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Abstract: It was observed by several authors that the congruence lattice
Con A and the automorphism group Aut A of a unary algebra are not inde-
pendent [3]. This paper contains some results concerning this interdependence.
For example, if A4 is a cyclic unary algebra, then S{Aut 4), the subgroup lat-
tice of its automorphism group, is isomorphic to an interval of Con A. If
A is subalgebra-simple or subdirect irreducible, then S(Aut 4) is isomorphic
to a principal ideal of Con A. Other results are formulated in terms of fix-
points of automorphisms . For instance, we show that, if there exists an
element of A which is not a fixpoint for any nontrival automorphism of A,
then S(Aut A) can be embedded as a sublattice in Con A. Denote by Inv A
the normal subgroup of all automorphisms of 4 under which all congruences
of A are invariant. In general this is quite arbitrary, but we show that for
a unary algebra Inv A is either a quaternion group or a subdirect irreducible
Abelian group or it is a subdirect product of such groups. If A is cyclic,
then Inv A is Hamiltonian. We also prove that if Con A is finite, then so is

Aut A,
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1. Introduction

Let us denote, as usually by Aut A, Con A and by Sub A the auto-
morphism group, the congruence lattice and the subalgebra lattice of an
algebra (A, T'). It is known that in the case of unary algebras Sub A4 and
Con A are not independent (see Remark 1). It was established by several
authors, that in the unary case between Aut A and Con A there exists
also an interdependence. For example, W. Lex proved [3]: If (A,T) is
a congruence-simple unary algebra (i.e. Con A is a two-element chain),
then Aut A 1s either trivial or i1t is a cyclic group of prime order. The
atm of this paper 1s to investigate the connection between Con A and
Aut A. This connection is influenced by Sub A. A dependence between
Aut A and Aut(Con A) — the automorphism group of the lattice Con A
1s also remarked.

Let (A,T) be a unary algebra. We note that the basic set I' of
operations can be substituted by the monoid {I'} generated by it (using
as a unit the identity mapping of A denoted by 14). It is easy to check
that this substitution do not change Aut A, Con A and Sub A. (In view
of this remark, in the rest of the paper we shall assume that I' closed
with respect to the composition of operations!) We denote by 04 and 14
the least and the greatest element of Con A, by 18 the identity mapping
of a subset B C A. 6(a,b) stands for the principal congruence of A
corresponding to a, b € A. The subgroup lattice of a group & 1s denoted
by S(G), the cyclic subgroup generared by an element g € G by {(g). For
a group F, I' < (G denotes that F' is a subgroup of GG. For a € A, (a)
denotes the subalgebra generated by {a}. A one element subalgebra is
called a singleton. We note that B C A is a subalgebra of A iff (b)) C B
for all b € B. (We denote it by B < A.) Sub A is a distributive lattice
containing as 0 element §} and as unit element A. For an a € A and
for a § € Con A the 0-congruence class of @ is denoted by 0[a]. For a
lattice . and a,b € L a < b, the lattice interval [a, 5] denotes the set
{# € Lla < & < b} and (a] the principal (lattice) ideal belonging to a,
i.e. the set {# € L|z < a}.

Definition 1.1. For any subalgebra B < A we define a congruence® pp
on A as follows:

advice during the preparation of this paper and Professor W. Lex for his hospitality
when the author was a guest of the Informatical Institute of University Clausthal-
Zellerfeld, where the initial ideas of this paper came into light.

!The fact that pp is a congruence on 4 is common knowledge.
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(z,y) € pp < either z,y€ B or z=y.
Remark 1.2. (i) Since for any By, B> < A we have pg,np, = pB,\pB,,
the mapping B — pg, (B < A) is a A (semilattice)-homomorphism of
Sub A into Con A. If B; (or Bz) has at least two elements, then pg, =
= pB, = By = Bs. Notice, that in general pp,uB, # pB, V pB, and
pp = 04 iff B has at most one element.

(i1) For any B C A, Con B is isomorphic to the principal ideal
(pp] of Con A (see [1]).

Remark 1.3. (i) Tt is easy to check that for any ¢ € A and any f €
€ Aut A we have: f((a)) = (f(a)). If {a} is a singleton, then so does
{/{a)}.

(i1) We say that the subalgebra B < A is invariated by the sub-
group F' < Aut A if for any f € F holds f(B) C B. In fact this is
equivalent to f(B) = B, Vf € F. (Indeed, since f~'(B) C B, Vf € F,
we can write B = f(f~Y(B)) C f(B) C B.)

Remark 1.4. For an arbitrary f € Aut A and for any F < Aut A
we denote by Fix f the set of all fizpoints of f and by Fix I the set
U{ Fix f|f € F\ {1"}} respectively. Fix f and Fix F are subalgebras
of A, If f # 14, then Fixf # A. Fix F is invariated by F. Indeed,
choose z9 € Fix f; then f(v(z0)) = v(f(20)) = v(zo), 1.e. y(zg) €
€ Fixf, v € T. Evidentely Fixf = A implies f = 14. Take now
z € Fix F and f € F; then we have h(z) = & for a suitable k € F'\
\{14}. Since (f~Loho f)(f(z)) = f(2) and f~Loho f # 1*, we obtain
f(z) e Fix F.

Definition 1.5. (i) (A,T') is called cyclic if it is generated by a single
element a € A (i.e. we have (a) = A).

(i1) (A, I') is called subalgebra-simple if it has no proper subalgebra
(i.e. has no subalgebra different from itself and from the empty one).

Let us observe that (A,I') is subalgebra-simple iff (z) = A, V& €
€ A — or equivalently: iff for any a,b € A there is a v € T' such that

v(a) = b.

