x{1,...,n} — N. Evidently, the set (4)
is a subset of clA}. Let us observe also that for I;,ls € {1,...L},

?1)6 (1,.. K} ks € {1, K}, if (I, ky) # (Io, ko) then
6

Ky L K; K, L K;
dvlnmy+ > > vlam)# ) vllam)+ > > viim)
m=kq i=li+1 m=1 m=kqg j=la+1m=1

The proof of the following fact is left to the reader (cf. also [6;
Th. 21(a), (d)]).
Remark 1. If ¢ € (0, £] then

cl U Ay = { ie(n)q” . e€{-1,0, I}N},
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{ie(n)q": ce{-101}"} = [-Q. Q)

For every positive integer n let g, denote the unique # € (=,
with
(7) 2"t — 324+ 1=0,
and observe that if ¢ € (0, ) then

¢<qn iff ¢"TP—3¢+120.

Our main result reads.
Theorem 1. [f n is a positive integer and g € (0, q,] then the zero
function s the only solution of Schilling’s problem which 1s bounded in
a neighbourhood of a point of the set cl Ay,

The proof of this theorem 1s based on four lemmas. However, we
start with the following simple remarks.
Remark 2. If f is a solution of Schilling’s problem then so is the func-
tion g : R — IR defined by the formula g(z) = f(—=).
Remark 3. Assume f 1s a solution of Schilling’s problem.

If ¢ # % then f(—Q) = f(Q) =0. If ¢ < % then f(0) = 0.
Lemma 1. Assume g € (0, %) If fisa solutzon of Schilling’s problem
then

(5) e ey = (D (2) Y s

2 2q

)

MI’—‘

L
30

m=1
forallz € (Q—1,1-Q) (forallz € [Q —1,1—-Q] if ¢ # %), for all
e € {—1,1}, and for all non-negative integers M and N .

For # € (Q — 1,1 — @) this was proved in [7] as Lemma 2. In the
case of the closed interval [Q — 1,1 — Q] and ¢ # % we argue similarly
as in the proof of [7; Lemma 2] using also [7; Remarks 1 and 2(i)].¢
Lemma 2. Letn €N, q €(0,q,] and

N+EIL=1 Ei;ll y(l,k)$+

y=4q
L I\l I\
+Z( Zq l V(lm-l-zj 1+1Zm 1v(im )
=1 k=1
where N 1s a non-negatie imteger, I 1s a positive mteger, Kq,..., K1 €

ef{l,....,n},v:{1,..., L} x{l,...,n} > N, and 2 € [0,1 — Q) (= €
E[O,I—Q] Zf‘]#%)
If L 1s even then y € (0,1 — Q).
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If L is odd then y e [@Q—1,0] (ye(@—-1,0]ifg< 3).
Proof. Since ¢ < ¢, < = we have

(9) Q < 1.
Moreover, as g, is a solution of (7),
n n q
10 i< 1':1_ <1l—-——=1-0Q,
(10 Zq _an 1 —gn l—g¢ ©
=1 =1
and
1 “.
(11) it g<g then Y d<<1-@

=1
Observe also that

y =g/ KL) (qN+E;L=1 ks vLR) = (L KL),, i

le

L-1
+3 (-1 Zq s VLmIAT f g Tl wlim)=v(LKL) |
=1

(12)
fo 1
Z zIxL 1 ) (_1)L)’
y =qZio Tudi V) (¢Ve—1)—
I&l
1\1 L
_ L v+ E Ey Dl vliim)
(13) 2
L I\l Rl
_|_Z( Zq lm+zj 1+1zm1 v(d,m )’
=2
(14) gTim Tl R (0N o 1) < 0
and

IXL

(15) Zq AE V(Lm)<zq IxL 1<Zn:qk’
k=1

Suppose first I, is even. Applying (13), (14), (6), (15), (9) and (10) we
obtain
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I\;
Zq II y(lm)-]-z]L l+1zm L v(im) <

S
A
Mb

l=2
L 2 I\z
Z Al V(lm+zj 1+1Em 1v(dm)
=2 k=1
Kr_1 K
]‘L 1
Z . v(L— 1m)+2 L v(L,m) +Z kz/(L m) <
q m=
k=1 k=1
oo

