Mathematica Pannonica
7/2 (1996), 233 — 252

SHAPE GROUPS FOR C*-
ALGEBRAS

Zvonke Cerin
41020 Zagreb, Kopermkova 7, Croatia

Received: Novenber, 1995
MSC 1991: 46 L 85, 54 C 56, 55 P 55

Keywords: C™-algebra, shape theory, #-shape theory, *-shape category, shape
equivalence, =#-shape equivalence, #-homomorphism, #°-homomorphism,=*-

homotopy, **-homotopy, fundamental *-sequence, *-shape groups.

Abstract: We shall describe in this paper shape groups for '"-algebras and

prove some of their basic properties.

1. Introduction

In the paper [5] the author has defined homotopy groups for C*-
algebras. More precisely, we have described how to associate with ev-
ery pair (A, B) of C*-algebras and every integer n > 0 pointed sets
7n(A; B) for n = 0 and groups m,(A4; B) for n > 1 which are com-
mutative for n > 2, which depend only on homotopy types of A and
B, and which have other properties similar to the properties of abso-
lute homotopy groups of spaces. We called 7,(A; B) for n > 1 the
n-th (absolute) homotopy group of B over A. The pointed set mo(A; B)
is the pointed set of all homotopy classes of x-homomorphisms from
A into B (see [5]). There is a corresponding relative theory in which
we associate to C*-algebras A and B and a C*-subalgebra B’ of B
pointed sets m,(A4; (B, B')) for n = 1 and groups =,(4; (B, B')) for
n > 2 which are commutative for n > 3, which depend only on homo-
topy types of A and (B, B'), and which have other properties similar
to properties of the relative homotopy groups of spaces. We called
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mn(A; (B, B')) for n > 2 the n-th (relative) homotopy group of B over
A modulo B,

On the other hand, in the paper [6], we have described shape theory
for arbitrary C*-algebras following the original Borsuk’s method based
on the notion of a fundamental sequence in [2] and [3]. More precisely,
we constructed the x-shape category with objects C*-algebras and with
morphisms *-homotopy classes of fundamental *-sequences. Our prime
objective was to improve homotopy theory of C*-algebras by relaxing
the requirement that one must use x-homomorphisms. Instead, we have
utilised so called **~-homomorphisms, i.e., nonexpansive functions which
satisfy conditions for *-homomorphisms only approximately. An analo-
gous approach to strong shape theory of separable C*-algebras based
on the notion of an asymptotic homomorphism was earlier considered

by A. Connes and N. Higson [7].

The goal in this paper is to study shape groups of C*-algebras
that correspond to Borsuk’s shape groups of spaces. The main results
are that these groups which we call x-shape groups are *-shape invari-
ants and that they can be put into a long weakly exact sequence. For
the above homotopy groups of C*-algebras or x-homotopy groups this
sequence 1s exact and the whole theory resembles even more results
on homotopy groups of spaces. However, in both homotopy theory
and 1t’s generalisation shape theory in the case of C*-algebras there
are no problems with base points. Moreover, we get bifunctors in-
stead of functors which 1s not surprising bearing in mind the K K-
theory [12].

The organisation of this paper is briefly as follows. The §2 ex-
plains our notation and recalls some standard conventions in our expo-
sition. In §3 we recall the definition of the *-shape category from [6].
This requires to define first **~-homomorphisms and the relation of **-
homotopy for them. Next we introduce fundamental *-sequences and
the notion of the *-homotopy for them. The most demanding is the
description of the composition of *-homotopy classes of fundamental
k-sequences.

After these preliminary sections in §§4-8 we develop basic defini-
tions and results of shape groups for C*-algebras. The §4 deals with
absolute groups while §5 1s concerned with relative groups. The bound-
ary operators and induced transformations are considered in the §§6
and 7, while the final §8 establishes weak exactness of the long shape
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groups sequence,

2. Preliminaries and notation

In this paper by a C*-algebra we mean a complete normed algebra
A over the field C of complex numbers with an involution * such that

(1) «** = «,

(2) (Az + py)* = Az* +my*,

(3) (wy)" = yra”,

(4) (lea)?ll = lle*zall,
for all @, y € A and all X\, p € C, where X is complex conjugate of A
and || ||4 denotes the norm on A. Any algebraic *-homomorphism (i.e.,

respecting the involution) between two C*-algebras is norm-decreasing
thus uniformly continuous and every x-isomorphism between two C*-
algebras is isometric. When speaking of homomorphisms between C*-
algebras we shall always assume that they are *-homomorphisms. We
recommend the books [4], [8], [10], and [11], as general references for
the theory of C*-algebras.

The symbol 04 denotes the zero element of the C*-algebra A.

For a C™*-algebra B and a compact topological space X, let
C(X; B) denote the C*-algebra of all continuous functions from X into
B. The norm || ||C(X;B) on C(X; B) is given by

fllcx; By = sup{|[f(D)lls |t € X}.

Let I denote the unit closed segment [0, 1] of real numbers. For ev-
ery t in I, there is a natural evaluation x~-homomorphisme? : C(I; B) —
— B defined by eZ(f) = f(t) for every f in C(I; B).

Our shape theory is an improvement of the x-homotopy theory
for C*-algebras which studies the equivalence relation of *-homotopy
on *-homomorphisms. Recall that *-homomorphisms f and g between
C*-algebras A and B are *-homotopic and we write f ~ , g provided
there is a *-homomorphism h : A — C(I; B) such that hg = ef o
oh = fand hy = e oh = g. The xhomomorphism h is said
to be a x-homotopy that joins f and ¢ or which realises the relation
f ~ .« g. For an efficient introduction to some aspects of *-homotopy
theory the reader should consult P. Kohn’s thesis [9], J. Rosenberg’s
excellent expository article [12], and the author’s paper [5].
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3. Description of the x-shape category

This section includes an efficient description of the x-shape cate-
gory from [6]. We recall the basic definitions and constructions neces-
sary for our main results in §§4-8.