2. Embedding the subgroup lattice of Aut A in Con A

Proposition 2.1. Any subgroup F' of Aut A defines a congruence 0
on A as follows:

(a,b) €0p < If € F such that f(a) =b.
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Proof. It is clear that fF is an equivalence on A. Take now (a,b) € Op
and v € I' arbitrary; then by definition of #p there exists an f € F
such that f(a) = b. We can write: f(y(a)) = v(f(a)) = ~(b), thus
(v(a),v(b)) € 0p — i.e. O is compatible. {

The congruence 8r we shall call the congruence induced by the
group F' < Aut A. We let 04,4 stand for the congruence induced by
the whole Aut A.

Proposition 2.2. For any unary algebra (A,1') the mapping T :
: F— 0p, F < Aut A is a complete join-homomorphism of S(Aut A)
into Con A with Ker Y = {14},
Proof. We have to prove T(V Fy) = V T(F), ie. 0y p, = V 0p, for
el el i€l el
an arbitrary index set I # @ and F; < Aut A. Take (z,y) € 0/ g,; then
1€
f(z) =y, where f = fiofs0...0f, forsome f1 € Fi,, fo € Fi,,.... fn €
€ F;, (i1,72,...,1, € I, n € N). Let us consider the elements yo =
=a, 1 = filyo)yuk = Julyr—1),.- . ¥ = yn = fn(yn-1). Since
(Yr—1,yx) € 0, holds for any 1 < k < n, we obtain (x,y) € Op; o
ofp, o0...00p < 'é/I 0r,.. Conversely, take (z,y) € '\E/I fr.; then there
are zg,z1,...,%m € A and 41,...,4y € I, (m € N) not necessarily
different, such that zo = @, z,, = y and such that (zp_1,2) € sz.k, for
all 1 < k < m. Thus for each 1 < k < m there exists an automorphism
fr € Fi,, such that fr(zx—1) = z holds. Take f = frofoo...0
ofm € V Fi. Since f(z) =y, we obtain (z,y) € 0 ,. Finally, take
el i€l
Fe KerET, le. ¥ < Aut A such that 0 = 04. Then for all f € F' and
all # € A we have f(2) = #. Thus we obtain F = {14}. ¢
Remark 2.3. For any subgroup F' < Aut A the restriction Yp: S(F) —
— [04;0F] of T is obviously a complete join-homomorphism. If the
Jjoin-homomorphism Y: S(Aut A) — [04, 0yt 4] is a bijective mapping,
then T is a lattice isomorphism. (The statement is true for any h: L; —
—> Lo — where L1, Lo are arbitrary lattices and h 1s a semilattice
homomorphism of (L1, V) into (L2, V).)
Proposition 2.4. For any cyclic group {f} < Aut A of finite order,
Ty ts ingective,
Proof. Assume Y(F)) = Y(Fs) for Iy, Fs < {f). Since any subgroup
of {f) is cyclic, there exists f1, fo € {f) such that F} = {f1) and F» =
= {fa) — let us denote their order by n; and ns respectively. Since
07,y = Otroy, for any @ € A there exists kg, I, € N, such that fi(z) =
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= fé” (z) and fo(z) = ff"”(af) We obtain: fi'*(«) = gz'l” (z) = # and
S(x) = f{“k” () = 2, Vo € A. Thus the order ny of f; divides no

and the order no of fo divides ny. We obtain n; = ns. Since a cyclic

group of finite order contains for any n € I at most one subgroup of

order n, we conclude {(f1) = (f2). ¢

Lemma 2.5. For anya € A and for any f € Aut A with the property
that f(a) € (a), we have 0(a, f(a)) = 05y A pay-

Proof. First, note that f(a) € (a) implies

(1) () €(a), Vee(a), VkeNuU{0}.

Indeed, for k& = 0, f° = 14 by definition and the statement holds triv-

ially. Assume now that f*(z) € (a), V& € (a) is true for a k € NU {0}.

Then for each = € (a) there is a 7, € I such that v,(a) = f*(z). We

can write f*T1(2) = f(vz(a)) = v2(f(a)) € (a). Thus we conclude by

induction, that the statement holds for all £ € U {0}.

Let us prove now the required equality: Since (a, f(a)) € Pa)
holds by assumption and (a, f(a)) € 0y, we can write #(a, f(a)) <
< Oy Apiay- Take now (2, y) € O p\Ap(ay. Fora =y, (2, y) € 0(a, f(a))
holds trivially, so we can assume z # y; We have z,y € (a) and f%(z) =
= y for a smitable k € Z, k # 0. Tt 18 enough to consider the case k& > 0,
since in the case k < 0 we can write: 2 = f(=%)(y) with —k > 0 (and
y € (a)). Introducing the notations z; = fi(af), i € {0,..., k}, we obtain
ziy1 = f(z), zo = # and z; = y. According to (1) we have z; € (a).
Thus there are v; € I' such that

(2) %-(a):zi’ VZE{Ovak}
Now we can write:
(3) vi(f(a)) = f(vila) = f(zi) = zipa.

The relations (2) and (3) together imply (z;, z;41) € 8(a, f(a)), 0 <
<i< k-1, 1e: (z,y) = (20,2r) € 0(a, f(a)). Thus we conclude
Oy A pay < Bla, f(a)). ©

Corollary 2.6. For any f € Aut A\ {1}, Fixf U (a) = A implies
O(a, f(a)) = 0¢y).

Proof. Since f(a) = a implies (a) C Fixf, i.e. Fixf = A, thus Re-
mark 1.4. gives that f(a) # a. We must have f(a) € (a), otherwise
f(a) € Fixf would imply f(f(a)) = f(a). Since for & € (a) we have
f(z) =z, now (2,y) € 0(yy and = # y imply =,y € (a), i.e. Oy < p(ay.
Hence the statement follows by Lemma 2.5. §

Proposition 2.7. Let F' be a nontrivial subgroup of Aut A. Then the
following statements hold:
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(1) If Fix FF # A, then Yp:S(F) — Con A is an injective join-
homomorphism.

(i) If Fix fi = Fixfo, for all f1,fo € F\ {14}, then Yp is a
lattice embedding.

(1) If for all f € F, Fix f is not contained in any proper subalge-
bra different from it, then T:S(F') —> [04, 0F] s a lattice isomorphism.