SZ P(L—1, K )+ 5L v(L,m)+i

i=1

n
_ qy(L_LKL_l)Jrzf;;gl v(Lm) | qu _
k=1

=g TR TRl B 1+ Y F < Y <1 @,

whereas (12), (6) and (9) give

y > g BFL) ( — iq" + 1) =PRI (—Q+1) >0

=1

Suppose now L is odd. If L = 1 then using the definition of y,
(15) and (10) we see that

y > — Zq iy v(1m) Z—Xn:qk >Q -1,
k=1

with the last inequality being strict if ¢ < % (cf. (11)). If L > 3 then on
account of the definition of y, (6), (15), (9) and (10) we have

L— QIXJ
Yy = — qu Kz V(“”H‘EJL l+12m 1 v(m )+
=1 k=1
K;_ 1 1 Kr
i Z Sttt L1 m) A B v(Lm) _ Zq S u(Lm) >
k=1

OO -
_ Z qy(L—1,KL_1)+zf;gl v(Lm)4i 4
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I\L

_I_qz/(L LKL _D+5EL w(L,m) Zq

> — Z ¢ >Q—1.
k=1
Finally, if L is odd then taking into account (12) and (6) we obtain

y < q"(L’KL)(a: +Y 4 - 1) <gUEED1-Q)+Q-1=0. ¢

i=1

Lemma 3. Assume n € N and g € (0,q9,]. If f 1s a solution of
Schilling’s problem then for every @ € [0,1—Q), for every non-negative
€ {

integers M, L and N, for every K,..., K 1,...,n}, and for every
vio{l,..., L} x{1,... n}—)Nwehave
f(qN-i-EzL:l oL ov(LE)+M o

+2L:( iq ek VLD Ei’;w(i,mHM_i_
ae
L Z ) =
m=1
INSELK4M | \N4ZE, S8 v k)M
- (5) (5)

(z).

Proof. According to Lemma 1, (16) holds for L = 0. Assume L is a
positive integer.

Consider first the case M = 0.

Let L = 1. Equality (16) takes then the form

flg N+T v lk)m—zq Tl v(1,m))

)

and making use of Lemma 1 we see that if K3 = 0 then (17) holds
foralle € (Q—1,1—Q) (forall e € [Q — 1,1 —Q] if ¢ # %) and

for every non-negative integer N. Fix now a K; € {0,...,n — 1} and

(17)

suppose that (17) is satisfied for every non-negative integer N, for every



Bounded solutions of Schilling’s problem 229

v:{1l}x{l,...,n} > N,and foralle € [0,1 - Q) (for all z € [0,1 — Q]
ifq;éi). Let N e NU{0}, v: {1} x{1l,...,n} = Nand « € [0,1- Q)
(x€[0,1-Q]ifq# i) Putting

le
K Ix
L= qN+E L v(LE), Zq mesx V(1m) _
we have
(18) z<e—1

and, according to Lemma 2, y := gz € [Q — 1,0] (and y € (Q — 1,0] if
g < %) This jointly with the definition of z, Lemma 1, (1), (17), (2),

Remark 3 and (17) gives
K +1 Kaitl K +1
f( N4 e, R) g _ Z o e(, m))

1 \v(1,K +1)—1
(¢ @Ry == (Z) fy) =

—UE-D+fE+1)+2f(2)] =

1 ) (1,K141)=1 ]
2

q 4q
1 \#(1,K1+1)
= 2—q) —f(2+1)

S
<
<
)G -

= (%)AIH(QQ)MEM .