We begin with the definition of a **-homomorphism that resem-
bles asymptotic homomorphisms from [7]. Let A and B be C*-algebras.
Let = be a positive real number. A function f : A — B is a **-
homomorphism provided

(1) f takes the zero element 04 of A into the zero element 0p of B,

(2) f is nonexpansive, i.e., the relation ||f(x) — f(y)|lz < ||z —y||a
holds for all #, y € A, and

3) |1/ (e + ) — £() — F)lls < =(lella + [lylla) for all 2, y € A

4) ||f(ba) —bf(z)||p < 2||||a for each & € A and each b € C.

)
)
5) || (zy) = f(2)f(y)llp <ellz]|allyl[a for all 2, y € A.
6) ||f(x*) — f(x)*||B < ¢||#||4 for each x € A.

Observe that a **-homomorphism is a uniformly continuous func-
tion. Moreover, for every real number  between 0 and 1 and every
C*-algebra A the function f from A into itself which takes an 2 € A
into the product of £ and # 1s an example of a **-homomorphism which
i1s not a *-homomorphism.

Another basic notion is that of the x*-homotopy for nonexpansive
functions of C*-algebras. Let ¢ > 0. Nonexpansive functions f and g

e, p—

between C*-algebras A and B are **-homotopic and we write ~, g
provided there is an **-homomorphism b : 4 — C(I; B) with hg = eflo
oh=fand hy = efo =g. We shall also say that k is a **-homotopy

which joins f and g or that it realises the relation or **-homotopy
g

~: 9.

We can now introduce fundamental *-sequences and define the re-
lation of *-homotopy for them. These definitions correspond to Borsuk’s
definitions in [2] and [3] of a fundamental sequence and a homotopy for
fundamental sequences. Let A and B be C*-algebras. A family ¢ =
= {fi}:2, of nonexpansive functions f; : A — B is a fundamental
x-sequence from A into B provided for every £ > 0 there is an ¢ € N
such that f; ~, fi for every j > 1.

We use functional notation ¢ : A — B to indicate that ¢ 1s a funda-
mental x-sequence from A into B. Let Fi(A, B) denote all fundamental
w-gsequences ¢ : X — Y. Two families ¢ = {f;}72, and ¢ = {g:}72,
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of nonexpansive functions f;, g; : A — B are *-homotopic and we write

¢ ~ 4 9 provided for every £ > 0 there is an ¢ € IV such that f; <, 9;
for every 7 > 1.

The relation of *-homotopy 1s an equivalence relation on the set
F.(A, B). The x-homotopy class of a fundamental *-sequence ¢ is
denoted by [¢]« and the set of all x-homotopy classes by Sh.(A, B).

In order to organise C*-algebras and x-homotopy classes of fun-
damental *-sequences into a *-shape category Sh,., we must define a
composition for *-homotopy classes of fundamental *-sequences and es-
tablish it’s associativity. The definition of the composition is the only
tricky part in setting up the category Sh.. Our idea is to associate
to every fundamental *-sequence ¢ : A — B two increasing functions
¢ : N = Nand f: N — N. The first function associates to an index
i € N of the sequence ¢ = {f;} a much larger index ¢(¢) in N such
that f; and fr are joined by a «2/_homotopy whenever j, k > (7).
The second function associates to an ¢ € IV an element f(¢) of N such
that the reciprocal value 1/f(i) of f(¢) is sufficiently small. This is
a rough description of these functions and now we proceed with the
details.

Let us agree that an increasing function f : P — P of a par-

tially ordered set (P, <) into itself is a function which satisfies # <
< f(x) for every # € P and # < y in P implies f(x) < f(y). In the
case when the domain and the codomain of a function f are different,
the first requirement 1s dropped. When defining increasing functions
that connect indexing sets we shall repeatedly use the following simple
lemma.
Lemma 3.1. Let {f1,..., fn} be functions from a cofinite directed set
(M, <) into a directed set (L, <). Then there is an increasing function
g: M — L such that g(x) > fi(@),..., fo(x) for every @ € M.

For a positive real number ¢ and a natural number n, let

e = {ieN|i>n/e}.
The sets ¢} and {2} are denoted by * and **, respectively.

Let ¢ = {fi} : A —» B be a fundamental x-sequence between

C*-algebras. Let ¢ : N = N be an increasing function such that for

every ¢ € N the relation j, k > ¢(¢) implies the relation f; gl* I
The multiple use of notation here can not lead to confusion provided
one keeps in mind that fundamental *-sequences act only between C*-
algebras and that they can not be evaluated in an index (which is a
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natural number).

Let £.{(¢, j, k)| i, j, k €N, j, k > ¢(i)}. Then £, is a subset
of N x N x N that becomes a cofinite directed set when we define that
(i, j, k) > (m, n, p) ifand only if t > m, j > n, and k > p.

We shall use the same notation ¢ for an increasing function ¢ :
: L, = N such that ¢(4, j, k) > (i) whenever (i, j, k) € L.

It was observed [6, Claim (5.1)] that there is an increasing function

f: I — N such that

(1) f(i) = @li, @(i), ©(i)) for every i €N, and
(2) f iscofinal in ¢, L.e., for every (i, j, k) € L, there isan m € N
with f(m) > ¢(7, J, k).

The above discussion shows that every fundamental x-sequence
¢ : A — B determines two increasing functions ¢ : N — N and f: N —
— N. With the help of these functions we shall define the composition
of *-homotopy classes of fundamental *-sequences as follows. Let ¢ =
= {fitiewn : A = B and v = {gi}iewy : B — C be fundamental
x-gsequences. Let ¥ o ¢ denote the collection x = {h;}ier, where we
define h; = gy(iy © fo(q(iy) for every © € N. Observe that each h; is a
nonexpansive function because it is the composition of two nonexpansive
functions. Since the collection ¥ o ¢ is a fundamental *-sequence from
A into C, we can now define an assoctative composition of x-homotopy
classes of fundamental *-sequences by the rule [¢]s o [¢]s = [¥ o ¢].
(see [6, Claims (5.2), (5.3) and (5.4)]).