(iv) If T:S(F) — [04,0r] 1s surjective and Fix F' # A, then

Fix fi = Fixfo, Vf1,f2 € F\ {1} and for any subalgebra B # A
containing Fix F', if B is invariated by an f € F'\ {14}, then we have
B=Fix F.
Proof. (i) Assume Yp(F1) = Yp(Fs) for Fi, Fo < F and take an = ¢
¢ Fix . By the definition of 0, and 0,, for any fi € Fy, there exists
an fo € Fy such that fi(z) = fa(z), ie: (fi o f5')(2) = x. Since
flof;1 € Fand € Fix F| Weobtainflofgl=1A,i.ef1=f26F.
Thus we get Iy C F5. Symmetrically we can prove F5 C Fy.

(ii) Since Fix F = Fix f, Vf € F\ {1%}, we have FixF # A
(see Remark 1.4.) and T is an injective join-homomorphism, according
to (i). Since Yy is isotone, we have YTp(Fy N Fo) < Tp(F1) A Yp(Fo)
for all F;, Fo C F. Thus it is enough to prove Yr(Fi) A Yp(Fz) <
< Yp(FLNEy), e 0p, ANp, < 0pnp,. Take now (z,y) € 0p, Alp,,
# # y. Then there exist f; € F1 \ {14} and fo € F2 \ {14} such that
fi(z) = fo(e) = y. Since  # y implies # &€ Fix F, (f1 0 f5")(z) =
= 2 implies f; o f2_1 =14 ie: fi = fo € F; N Fy. Thus we obtain
(;L’, y) € HFlnFQ'

(1i1) Let us remark first, that the assumption of (iii) implies that for
any f € F'\ {11}, Fix f is the same subalgebra. Indeed, let us assume
Fix f1 # Fixfa, f1,fo € F\ {1%}: Then we get Fix fiU Fix fo = A,
according to the assumption of (iii). We can write:

A= (FIX f1 \FleQ) U (FIX f1 N Fix fg) U (FIX fQ \ Fix fl);
and by assumption of (iii) Fix f; \Fix f2 and Fix fo\Fix f; are nonempty.
It is not hard to see that f = f1 o fo satisfies Fix f = Fix f1 N Fix fs.
We obtain Fixf C Fixfi # A, Fixf # Fixf; — contradicting the
assumption of (iii). Applying the above (ii), we obtain that YTr is a
lattice embedding. To prove (iii), it is enough to show, that for any
6 € [04,0F], there is an Fy < F such that §g, = 6. Since 9(1,4) = 04,
we can assume 0§ # 04. We can write: § = V{0#(a,b)|(a,b) € 0, a #
# b}. Take (a,b) € 6, a # b; then § < fp implies that there exists
an fqp € I such that fy(a) = b and a,b € Fixf. Since we have by
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assumption Fix f U (a) = A, applying Corollary 2.6. we get #(a,b) =
= 0(a, fap(a)) = 07,y Thus we can write: & = V{07, [(a,b) € 0,
a 75 b} = 9V{(fab)|(€l,b)€9, a#b} = HFO — where FO = V{(fab)|(a, b) € g
a#b} <F.

(iv) First we prove the second assertion. Let us consider a subal-
gebra B # A, B D FixF and an f € F'\ {1} arbitrary; since Oy N
App < 0p, by assumption there is an Fo < F' such that 6, = sy App.
Take any = € B; we have 0p,[#] = {2}, which means that # € Fix Fg.
Since # ¢ Fix F, we must have Fy = {14}, ie. OipyNpp =104, fE F\
\ {14}. Assume now that B is invariated by an fo € F'\ {14}. Then
070y N pB = 04 implies B C Fix fo. Now FixF' C B C Fix fo C Fix F
implies B = Fix fo = Fix F'. Concerning the first assertion, since B =
= Fix F is invariated by any f € F'\ {1} (see Remark 1.4), we obtain
Fix fi = Fix fo = Fix F, Vf1, fo € F\ {11}. ¢
Proposition 2.8. If (A, ') is a subalgebra-simple unary algebra with a
possible exception of a singleton, or it 1s the disjoint union of a singleton
and of a subalgebra-simple unary algebra, then for any F' < Aut A,
YTp:S(F) — [04,0F] is a lattice 1somorphism.

Proof. We can assume F # {14}. Now it is enough to prove that the
condition of Prop. 2.7. (iii) holds in each of the above cases. If (A,T') is
subalgebra-simple, then Fix f = 0, Vf € F'\ {1*} — thus the condition
of Prop. 2.7. (ii1) holds. If (A, T') has only one singleton, let say {0}
(where 0 € A), then according to Remark 1.3. (i), we have f(0) =0 —
i.e. 0 € Fix f, ¥f € F\ {14}. If A is subalgebra-simple except {0}, we
obtain Fix f = {0}, Vf € F\ {14}. If we have A = {0}U B, {0} N B =
= 0 and B is subalgebra-simple, then the relation Fix f 2 B implies
Fix f N B = 0, i.e. we get again Fixf = {0}, Vf € F\ {1*}. Since in
the both of the above cases {0} is a maximal proper subalgebra of A,
the condition (ii1) holds in each of the cases. ¢

Remark 2.9. T in general is not an injective mapping! Indeed: Let us
consider A ={1,2,...,n},n € Nand T = {14}. Then AutA=3%, —
the symmetric group of order n, and Con A = Part A — the partition
lattice of the set A. Take for example n = 3. Then Part A contains 5
elements and Y3 contains 6 subgroups, thus the mapping 1:S(X¥3) —
— Con A can not be injective!

Lemma 2.10. Let B < A be a subalgebra nvariated by a subgroup F
of Aut A.

(i) If B € FixF, then F can be embedded as a subgroup in the
automorphism group of the subalgebra B.

?
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(i) If A\ B € FixF, then F can be embedded as a subgroup in
the automorphism group of the factor algebra C' = A/pp.