Hence (17) holds for every K; € {1,...,n}, for every non-negative
integer NV, for every v: {1} x {1,...,n} = N, and for all « € [0,1 — Q)
(for all # € [0,1 — Q] if ¢ # %) Consequently, taking into account
Remark 2 we have also

Ky

f( N+EA1 1k)m+zq I\l V(lm)

(3" ()"

for every i1 € {1,...,n}, for every non-negative integer N, v : {1} X
x{1,...,n} = N, and for all « € (@ —1,0] (for all z € [Q) — 1,0] if
¢ 7 1)

(19)



230 J. Morawiec

Fix now a positive integer L and suppose that (16) holds with M =

= 0 for every Ky,..., Ky € {1,...,n}, for every non-negative integer
v:{l,....,L} x{1,...,n} = N, and for all z € [0,1 — @) (for all
€0,1 -Q]ifgqg# %) Defining y as in Lemma 2 and making use of
Lemma 2, (17) and (19) with « replaced by y, and (16) with M = 0 we

obtain

N B

I\l

VLR g

L+1 I&l

I& I&'J‘ .
+> (-1 Zq AL LD i T i)
=1

Ky
:f(q _L+1 v(L+1, k)y+( L+1 Z E L+1 v(L+1, m))
k=1

- )" ) =
2 2q
Cpar Trt v(LALk) 1\ T, K
577G L+1k(2)

(a) )=

- @F:”‘“(Qq)“zr T,

This ends the proof of (16) in the case where M = 0.

If M 1s a positive integer then defining once more y as in Lemma 2
and making use of this lemma, (8) with N = 0 and # replaced by y,
and (16) with M = 0 we get

le

f(qN+2f=1 L v(LE)HM
yE Zq L D EELGmN 4 (1 Y
=1 k=1 m=1
M M M
=M+ -0E ) = () (2—2) fly) =
m=1

(_)21 K+ M (i)N+Zz LS vk M

; i fle). 0
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The fourth lemma is just [7; Lemma 1].
Lemma 4. Assume q € (0, %) If a solution of Schilling’s problem
vanishes either on the interval (—g,0) or on the interval (0,q) then it
vanishes everywhere.
Proof of Theorem 1. Suppose f is a solution of Schilling’s problem
bounded in a neighbourhood of a point zp € cl A7. We may (and we
do) assume that xg is of the form (5), where ¢ € {—1,1}, M, L are
non-negative integers, Kq,..., Ky € {1,...,n}, and » : {I,..., L} X
x {1,...,n} — N. Moreover, according to Remark 2, we may (and we
do) assume = = 1.

If 2 € [0,1—Q) is fixed then the left-hand side of (16) is bounded
with respect to N whereas the right-hand side is bounded iff f(z) = 0.
This shows that f vanishes on [0,1—@Q). Hence and from (10) it follows
that f vanishes, in particular, on [0,4) which jointly with Lemma 4
proves that f vanishes everywhere. ¢

To formulate a corollary accept the following definition.
Definition 1. Let ¢ € (0,1) and « € [-Q,Q]. We say that « € B,
(resp. 2 € () if and only if the zero function is the only solution of
Schilling’s problem which is bounded in a neighbourhood of  (resp.
continuous at ).

We will use also the following result of W. Forg—Rob; cf. [6; The-
orems 20, 21, 23-26 and 28] and Remark 1.

If g €(0,1) and [ 15 a solution of Schilling’s problem then

supp f C {is(n)q” ;=€ {-1,0, I}N},
n=1

and for every q € (0, %] the Schilling’s problem has a nonzero solution.
Corollary 1. If g € (0, ] then

B, =0Cy = { is(n)q” . e €{-1,0, I}N}.

Proof. Obviously B, C C,, whereas the above quoted result of W.
Forg-Rob gives

C, C {ie(n)q" : e {-1,0, I}N}.

Moreover, applying Remark 1 and Th. 1 we obtain that
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Ze(n)qn . ee{-1,0,1}"} C B, ¢
n=1

Applying Lemma 3 (formula (16) with # = 0 and Remark 2) and
Remark 3 we obtain also the following result.

Theorem 2. [f n s a posttive integer and g € (0, ¢, ] then any solution
of Schilling’s problem vanishes on the set Aj.

The reader interested in further results on Schilling’s problem 1s
referred to [2] by K. Baron, A. Simon and P. Volkmann, [3] by K. Baron
and P. Volkmann, [4] by J. M. Borwein and R. Girgensohn, [5] by
G. Derfel and R. Schilling, [6] by W. Forg—Rob and [8].
Acknowledgement. This research was supported by the Silesian Uni-
versity Mathematics Department (Iterative Functional Equations pro-
gram).
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