Finally, it remains to observe that for every fundamental x-se-
quence ¢ : A = B, the following relations hold.

[ele o [H]s = [e]s = [Fle o [els,
where for a C*-algebra A, we let :* = {I;} : A — A be the identity
fundamental *-sequence defined by I; = 1d4 for every : € N.

We can summarise the above with the following main theorem

from [6].
Theorem 3.2. The C*-algebras as objects together with the x-homo-
topy classes of fundamental x-sequences as morphisms, the x-homotopy
classes [11]s as identity morphisms, and the above composition of *-
homotopy classes form the x-shape category Shy.

4. Absolute x-shape groups

In this section we shall introduce absolute *-shape groups which
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correspond 1n *-shape theory to absolute *-homotopy groups considered
in [5].

Let A and B be C*-algebras. Let n > 0 be an integer. Let F.S™ =
= FS™(A; B) denote the set of all fundamental *-sequences from A
into the C*-algebra Cs(I™; B) of all continuous functions from the n-
dimensional cube /™ into B which map the boundary dI" of I™ into
the zero element 0g of the algebra B. These fundamental *-sequences
are divided into *-homotopy classes. We shall denote by g,(A4; B) the
totality of these x-homotopy classes. We shall also denote by [¢]. the
x-homotopy class which contains the fundamental *-sequence ¢ and by 0
the *x-homotopy class which contains the trivial fundamental *-sequence
¢:A— Cs(I™; B).

We may define an addition (usually non-commutative) in F'S" as
follows. For any two fundamental *-sequences ¢ and % in £'S™, their

sum ¢ + ¢ is the fundamental *-sequence y = {h;}{2, from A into

C's(I™; B) defined by
Jila)(2ty, to, ... 1), 0 <t <3
gila)(2ty — 1, ta, ..., tp), = <ty <1,

o = { >
2
for every a € A, every point ¢t = (f1, ..., t,) in I, and every 7 € I,

Our first claim shows that y is indeed a fundamental x-sequence.
Claim 4.1. The collection x 15 a fundamental x-sequence from A into
Cs(I™; B).

Proof. We must see (1) that each function k; is nonexpansive and (2)
that for every ¢ > 0 there is an ¢ € IN such that A; ~, h; for every 7 > 1.

Add (1). Since functions f; and g; are nonexpansive, it is easy to
see that the function h; will have the same property.

Add (2). Since ¢ and ¢ are fundamental *-sequences, there is an
¢ € N such that f; ~, Ji and g; ~, gi for every j > i. Let m?' nd* : A —
— C(I; Cs(I™; B)) and be **-homotopies which realize these relations.

Define k' : A — C(I; Cs(I™; B)) by the rule

kji( )( )(t) { mji(a)(S)(Qtl, tg,...,tn), 0 <t < %,
a)(s = g
n?*(a)(s)(2t1 — 1, ta, ..., tn), % <t €1,
for every a € A, every s € I, and every point ¢t = (¢1, ..., t,) in ™.

Then /' is a **-homotopy joining h; and h;. ¢

In the following claim we shall prove that the operation of sum can
be consistently introduces for *-homotopy classes of members of F'.5".
Claim 4.2. Let o, 0, x,k € FS™. If p ~, x and ¥ ~, &, then
e+ Y~ ¥+ K.
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Proof. Let 7 = ¢ + ¢ and o = x + &, where # = {p;} and o = {r;}. In
order to show that m and ¢ are x-homotopic, we must see that for every
€ > 0 there 1s an ¢ € I with p; ~, r; for every 7 > i. Let an ¢ > 0 be
given. Since ¢ ~, x and 9 ~ , &, there is an ¢ € N such that f; ~, h;
and g; <, k; for every j > 1. Let these last two =*-homotopies be
realized by #*-homomorphisms u’ and v’ from A into C(I; Co(I™; B)),
respectively. Define a function m’ : A — C(I; Ca(I™; B)) by

i (a)(s)(8) { w (a)(8)(2t1, 12, ..., "), 0<t <1,
m? (a)(s = )
V(a)(8)(2t — 1ty tn), 5 <t <1,
for every a € A, every s € I, and every point ¢t = (¢1, ..., {,) in ™.

Then m' is a **-homotopy joining p; and ;. ¢

Now we can define a binary operation of addition on the set
on(A; B) by the rule [¢le + [¢]s = [0 + ¢
Claim 4.3. The operation of addition of x-homotopy classes of funda-
mental *-sequences 1s associative.
Proof. Let ¢, ¢, x € FS". Let =+, o=+, a =1¢¥ + x, and
8 = ¢+ 0. We must prove that p and 3 are *-homotopic fundamental
x-sequences. In other words, that for every € > 0 there is an 7 € N with
rj <, b; for every j > ¢. Let an ¢ > 0 be given. Since ¢, ¢, and x are
fundamental x-sequences, there is an ¢ € I such that functions f;, g;,
and h; are x*-homomorphisms for every 7 > 1. Let j > . Define the

function &’ : A — C(I; C5(I™; B)) by the rule

fi(a) (f—jrll_ tg,...,tn), 0<t <
d(a)(5)(t) = gijla)(4ty —s— 1, ta, ... ts), sl <y < 2
hj(a)(‘l—flz—_QT—S, tg,...,tn), =2 <y <,
for every a € A, every s € I, and every point ¢t = (¢1, ..., ) in ™.