(i)If Fix F C B # A, then S(F) can be embedded as a sublattice
in the congruence lattice of the factor algebra C' = A/pg.
Proof. We have f(B) = B, Vf € F, according to Remark 1.3. (ii).

(i) Since B € Fix F, B is not empty. Let fp denote the restriction
of f to B. Since fg(B) = B, the injectivity of fp implies 5 € Aut B.
Let us consider the mapping a: F' — Aut B, a(f) = f5. It is obvious
that o is a group homomorphism. We have: Kera = {f € F|fp = 1%}
—1.e. B C Fix f for all f € Kera. Since we have Fix f C Fix F', Vf €
€ F\{1"} and since Fix F' do not contain B, we conclude Ker o = {14},
l.e.: « is an embedding,.

(i1) Since A\ B is nonempty, C' contains at least two elements. Let
us denote the pp congruence class of an element # € A by . Then we

have 7 = {2} if 2 ¢ B, and # = B if # € B. For any f € F we define
f* € Aut C as follows: f*(%) = f(xg) — where zp € 7. The function
J* is well-defined, since for any « € A\ B we have T = {«} and f(«) €
€ A\ B, thus f*(Z) = f(z) = {f(2)}, and for any zo € B, we have
f(zo) € B, 1.e. f*(B) = B. Since f(A\ B) = A\ B and the restriction
of f to A\ B is injective, follows that f* is bijective. On the other
hand for any v € [' we can write: f*(4(7)) = f*(v(x0)) = f(y(z0)) =
= v(f(20)) = v(f*(¥)) — where @9 € . Thus f* is an automorphism
of C. It is clear that (f1 o fo)* = ff o fi, Vf1,f2 € F, i.e. the map
B: f —> f* 1s a group homomorphism of F into Aut C. 3 is injective:
Indeed, let us assume f;(7) = f3(Z), V& € C. Now for any a € B we
have fi(a) = f2(a). Since by assumption there is an ag € A\ B such
that ao & Fix F, the equality (f1 o f51)(ao) = ap implies f1 o f5 1 =14
— 1l.e. f1 = f2.

(1ii) Let us consider again the factor algebra C' = A/pp and the
mapping 3: f — f* from the proof of (ii): Since the assumption of (ii)
holds, we have F' =2 3(F). For any @ € A\ B and for any f* € 3(F),
7* # 1¢ the relation f*(Z) = Z implies f(z) = z, i.e. € Fix F — which
contradicts the assumption of (iii). Thus we have Fix f* = {B}, for any
f* # 19, Applying now Prop. 2.7. (ii), we obtain that the subgroup
lattice of 3(F') can be embedded as a sublattice in Con C. The same is
true for the subgroup lattice of £.

Definition 2.11. Let (A, ') be a cyclic unary algebra. Then the union
of all its proper subalgebras we denote by K(A4) and we shall call it the
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kernel of the unary algebra A.
Remark 2.12. (i) For any unary algebra its kernel is its greatest proper
subalgebra. For an a € A, {a} is a generator set of (A,T) iff « € K(A).

(i1) K(A) is invariated by all f € Aut A, i.e. for any a € A and
fE€AutA: f(a) e K(4) <= a € K(4).

Proof. (i) Tt is trivial.

(i1) Since f((a)) = (f(a)), a € A, we have (a) = A <= (f(a)) =
= A. Now (i) implies that a ¢ K(A4) < f(a) € K(4) — which is
equivalent to (ii). ¢
Theorem 2.13. (i) If (A, I') s a cyclic unary algebra, then Y:
:S(Aut A) —> [04, 0aut a] s an injective join-homomorphism.

(i1) Y s a lattice isomorphism iff the restriction of any f € Aut A
to K(A) is the identity mapping on K(A).

(111) S(Aut A) s isomorphic to an interval of Con A.

Proof. (i) Since (K(A)) is the greatest proper subalgebra of A, we have
Fix f C (K(4)), f € Aut A\ {14}. Thus Fix(Aut A) C (K(4)) # A,
and the assertion follows by Prop. 2.7. (i).

(ii) Evidently, we can assume Aut A # {14}, If the restriction of
any f € Aut A to K(A) is 184 then Fix f = Fix(Aut A) = K(A),
Vf # 14, thus T is a lattice isomorphism according to Prop. 2.7. (iii).
Conversely, assume that T is a surjective mapping; since Fix(Aut 4) C
C K(A) # A and since K(A) is invariated by all f € Aut A (by Re-
mark 2.12.), applying Prop. 2.7. (iv) we get Fix(Aut A) = K(A4).

(iii) Let C' denote the factor algebra 4/pi(4y; then K(A) C A itself
1s a pg (1) congruence class. Since C' contains as proper subalgebra only
the one element subalgebra K(A4), it is subalgebra-simple except for a
singleton. Let us observe, that the conditions of Lemma 2.10. (ii) hold
for K(4) < A and I = Aut A. Namely K(A) is invariated by the
whole group Aut A (— according to Remark 2.12. (ii)) and A\ K(A) &
¢ Fix(Aut A). Thus Aut A is isomorphic to a subgroup G of AutC.
Since Con C is a principal filter in the lattice Con A, applying Prop. 2.8
we obtain that S((¥) is isomorphic to an interval of Con A. Evidently,
the same is true for S(Aut 4). ¢
Remark 2.14. If (A,T) is a cyclic unary algebra and F' < Aut A, then
S(F) is isomorphic to an interval of Con A.

Theorem 2.15. Let (A, ') be a unary algebra and F < Aut A. If
Fix F' # A, then the following statements hold:
(i) S(F') can be embedded as a sublattice in Con A.
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(i1) If there exists an a € A\Fix F, such that the cyclic subalgebra

(a) ts invartated by all f € I, then S(F) s tsomorphic lo an interval
of Con A.
Proof. (i) If Fix F' = 0, then Fix f; = Fixfo = 0, Vf1, fo € F\{14} and
now (i) follows from Prop. 2.7. (ii). If Fix F' # @, then the conditions of
Lemma 2.10. (iii) hold for the subalgebra B = Fix F', — thus S(F') can
be embedded in Con(A/ppixr). Since the latter lattice is a principal
filter in Con A, the statement is true.