Then & is a **-homotopy joining r; and b;. ¢

Claim 4.4. The x-homotopy class [(] of the trivial fundamental
x-sequence ¢ from A into Cs(I"; B) is an identity for the addition
operation,

Proof. Let ¢ € FIS”. We must show that [¢]«+[(]« = [¢]s = [¢]x +[#]+-
Let v = ¢o+(. The left hand side equality of the above extended equality
will follow provided we show that the fundamental *-sequences ¥ and ¢
are =-homotopic. Let ¢ > 0. Since ¢ 1s a fundamental *-sequence, there
is an ¢ € N such that f; 1s a **-homomorphism for every j > ¢. For such

an index j, define a function 9 : A — C(I; C5(I"; B)) by the rule
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W (@) () (1) = Fila)(Zh ta, . tn), 0<t < 5
zj(a)(t), H$<n <,

for every a € A, every s € I, and every point ¢t = (¢1,...,%,) in 7,

where { = {z;} and z; is the trivial *-homomorphism from A into

Cs(I™; B). Then R is a **-homotopy joining g; and f;. The argu-

ment for the other equality is similar. {

Claim 4.5. With respect to the addition every element has an inverse,

i.e., for every ¢ = F.S™ there is a ¢ = F.S™ such that [p]« + [¢]+ = [{]«

= [Y]s + @]
Proof. For every i € N, define a function g; : A — Cs(I™; B) by the

rule
gi(a)(t) = fila)(L —t1, ta,..., ta),

for every a € A and every point ¢ = (¢1,...,¢,) in [™. The collection
¥ = {gi} is a fundamental *-sequence from A into Cs("; B). Let x =
= ¢ + ¥. We must show that the fundamental x-sequences y and { are
*-homotopic. Let ¢ > 0. Since ¢ 1s a fundamental *-sequence, there 1s
an ¢ € IN such that f; is a *x*-homomorphism for every j > i. For all
such indices j the function

Zj(a)(t)a 0 S tl S %’
kj(a)(s)(t) _ fila)(2ty — s, to, ... 1), $<t < %’

fj(a)(2—2t1—57 tz,...,tn), %Stlg 1;57

Zj(a)(t)7 155 < tl S 1

1s a **-homotopy jolning h; and z;. The argument for the other equality
is analogous. §

The group g, (A; B) will be called the n-th x-shape group of (A, B)
or the n-th (absolute) *-shape group of B over A. For n = 1, we call
01(A; B) the *-fundamental group of the pair (A, B). Just as in the
ordinary homotopy theory, for n > 1, these groups are abelian.
Theorem 4.6. For n > 1, the group p,(A; B) is commutative.
Proof. Let ¢, ¥ € F'S™. We must show that = ~ , o, where 7 = ¢ +

+ 1 and p = ¥ + ¢. For a given £ > 0, select an ¢ € N such that
f; and g; are **-homomorphisms for every f > i. Let j > 7. Define

*®-homomorphisms B, ki, miA— C(I; Cs(1"; B)) by the rules
h'{a)(s)(t) =
Fila)(2ty, (14 s)ta, tay.. ., in), 0<t <
=9 gi(a)(2t1 — 1, (L +s)ta — &, tay.vy tn), =<t <
zj(a)

(a)(t), otherwise,
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f](a)(Qtlv 2t5, ta,. .y in )a % <t < %7 0<i2 < %7
= gila)(2ti+s—1, 2t — 1, ta,..., tn), S2<t <222 Lt <,
z5(a)(t), otherwise,
m? (a)(s)(t) =
fj(a')(Qtl_la (Q_S)tzat?n---atn)a %St <1, 0<t < gisa
= gila)(2t1, (2= s}tz —t, ta,.., tn), 01 <5, =2 <t <,
z;(a)(), otherwise,
for every a € A, every s € I, and every point ¢t = ({1, ..., ) in ™.

Observe that k) = p;, b] = k), k] = m, and m{ = ¢;. Hence, = and g
are *-homotopic. ¢

If the boundary 81" of I™ is identified to a point, we get a quotient
space which 1s topologically equivalent to an n-sphere 5™ with a given
basic point sp in S™. It follows that one might equally well define an
element of p,(A; B) as a *-homotopy class of a fundamental *-sequence
of A into the C*-algebra C,, (5™; B) of all continuous functions from S”
into B which map the point sy into the zero element 0g of B. Since the
two halves of I", defined by the conditions t; < % and t; > % respec-
tively, correspond to two hemispheres of S™, it is clear how to define
group operation of g, (A; B) from this point of view. Since, when n > 1,
there exists a rotation of 5" which leaves sg fixed and interchanges the
two hemispheres, we get an alternative proof of Th. (4.6).

As a consequence of the following result, 1t follows that every
x-shape group of a pair (A, B) of C*-algebras can be expressed as the
*-fundamental group of some other pair.

Theorem 4.7. Let p be any positive integer less than n and let ¢ = n—
—p. Then the groups p,(A; B) and 0,(A; Cs(1?; B)) are isomorphic.
Proof. Let ¢ € FS". For every 1 € N define a function g; : A —
— C(I?; Cs(1%; B)) by the formula

gila)(s1, ..., 8p)t1, ..o, ty) = fila)(s1, -y 8p, L1y ooy Lg),
for every a € A, every point (s1,...,s,) in P, and every point (t1,...
.y tg) in 19,

One can easily show that ¥ = {g;} is a fundamental x-sequence
from A into Cs(I?; C5(1%; B)) and that the function £ defined by &(¢) =
= ¢ is a bijection between F'S™ and F'S?(A; Cs([%; B)) which respects
addition and *-homotopy relation and thus induces the required isomor-
phism. ¢
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5. Relative x-shape groups

The objective of the present section is to generalise the notion of
«-shape groups by defining the relative *-shape groups 0,(A; (B, B'))
for C*-algebras A and B and a C*-subalgebra B’ of B.

Let » > 0 be an integer and define the n-th relative x-shape set
on(A; (B, B")) as follows. Consider again the n-cube /™. The initial
(n—1)-face of I™ defined by ¢, = 0 will be denoted by J,, and identified
with I"~! hereafter. The union of all remaining (n — 1)-faces of I" is
denoted by A,,. Then we have

A" =J,UK,, and 3" l'=7J,nK,.

When n = 1, we drop 1 from our notation and talk about [ = [0, 1]
and two of its subsets J = {0} and K = {1}. Let Cx_(I", Jo; B, B')
denote the C*-algebra of all continuous functions from /" into B which
take points of J, into B’ and all of K,, to the zero element 0p of
B. We denote by F.S" = FS™(A; (B, B')) the set of all fundamental
x-sequences from A into Ck (I™, J,; B, B'). These fundamental x-
sequences are divided into x-homotopy classes. We shall denote by
on(A; (B, B")) the totality of these *-homotopy classes. We shall also
denote by [¢]« the *-homotopy class which contains the fundamental
x-sequence ¢ and by 0 the *-homotopy class which contains the trivial
fundamental *-sequence ¢ from A into Ck (", J.; B, B').

If n > 2, we may define an addition (possibly non-commutative) in
FS™. For any two fundamental *-sequences ¢ and ¢ in F'.S”, their sum
@+ € FS™ 1s defined by the formula given in §4 for the absolute case.
The *-homotopy class [¢ + ¥]« depends only on the x-homotopy classes
[¢]« and [¢]. and hence we may define an addition in ,(4; (B, B'))
by taking [¢]« + [¥]« = [¢ + ¢]«. As in the §4, one can verify that this
addition makes g,(A4; (B, B')) for n > 1 into a group which will be
called the n-th relative x-shape group of (A, B) modulo B'. The class 0
is the group-theoretic neutral element of g,,(A; (B, B’)), and the inverse
element of [¢]« is the x-homotopy class [¢]«, where the i-th function g;
of the fundamental *-sequence ¢ : A — Ck (I", J,; B, B') is defined
by

g@'(a)(tl, tg, ey tn) = fz(a)(l - tl, tg, ceey tn),
for every a € A and every (¢1,..., t,) € I".

It B’ is a trivial C*-subalgebra of B consisting only of the zero

element Op, then we have
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FS™(A; (B, B")) = FS"(4; B).
Hence, in this case, g,(A; (B, B')) reduces to the absolute *-shape
group o (A; B) defined in §4.

If I{;, is pinched to a point sg, then (I, .J,,, K,,) becomes a configu-
ration topologically equivalent to the triplet (D™, S*~1, 55} consisting of
the unit disc D™, its boundary (n—1)-sphere S”~!, and a reference point
sp € S~ Tt follows that one might equally well define an element of
on(A; (B, B')) as a x-homotopy class of fundamental *-sequences from
A into the C*-algebra C, (D", S"~1; B, B') of all continuous functions
from D" into B which take points of S~ to B’ and sy to 0g. Since,
when n > 3, there exists a rotation of )" which leaves s fixed and in-
terchanges the two halves of D™, we see that g,(A4; (B, B’)) is abelian
for every n > 3. This commutativity property can be also proved by a
method similar to the proof of Th. (4.7).

Let us call the C*-algebra B = Ck (I, J; B, B') the derived C*-
algebra of the pair (B, B').

Proposition 5.1. For every n > 0, the groups o,(A; (B, B')) and
on—1(A; B") are 1isomorphic.

Proof. Let ¢: A = Cg _(I", J,; B, B') be a fundamental *-sequence.
Define a fundamental x-sequence ¥ = £(¢) from A into Ca(I™1;
Ck(l, J; B, B")), where ¢ = {g;} and the function g; is given by the

rule

gila)(s1, ..., sp1)(t) = fila)(s1, -, 801, 1),
for every a € A, every point (81, ..., 8,-1) in I"1, and every point
t in /. The transformation ¢ has properties that £(¢ + ¢¥) = &(¢) +
+ &(¥) and ¢ ~, ¢ implies £ ~ . (p)(¥). Hence, ¢ induces the re-
quired 1somorphism because 1t has an inverse # defined by the formula
6(v) = ¢, where ¢ = {g;} is a fundamental *-sequence from A into
Co(I"1; Cx (I, J; B, B")), ¢ = {f;} is a fundamental #-sequence from
A into Ck, (I", Jyu; B, B'), and for each i € N the function f; is given
by