(1)) By Lemma 2.10. (i), F is isomorphic to a subgroup H of
Aut(a). Applying Th. 2.13. (iii) to H (and (a)), we get that S(H)
is isomorphic to an interval of the lattice Con(a). Since Con(a) is a
principal ideal in Con A (see [2]), the proof is completed. ¢
Corollary 2.16. If (A, ') s a unary algebra with Con A distributive,
then any F' < Aut A satisfying Fix F' # A 15 a locally cyclic group.
Proof. Since by Th. 2.15. (i) S(F') is isomorphic to a sublattice of
Con A, S(F) is distributive. Now the statement follows applying Ore’s
theorem. &

Lemma 2.17. If (A, ') is a subdirectly irreducible unary algebra, then
the following statements are true:

(i) Any f € Aut A, f # 14, has at most one fixpoint.

(i1) A has at most two singletons. If A has two singletons, then

Aut A has at most two elements and f € Aut A, f # 14, has no fiz-
points. If A has exactly one singleton, then it 15 the only fixpoint for
any f € Aut A, f # 14,
Proof. (i) For any f € Aut A, f # 14, let prix s denote the congruence
corresponding to the subalgebra Fix f. We can write evidently #,,y A
A prixy; = 04. Since for f # 14, we have 0isy # 04, the subdirect
irreducibility of (A, I') implies ppixy = 04 — i.e. Fix f is either empty
or 1t 1s a singleton.

(ii) If {a}, {b}, {c} are different singletons in A, then {a,b} and
{a,c} are also subalgebras in A. We have pr,11 # 04, p{a,e} 7 Oa,
but pry ey A plaer = 04 — which is a contradiction, because of A is
subdirectly irreducible. Assume now that the singletons of A are {a}
and {b} only. (a,b € A, a # b). By Remark 1.3. (i), for any #q € {a, b},
f(xo) is also a singleton, thus f(xg) € {a,b}. If a € Fix f for an [ €
€ Aut A\ {11}, then the injectivity of f implies f(b) = b, i.e. b € Fix f
— contradicting (i). Thus in this case any f € Aut A, f # 14 is without
fixpoints. Since now Fix(Aut A) = 0 C {a, b}, applying Lemma 2.10. (i)
for F' = Aut A and B = {a, b}, we obtain that Aut A can be embedded
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in the permutation group of the set B, thus i1t has at most two elements.
If A has only one singleton, say {a}, then by Remark 1.3. (i) follows
fla) = a,¥f € Aut A. Now (i) implies Fix f = {a}, for any f € Aut A\
V{16

Corollary 2.18. [f(A,T') s subdirectly irreducible, then the subalgebra
Fix(Aut A) has at most one element. If Fix(Aut A) is a singleton, then
this 15 the only singleton in A. We have Fix f1 = Fix f5 for any f1, f2 €
€ Aut A\ {14}

For a set B its cardinality will be denoted by | B| in the rest of the
paper.

Theorem 2.19. [f (A, T) is a subdirectly irreducible unary algebra,
then the following assertions are true:

(1) T:S(Aut A) — Con A s a laltice embedding.

(i1) S(Aut A) s isomorphic to a principal ideal of Con A.

(i11) If Aut A 15 nontrivial, then it 15 a subdirectly irreducible p-
group.

(iv) If (a) C A s a subalgebra with at least two elements and (a)
is tmvariated by Aut A, then S(Aut A) is isomorphic to an interval of
Con(a).

(v) If Aut A # {14} and Y:S(Aut A) — [04, @auia] is a lattice
isomorphism, then either (A,1') is subalgebra-simple with a possible ex-
ception of a singleton, or it 1s a disjoint union of a singleton and of a
subalgebra-simple unary algebra.

Proof. If Aut A is trivial, then (i), (ii), and (iv) hold trivially. Thus we
may assume that Aut 4 # {14}

(i) It is an immediate consequence of Prop. 2.7. (ii) and Cor. 2.18.

(i1) Let 6y denote the least nonzero congruence (the monolith) of
(A,T'). Since for any subalgebra B < A with at least two elements we
have 8y < pp, we can write: 04 < g < A{pp|B < A,|B| > 2} =
= pn{B|B<A,B|>2}. LThus [ = N{B|B < A,|B| > 2} is a subalgebra
with at least two elements. It is not hard to see that [ isinvariated by the
whole Aut A. Since, by Cor. 2.18. Fix(Aut A) has at most one element,
the conditions of LLemma 2.10. (i) hold for B = I and F = Aut A, thus
Aut A 1s 1somorphic to a subgroup & of Aut /. In the case when [ has
just two elements, then the assumption Aut A # {14} implies that Aut A
and Aut / are both groups of order two, i.e. S(Aut A) is a two-element
chain. Since now Con [ is also a chain with two elements and it is a
principal ideal of Con A, the assertion (ii) follows trivially. If [ contains
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more than two elements, then for any @ € I we have either (#) = [ or
(z) = {«}, according to the construction of /. Since by Lemma 2.17. (ii)
I contains at most two singletons, there exists an a € I such that (a) =
= 1, i.e. [ i1s a cyclic subalgebra. The kernel K(7) of I has at most
one element, otherwise we get { C K(/) by construction of I — which
is impossible. According to Remark 2.12. (i) this fact means, that [
is subalgebra-simple with a possible exception of a singleton. Applying
now Prop. 2.8 we obtain that S(G) is isomorphic to a principal ideal
of the lattice Con /. Since Con [ 1s isomorphic to a principal ideal of

Con A and since S(Aut A4) = S(G), the proof of (ii) is completed.