fila)(s1, ..., sn) =gila)(s1, ..., sn_1)(sn),

for every a € A and every point (s1, ..., 8,) in [". {

On the other hand, let B denote the C*-algebra Cs(/; B) of all
continuous functions of the unit segment I into the C*-algebra B which
take ends of [ into the zero element of B. Let us call the C*-algebra
pair (B, B') the derived C*-algebra pair of the pair (B, B').
Proposition 5.2. For every integer n > 2, the x-shape groups pn(A;
(B, B")) and g,—1(A; (B, B')) are isomorphic.
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Proof. Let ¢: A = Ck (", J,; B, B') be a fundamental *-sequence.
Define a fundamental x-sequence ¥» = £(¢) from A into Cy _, (I"71,
Jn—1; B, B') by the rule v = {g;}, where for every ¢ € N the function
gi 1s given by
gi(a)(s1, ...y sn—1)(t) = fila)(s1, t, s, ..., 8n—1),
for every a € A, every point (81, ..., 8,_1) in I"7! and every point
t in /. The transformation ¢ has properties that &(¢ + ¢) = &(¢) +
+ &(¥) and ¢ ~, ¥ implies £(¢) ~ . £(v). Hence, £ induces the
required isomorphism because 1t has an inverse # defined by the formula
0(v) = ¢, where ¥ = {g;} is a fundamental x-sequence from A into
Ck,_(I"7Y, J,_1; B, B"), ¢ = {fi} is a fundamental x-sequence from
Ainto Cg (I", Jn; B, B'), and for each i € N the function f; is given
by
fila)(s1, ..., 8n) = gi(a)(s1, 83, ..., 85)(82),
for every a € A, and every point (s1, ..., 8,) In [". &
The following result will be needed later in the §8.
Proposition 5.3. If an element o of p,(A; (B, B')) is represented
by a fundamental *-sequence ¢ = {f;} € FS"(A; (B, B')) such that
fila)(ty, ..., tn) € B’ for every i € N, every a € A, and every (t1, ...
ooy tpy) €I, then o = 0.
Proof. It suffices to show that the fundamental x-sequence ¢ 1s *-
homotopic to the trivial fundamental #-sequence { = {z;}, i.e., that
for every € > 0 there is an ¢ € N such that 7 > ¢ implies the existence
of a **-homomorphism h : A — C(I; Cx (I", J,; B, B')) with hg =
= f; and hy = z;. Let an ¢ > 0 be given. Since ¢ is a fundamental
x-gsequence, there i1s an ¢ € IN such that f; 1s a **-homomorphism for
every 7 > i. For such indices we can define the required function & by
the formula
h(a)(s)(t1,..., tn) = fi(a)(tr, ..., tho1, s + 1, — sty)
forac A, sel,and (t1,...,t,) €17 ¢

6. The boundary operator

Let A and B be C*-algebras and let B’ be a C*-subalgebra of B.
For every n > 0, we shall define a transformation
I+ ons1(A; (B, B,)) — on (4 B’)'
Let £ be any element of p,11(A; (B, B')). By definition, £ is in fact
a x-homotopy class represented by a fundamental *-sequence ¢ : A —
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— Cg,.(I", J,; B, B'). Define a fundamental *-sequence ¢ : A —
— Cs(I™; B') by the formula % : {ff”}, where the functions ff" are
given by

Pr(a)(te, ... te) = fila)(ty, ..., tn, 0),
for every a € A and every (¢1,..., t,) € I". Let
On (&) = On([¢]s) = [9n]s.
It could be proved easily that this definition 1s correct, 1.e., that 1t 1s
independent from the choice of the fundamental x-sequence ¢ above.
Hereafter, 8, will be called the boundary operator.

The following two properties of 3, are obvious from the definition.
Proposition 6.1. The boundary operator 8, sends the neutral element
of the set pn11(A; (B, B')) into that of p,(A; B').

Proposition 6.2. If n > 0, then the boundary operator 8,, s a homo-
morphism.

7. Induced transformations

In this section we shall show that p,, 1s a bifunctor from the product
category Shy’ x Sh? into the category of pointed sets Sy (n = 0) and
into the category of groups G (r > 1), where Sh¥ is the opposite
category of the x-shape category Shy of C*-algebras while §h? is the
*-shape category of C*-algebra pairs consisting of a C*-algebra and its
C*-subalgebra. The morphisms in the category Sh? between objects
(A, A") and (B, B') are *-homotopy classes rel(A’, B') of fundamental
x-gsequences ¢ : (A, A') — (B, B'). Here we require that ¢ = {f:},
where each f; : A — B is a nonexpansive function which takes 04 into
0 and A’ into B’ and for every = > 0 there is an ¢ € IN such that
I ~, fi rel(A’, B') whenever j > ¢. This last relation means that there
is a **-homomorphism £ : A = C(I; B) such that h(A") C C(I; B),
ho = fj: and h1 = fi-

Let A and B be C*-algebras and let (C, C') and (D, D') be C*-
algebra pairs. Let ¢ : B = A and ¢ : (C, C") = (D, D') be fun-
damental *-sequences. The pair a = ([¢]«, [¢]«) 1s a morphism from
(A, (C, C") into (B, (D, D')) in the category Shiy¥ x ShZ. For every
fundamental *-sequence x : A — Cg, (I™, J,; C, C"), we can define a
fundamental *-sequence x : B — Cyx_(I", J,; D, D') by the formula
K 1Z o x o ¢, where qz = {gi} and the function
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gi : OKn(In, Jn; O, O,) — CKn(In, Iy D, D’)

is defined by the formula g;(A)(t) = g;(A(?)), for every A € Ck (I, Ju;
C', (") and every ¢ € I". One can show that ¢ is indeed a fundamental
x-sequence so that the above definition 1s correct. Moreover, the x-
homotopy class of ¥ depends only on the x-homotopy class of v. Let
us write kK = ay(p, ¥)(x). One can show that ¢ >~ . ¢a, 1 >~ Yo,
and x1 =~ , x2 implies k1 =~ , Ko, where k1 = (@1, ¥1)(x1) and ke =
= ay(p2, ¥2)(xe2) for fundamental *-sequences @1, o : B — A, ¥, ¢s:
(C, ¢y = (D, DY), and 1, x2: A = Ck, (I, Ju; C, C"). Moreover,
the functions ay(¢, ) send the trivial fundamental *-sequence into the
trivial fundamental *-sequence and they respect addition, 1.e.,

as(@, ¥)(x1 + x2) = ag(e, ¥)(x1) + s (e, ¥)(x2),

so that these functions induce morphisms a,, of pointed sets when n =
=0, " ={0¢}, and I = {0p} and when n = 1 and either C' # {0¢}
or D' # {0p} while they induce the homomorphism a.,, of groups when
n =1 C"={0¢}, and D' = {Op} and when n > 1. Thus we have
established the following two properties of ay,.
Proposition 7.1. Ifn =0, ¢' = {0¢}, and D' = {0p}, or if n >
> 0, then the induced transformation o., sends the neutral element of
0 (A5 (C, C)) into that of o,(B; (D, D)
Proposition 7.2. /fn=1,C" ={0c¢}, and D' ={0p}, or if n > 1,
then the induced transformation oy, s a homomorphism.