(111) Since (A,I') is subdirectly irreducible, any principal ideal of
Con A contains the least nonzero element of Con A. According to (ii),
S(Aut A) has also a least nonzero element, let say Fy, which implies
that Aut A 1s subdirectly irreducible. Evidently £ 1s a cyclic group of
prime order, let say of order p € I. Since Fy C {f), VS € Aut A\ {14},
any {(f) is a subdirectly irreducible cyclic group, thus its order is p” for
some n € N.

(iv) By Cor. 2.18. Fix(Aut A) has at most one element. Since (a)
has at least two elements, o € Fix(Aut A). Applying now Th. 2.15. (ii)
for F' = Aut A, we obtain (iv).

(v) By (i) it is clear that YT:S(Aut A) — [0, f0aut 4] is a lat-
tice isomorphism iff T is surjective. We can assume |A| > 2. By
Cor. 2.18 Fix(Aut A) has at most two elements, hence Fix(Aut A) # A.
Let us consider now the subalgebra / constructed in the proof of (ii)
— which has at least two elements — and denote B = Fix(Aut A) U [.
By Cor. 2.18, we have Fix(Aut A) # B. Even more B is invariated by
the whole Aut A (see Remark 1.4 and the proof of (ii)). Assume that
B # A. Since T is surjective, applying now Prop. 2.7. (iv), we obtain
B = Fix(Aut A) — contradiction. Thus we must have B = A. If [ = A,
then any proper subalgebra of A has exactly one element. But this is
possible only if, either A 1s subalgebra-simple with a possible exception
of a singleton, or A is a two-element algebra consisting of two single-
tons. If I # A, then according to Cor. 2.18, Fix(Aut A) is a one element
subalgebra {a}, a € A and {a} is the unique singleton of A. Since now
{a} Ul = A, we have a ¢ I. By the construction of [ (see: (ii)), we
get () = 1, Ve € I, i.e: I = A\ {a} is a subalgebra-simple unary
algebra. ¢
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3. The invariant part of the automorphism group of
a unary algebra

Let us consider first an arbitrary algebra (A, F).

Remark 3.1. (i) For any f € Aut A and 6§ € Con A, the relation f(#) =
= {(f(a), f(b)) € A®|(a,b) € 8} is a congruence of (A, F).

(ii)) We have (a,b) € f(8) < (f~'(a), f~1(b)) € 8. The equality
f(8) = 8 is equivalent to (a,b) €0 <= (f(a), f(b)) € 8, Y(a,b) € 0.
Proof. (i) Tt is clear that f(f) is an equivalence on A. Since for any
J € Aut A the mapping (fa f) A — Az, (fa f)(af’ y) = (f(;t), f(y))
((x,y) € A?) is an automorphism of (4%, F') and any § € Con A is a
subalgebra of (A2, F'), we obtain that f(f) is also a subalgebra of it, i.e.
f(8) is a congruence on A.

(i1) Follows by the definition of f(#). ¢
Definition 3.2. (i) We say that the congruence 6 € Con A is invariated
by an f € Aut A, if the relation f(#) = 0 holds. # € Con A is invariated
by the group F' < Aut A, if we have f(f) =0 for all f € F.

(i1) The set of those automorphisms of A under which all § €
€ Con A are invariant 1s denoted by Inv A and we call it the mvariant
part of Aut A.

Lemma 3.3. Any f € Aut A induces a lattice automorphism f of
Con A in the following way: f(0) = f(0), 0 € ConA. The mapping
U(f) = 7 1s a group homomorphism of Aut A into Aut(Con A) and
Ker¥ =1Inv A.

Proof. First we check W(f10fo) = W(f1)oW(fs), i.e. that fi o fo = fio
0 fo. We have (f10 f2)(8) = fo(f1(8)) by deﬁmtlon By Remark 3.1 (ii)
we can write (a,b) € fQ(fl( ) ::’ (fl (f2 (a ))7f1 (f2 (0))) €
€0 = ((fz ofT)a),(JT o fTH(B) €0 = ((fiof2)"(a), (J10
of2)7H (b)) €0 < (a,b) € (fiof2)(F). Thus (f10f2)(0) = f10 f2(h),

0 €ConA, ie: f1ofs=frofo It followsthat: fof—1=fof-1=
:1_A: 1ConA

and symmetrically f=1 o f = 19°24, Thus we conclude
that f and f~! are inverses of each other. Since f and f~! are both
1sotone mappings, we conclude that f is a lattice automorphism. Since

W: Aut A — Aut(Con A) satisfies the rule W(f1 0 fa) = W(f1)oW(f2), it
— 1ConA

is a group homomorphism. Take now f € Aut A such that f =
This relation is equivalent to f(#) = 6, V8 € Con A, i.e. to f € Inv A.
Thus we obtain Ker ¥ = Inv A.

Corollary 3.4. (i) Inv A 15 @ normal subgroup of Aut A.
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(i1) The factor group Aut A/ Inv A can be embedded in the auto-
morphism group of the congruence lattice of A.

Proof. (i) Tt is trivial.

(i1) Applying for ¥ the homomorphism theorem of groups, we get
Aut A/ Inv A = W(Aut A) < Aut(Con A). §

We note that § € Con A is invariated by the group £ < Aut A
it f(6) <0, Vf e F,ie iff (a,b) € 8§ = (f(a), f(b)) € 6, Vf € F.
Indeed, it is clear that for any f € F we have f(f) < 0 iff (a,b) €
€ 0 = (f(a), f(b)) € 0. On the other hand if f(4) < 0, f € F, then
71(0) < 0 implies: 0 = £(7=(0)) < /().

Now we shall concentrate on some particular properties of Inv A
in the case of unary algebras.

Proposition 3.5. Let (A,T') be a unary algebra, F,G < Aut A and
! € Con A. Then the following statements are true:

(1) If 0 15 wnvariated by F, then we have # o lp = 0p o 6.

(1) If G« F, then O¢ 1s invariated by F.