In the case of (7.2) we shall call ., the induced homomorphism.
Proposition 7.3. The induced transformation has the following func-
torial properties:

(1) It sends the neutral element of p,(A; (C, C")) into that of
en(B; (D, D)),

(2) (lides, [idie, onle)s = idg, (4; (C, C7)),

(3) (Yop)s = Yuops for morphisms ¢ : (A, (C, C"))—=(B, (D, D))
and ¥ : (B, (D, D'))=(E, (G, G')) in the category Shi¥ x Sh?.

Proof. The relations (1) and (2) are obvious, while the relation (3) is an
immediate consequence of associativity of composition of *-homotopy
classes of fundamental *-sequences and the fact that the transformation
Y Hisatisﬁesm:i}ogz. ¢

The Prop. (7.3) has the following consequence.
Corollary 7.4. Letn > 1. If C*-algebras A and B are *-shape equiva-
lent and of C*-algebra pairs (C,C") and (D, D'} are *-shape equivalent,
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then the groups p,(A; (C, C")) and 0,(B; (D, D)) are i1somorphic. The
x-shape groups are tnvartants of x-shape type. The x-shape equivalences
induce isomorphisms of x-shape groups.

Proposition 7.5. For every morphism ¢ : (A, (C,C")) — (B, (D, D'))
of the category Shy¥ x 8h? and every n > 0 the following rectangle
commautes.

ous1(4; (C, C)) —22 g, (4; )

7~:l)>|<n-|-1J/ J/w»‘n

Qn+1(B§ (D; D’)) T> Qn(A; D,)

8. The weak exactness property

The main result of this section i1s that x-shape groups of C*-
algebras can be put into a long weakly exact sequence.

Let A and B be C*-algebras, and let B’ be a C*-subalgebra of B.
Let j and ¢ denote the inclusions of C*-algebra pairs (B, {0p}) and
(B', {0p}) into C*-algebra pairs (B, B') and (B, {0p}), respectively.
Let n and : denote simple fundamental *-sequences generated by *-
homomorphisms j and 4. The pairs ([¢4],[n]s) and ([¢4]s, [t]«) are
denoted also as j and ¢ and are morphisms of the category Sh¥ x Sh2.
Hence, for every n > 0 the morphism ; induces the transformation j., :
: on(A; B) = on(A; (B, B')), while for every n > 0 the morphism ¢
induces the transformation tsp : 0,(4; B') = 0,(A; B). Together with
the boundary operators @,,, they form an endless sequence

oo(A; B) &2 po(A; B') &2 i (A; (B, B')) &+

— o1(A; B) &2 g (4; B) &
which will be called the x-shape groups sequence of the pair (A, (B, B'))
and will be denoted by o(A; B, B').

Every set in o(A; B, B') has a specified element called its neutral
element and every transformation in p(A; B, B') carries the neutral
element into the neutral element. The kernel of a transformation in
o(4; B, B') is defined to be the inverse image of the neutral element.
Such a sequence 1s exact if the kernel of each transformation coincides
exactly with the image of the preceding transformation. It is highly
unlikely that =-shape groups sequence is exact because the long shape
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groups sequence 1s not exact. However, we shall now prove that it has
the weaker property called weak exactness.

The main purpose of this section is to prove the following theorem.
In the statements below, the symbol 0 denotes either the neutral element
of the set involved or the transformation which sends every element into
the neutral element.
Theorem 8.1. The =-shape groups sequence p(A, B, B') of a pair
(A, (B, B')) has the following properties.
( ) Jen O lxn = 0,
(2) Oy 0 Jant1 =0,
(3) ten 08y =0, and
(4)

—t

4) The =-shape groups sequence is weakly exact, 1.e., if p,(A; B) =
= 0 for all n > 0, then 3, sends gn,41(A; (B, B')) onto

on(A; B') in a one-to-one fashion for every n > 0.

Proof. (1): Let o = pn(A; B’) and choose a fundamental *-sequence
w: A — Cs(I™; B') which represents a. Then the element (Jun, 07.p ) (@)

in p,(A; (B, B')) is represented by the composition ¢ = zé‘ ) ig, o,

where )
ig : Co(I", B) > Cg,(I"; J; B, B')
1s the inclusion *-homomorphism and
ig, : Cs(I™; B') — Cs(I™; B)
is a *-homomorphism induced by the inclusion ¢£, : B’ — B by the rule

() = 8, (h(1)),

for every h € Cs(I™; B') and every t € I". Since obviously gi(a)(¢) €
€ B’ for every i € I, every a € A, and every t € [", it follows from
Prop. (5.3) that ji«n 0 Zun(a) = 0. Since a is arbitrary, this implies
j*n 0 iyy = 0.

(2): Let o be an element of g,41(A; B) and choose a fundamen-
tal x-sequence ¢ : A — Cs(I™T!; B) which represents the element a.
Then the element (3, © jiny1)(a) in g,(A; B') is represented by the
fundamental *-sequence ¢ : A — Cs(I™; B’), where v = {g;} and g; is

(ig"ogg)?”, Now, for every i € N, every a € A, and every ¢ = ({1, ..., t,)
in [, we have
D) = 0 © Lo Ja)(s, o 1 0) =
=i5 (foiy(@)(t1, .., ta, 0) = 0p,

because (t1, ..., t,, 0) is a point of I"T1. Hence, g;(a) is a zero ele-
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ment of Cs(I™; B’) for every a € A so that g; is a trivial function. It
follows that the element 8, ¢ j., 41 () is equal to 0. Hence, 8, 0 jupy1 =
= 0.