(i) If G < F, Fix F' # A and 0 1s invariated by F', then we have

GaF.
Proof. (i) Take (a,b) € # o . Then there exista ¢ € A and an f € F
such that (a,c¢) € @ and f(c) = b. Since 0§ is invariated by f, we have
(f(a), f(e)) € 0. But now from (a, f(a)) € p and (f(a),b) € 0 follows
(a,b) € 0p of. Thus we obtain: #ofp C fp of. Symmetrically we can
prove g o C o flp.

(11) If (a,b) € O then we have g(a) = b for some g € (G. Since
G < F, forany f € F there is a g’ € (¢ such that go f = f o g', so we
obtain that f(b) = f(g(a)) = g'(f(a)), ie. that (f(a), f(b)) € Oc.

(iii) Take @« € A\Fix F' and g € G arbitrary; since 6 is invariated
by any f € F, we can write (f(a), f(g(a))) € 8. Thus for any f € F
there exists a ¢’ € G such that ¢'(f ( )) = flg(a)), 1. (fog)( ) (go
of)(a). Weobtain (fog'of~ 1og )()_a Nowfogof leF
and a € Fix F implies fog' o f=! _lA,ieflogof_g e G,
Thus we conclude Ga F. $
Lemma 3.6. (i) Any subalgebra B < A with at least two elements is
invartated by the whole Inv A.

(i) If F < Tnv A, F # {12}, then either every singleton of A is
contained in Fix F, or Fix ' = 0, A has exactly two singletons and the
order of F' s two.

Proof. (i) We have f(pp) = pp, Vf € Inv A. Since f is injective, for all
z,y € B, x # y we obtain f(z), f(y) € B. Thus we conclude f(B) C B,
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for all f € Inv A.

(i1) If Fix /" # @ and there is a singleton {a} C A\ Fix I, then
the subalgebra Fix F'U {a} is invariated by all f € F', according to (i).
Since A\ Fix F'is also invariated by any f € F' (see Remark 1.4), we get
f(a) = a, f € F — which is a contradiction. Thus Fix F' # @ implies
that all the singletons of A are contained in Fix /. Assume now that
Fix F = {) and A contains at least one singleton. If A has exactly one
singleton, then according to Remark 1.3. (i), it is a common fixpoint
for all f € F — contradicting Fix FF = 0. If A contains 3 different
singletons {a}, {b}, {c}, then the fact that the subalgebras {a,b} and
{b, ¢} are both invariated by F' implies f(b) = b, f € I' — contradiction.
Thus in the case of our latter assumption A must contain exactly two
singletons, — let us denote them by {a}, {b}, a,b € A. Since for any
f € F\{1#} we have f(a) = b by assumption, we get f(a) = fa(a),
Yf, fo € F\ {1}, But in this case (f; o f7')(a) = a and a &€ Fix F
implies f; = fo — i.e. F' contains only one element different from 14. {
Proposition 3.7. (i) If Fix(Inv A) # A then Inv A is a Hamiltonian
group and S(Inv A) is 1somorphic to an interval of Con A.

(i1) For any F < Inv A, 8p s permutable with any congruence
¢ € Con A.
Proof. (i) Since for any subgroup G < Inv A, f¢ is invariated by Inv A,
by Prop. 3.5 (iil) we obtain that any subgroup & of Inv A is a normal
subgroup, i.e. that Inv A 1s a Hamiltonian group. We can assume now
that Tnv A # {14}. Tf A\Fix(Inv A) contains an element A such that (a)
has at least two elements, then the statement follows by Lemma 3.6 (i)
and Th. 2.15 (ii). If all the elements of A \ Fix(Inv A) are singletons,
then according to Lemma 3.6 (i1), we have Fix(Inv A) = @}, A consists of
exactly two singletons, and the group Inv A 1s of order two. Thus both
S(Inv A) and Con A are chains with two elements.

(i1) It follows directly from Prop. 3.5 (1) and from the definition of
Inv A. {
Corollary 3.8. [f (A,I') is a cyclic unary algebra, then Inv A is a
Hamaltonian group. If (A,T) is subdirectly irreducible, then Inv A is
etther the quaternion group or it 1s a subdirectly irreducible Abelian
group.
Proof. In both of these cases we have Fix(Inv 4) # A, so Prop. 3.7 (i)
applies. If (A, I') is subdirectly irreducible, then by Th. 2.19 (ii) S(Inv A)
is isomorphic to a principal ideal of Con A. Since this one contains a
least nonzero element, Inv A is also subdirectly irreducible. Now the
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statement follows from the fact, that a subdirectly irreducible Hamilton-
1an group is either the quaternion group or it 1s a subdirectly irreducible
Abelian group. ¢

Let us consider again an arbitrary algebra (A, F').

Lemma 3.9. [f (A, F) 15 a subdirect product of algebras (A;, F'), i €
€1, (I #0), then Inv A is a subdirect product of some subgroups G; of
Inv A;.

Proof. Let m; denote the natural projection of A onto A; (¢ € I).
For any f € Inv A and any ¢ € | we define a mapping fi: A; — A;
as follows: fi(mi(2)) = m(f(x)), « € A fi is well defined: If we
have mi(x1) = m;(#=2) for some &1, 22 € A, then (#1,22) € kerm; and
f € Inv A implies (f(21), f(22)) € kerm;, ie. mi(f(e1)) = m(f(a=)).
Let us show that f; is an automorphism of A;: It is easy to check
that the mapping f*: A; — A;, defined by f*(m(x)) = m(f~ (=) is
the inverse of f;. Thus f; is bijective. Take now an n-ary operation
p € Foand z1,20,...,2, € A;. Then there are #1,25,...,2, € A
such that z;1 = m(x1), 20 = m(x2),...,2n = m(e,). We can write:
P, o Jien)) = plmi(f(e)) o wi(fn))) = milf(plan -

) = i ead) = flp(zr )

We claim f; € Inv A;. It is enough to show that for any § €
€ Con A; and (a,b) € A?, we have (a,b) € 0 <= (fi(a), fi(b)) € 0. If
f € Con A;, then it is known that 77 () = {(u,v) € A?|(m(u), m(v)) €
€ 0} is a congruence of A. Take (a,b) € A%; then there are some u, v € A
such that m;(u) = @ and m;(v) = b. Now for any f € Inv A we have

(a,b) €0 — (u,v) € Wi_l((?) = (f(u), f(v)) € Wi_l(é’) —
= (mi(f(u), mi(f(v) €0 <= (fi(u), filv)) €9.