(3): Let a € pny1(A; (B, B')) and choose a fundamental *-se-
quence ¢ from A into Cx ., (I"', Jy41; B, B') which represents o
Then the element (4, o J,)(a) in p,(A; B') is represented by the fun-

damental #-sequence ¥ : A — Cs(I"; B), where ¢ is i3, o %, We
claim that v 1s *-homotopic to the trivial fundamental *-sequence { =
= {z;} from A into Cs(I™; B). Indeed, let an ¢ > 0 be given. Since
¢ 1s a fundamental *-sequence, there is an ¢ € N such that f; is an
*°-homomorphism for every j > . For each such index j we can define

a function h? : A — C(I; Co(I™; B)) by the rule
hj(a)(s)(tl, o ty) = Fila)t, ., b, 8),

for every a € A, every point (¢1, ..., t,) of I, and every s € [. It could
be easily checked that A/ is a #°-homotopy which joins the function g;
with the trivial *-homomorphism. We obtain that the element i,,08, («)
1s equal to 0. Hence, i,, 0 9, = 0.

(4): In order to show that 3, is onto, let a € p,(A; B’) and choose
a fundamental x-sequence ¢ € 'S™(A; B') which represents a. Let ¢y =
= 10y, where ¢ denotes the simple fundamental x-sequence generated by
the *-homomorphism i&, : C5(I™; B') — Cs(I™; B) defined by zB,()\) =
=iB,(A(t)) for every A € C(I"; B’) and every t € I" from the inclusion
8, of B" into B. Then ¢ € FS"(A; B) so that ¢ is x-homotopic to the
trivial fundamental x-sequence. Hence, by [6, Prop. (4.3)], there is a
fundamental *-sequence x = {h;}ieny from A into C(/; CB(I” B)) and
an increasing function \ : N — N such that ki = ga(i) and Bl = z(i) for
every ¢ € N. For every natural number ¢ we can now define a function

kz-OA I+7Jn+1’B’B)by

ki(a)(te, ooy tag1) = hila)(tnta )(tn, o) ),

for every a € A and every point (t, ..., tp41) in I*T1. The family
k& = {k;} is a fundamental *-sequence such that % is x-homotopic to
¢. Hence, o = 8,(8) for 7 = [r]s.

Finally, it remains to check that 9, 1s one-to-one. Assume that

n+1 (

a and 3 from the group g,41(A4; (B, B')) are *-homotopy classes such
that 8,(a) = 8,(53). Let fundamental x-sequences ¢ and ¥ from A into
len+1(f tl Ja11; B, B') be representatives of a and 3, respectively.
For every i € N define functions
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ci,di+ A— Ca(I"; B')

by
cila)(tr, ..., tn) = fila)(ts, ..., ty, 0)
and
di(a)(t1, ..., tn) = gila)(tr, ..., tn, 0),
for every a € A and every point (t1, ..., ¢,) of I". Since ¢ and ¥

are fundamental *-sequences, one can show that the families v = {¢;}
and § = {d;} are also fundamental *-sequences. By assumption v and
4 are *-homotopic. It follows that there is an increasing function # :
: N — N and a fundamental *-sequence y = {h;}ieny from A into
C(I; Co(I™; B")) such that kY = cr(i) and Rl = dr(qy for every « € IN.
Let W = 1" x {0} x I, Sy =1"xIx {0}, So =8"x1xI,
Sz = 1" x I x {1}, and let V' denote the union W U S; U.Ss U Ss. Let
q: 1" x I X[ =V be a retraction. For each 7 € I, define a function
{;: A— C(I™*?; B) by the rule
(

Ri(a)(s)(z1,y o vy Tn), if q(t)=(z1,...,2n,0,s5) € W,
2ia)(t) = fw(i)(a)(yla'--:ym s)y it q(t)=(y1, .-, Yn, 5, 0) € Sy,
l ] s, it q(t) € 52,

(i) (a)(z1y .-y 2ny 8}, i qt) = (21, ...,20, 5, 1) € S,

for every a € A and every point ¢t € ["12. The collection A = {{;} is
a fundamental *-sequence from A into Cs(I™*%; B). For every i € N
define a function
m; 1 A — Co(I™t; B)
by the rule
mi(a)(t) = Gla)(tr, -0y tay 1, togr),

for every @ € A and every t = (t1, ..., tho41) € I"T1. The collection
i = {m;}ien is a fundamental *-sequence from A into Cs(I"T!: B).
Since pn4+1(A; B) = 0, the fundamental *-sequence u is *-homotopic
to the trivial fundamental x-sequence. Hence, there is an increasing
function w : N — N and a fundamental x-sequence v = {n'};cy from A
into C([1, 2]; Co(I"*'; B)) with n} = My (i) and nh, = z,() for every
t € M.

Let P =0, 2] x [0, 1] be the product of closed segments [0, 2] and
I =[0,1]. Let r: I? - P be a map which extends a homeomorphism
of the boundary of I? onto the boundary of P such that (0, t) = (0, t),
r(s, 0) = (s, 0), and r(s, 1) = (s, 1), for all 5, ¢ € I. Let ri(s, ¢) and
ro(s, t) denote the first and the second coordinate of the point r(s, ¢)
for every (s, t) € I
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For every ¢ € N define a function &' : A—C(I; Ck
B, B')) by the rule
ka)(s)(t) =
_ { Zu(i)(a)(tl,...,tn, r1(tnt1,8)y r2(tnt1,8)), O
T (@) (r1 g1y ) (Ery ey by P2(tng1, 8))y L
for every a € A, every s € I, and every point ¢ = (¢1, ..., th41) of
I"t1, The collection & = {k'}iery is a *-homotopy between fundamental

1 .
n4l (In—I— ) ']n+1a

"1 (fn+1 ) 3)

< <1,
< Tl(fn+1,5) < 2,

x-sequences ¢’ and ¢, where f! = fr(x(i)) and g = Ir(x(i)) lor every

i € N, It follows that ¢ ~, ¢ and ¢ ~, ¥'. Hence, @« = 8 and 9, is
indeed one-to-one. ¢
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