Let us consider now for an arbitrary, but fixed 1 € [ the map-
ping pi:IlnvA — Inv Ay, wi(f) = fi(f € InvA). We can write:
[1i(f o g)](mi(2)) = milg(f(2))) = gi(mi(£(2))) = gi(fi(mi(2))) = (fio
o gi)(mi(z)) = [pi(f) o ui(g)](mi(x)). Since m: A — A; is onto, we
obtain pi(f o g) = pi(f) o pi(g), Vf,g € InvA — ie. p; is a group
homomorphism. Let us denote the group pi(Inv A) by G; (i € I).
We have InvA/kerp; = G; < InvA;, Vi € T and kery; = {f €
€ Inv Alfi = 14} = {f € Inv A|m(f(2)) = mi(z),Ve € A} = {f €
€ Inv Al(e, f(2)) € kerm;, V& € A}. Since A is a subdirect product of
algebras A;, i € I, we have A\ kerm; = 04. We get: f € A kerpy; <

el el
= (,f(x)) € Akermi = 04, Y& € A. As the latter relation is
el
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equivalent to f = 14, we conclude: A ker y; = {14}, According to this
el
result Inv A 1s a subdirect product of the groups G; <Inv A;, 1 € 1. &

Corollary 3.10. If (A, F) < [] A; s a subdirect product of algebras
iel
(A;, F), 1 € 1, then for any f EEIHVA and for any ¢ = (#;)icr € A we
have 1) = (f; (2:)bier.
Proof. Let us introduce the notation g(z) = (f;(;))ics € [] Ai. We
el
can write m;(f(2)) = fi(mi(x)) = fi(z;) = wi(g(2)), Vi € 1. Since A is
a subdirect product of algebras A4;, these relations imply f(z) = g(=),
Le.: flz) = (fi(zi))ier, r € A. &
Theorem 3.11. If (A,I') s an arbitrary unary algebra, then Inv A
15 either the quaternion group, or il 1s a subdirect irreducible Abelian
group, or it 15 a subdirect product of some groups of the above type.
These groups can be chosen to be subgroups of the invartant part of the
automorphism groups of some subdirectly wrreducible factors of A.
Proof. If (A,T) is subdirectly irreducible, then the statement of this
theorem is the same as of the Cor. 3.8. If A < [] A; is a representation
el
of A as a subdirect product of subdirectly irredeucible algebras A;, then
according to Lemma 3.9, there exist G; < Inv A;, ¢ € I, such that Inv A
1s a subdirect product of these groups G;. By Cor. 3.8, any G; is either
a subgroup of a quaternion group or of a subdirectly irreducible Abelian
group. Thus any G;, ¢ € [ itself is either a quaternion group or it is a
subdirectly irreducible Abelian group. ¢
Corollary 3.12. [f(A,I') is a unary algebra such that Con A is a rigid
lattice, then Aut A is either the quaternion group or it 1s a subdirectly
irreducible Abelian group, or it 1s a subdirect product of some groups of
these lype.
Proof. Now by Cor. 3.4 (ii) Aut A = Inv A, thus the statement follows
by Th. 3.11. &

For unary algebras we can formulate the following
Proposition 3.13. (i) If Con A is a finite lattice, then Aut A is a finite
group.

(i1) If (A, 1) 1s a semusimple unary algebra, then Inv A is an
Abelian group and S(Inv A) 1s isomorphic to an interval of Con A.
Proof. (i) If (A,I') is subdirectly irreducible then S(Aut A) is finite
according to Th. 2.19 and to the assumption. Thus Aut A is a finite
group. If (A,T') is subdirectly reducible then it can be represented as a
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finite subdirect product of some subdirectly irreducible algebras (4;,T'),
1 <i<n(neN). Any Con A;, being isomorphic to a principal filter
of Con A, is a finite lattice. Since S(Inv A;) is isomorphic to a princi-
pal ideal of Con A;, 1t 1s finite too. Thus any Inv A; is a finite group,
which implies according to Th. 3.11 that Inv A itself is finite. Since
by Cor. 3.4 (ii) Aut A/ Inv A can be embedded in Aut(Con A) which
is obviously is a group of finite order, the factor group Aut A/ Inv A is
finite. From this the evident result is that the group Aut A has finite
order.

(i1) Since any subdirectly irreducible factor of (A,I') is congru-
ence simple, according to [3], Aut A; is either a cyclic group of prime
order, or it is trivial. Evidently the same is true for Inv A;, ¢ € I.
Thus Inv A — as a subdirect product of Abelian groups — 1s itself
Abelian. If (A,T') is subdirectly irreducible then the second part of the
statement (ii) is obvious. Assume now that A is a subdirect product of
simple unary algebras A;, i € [ and @ = (#;)ier € A is a fixpoint of
an f € Inv A, f # 14, According to Cor. 3.10, we have (f;(2))ic; =
= (xi)ier, 1e. filz;) = @, Vi € I — where @; € A;. Since any A; is
congruence simple, Aut A; # {14/} implies, according to [3], that A; is
either subalgebra-simple or it consists of two singletons. But in both
of these cases, according to Lemma 2.17. we have Fix(Aut 4;) = 0.
Thus fi(x;) = x;, i € I implies f; = 14 for all i € I. Summariz-
ing, we obtain f = 14, contradicting our assumption. Thus we have
Fix(Inv A) = § and now the second part of statement (ii) follows by
Prop. 3.7 (1). ¢
Proposition 3.14. Jf (A,T') s a subalgebra-simple unary algebra with
the property that Oau 4 has at most one complement in any interval of
Con A containing il, then the following statements are equivalent:

(i) Inv A = Aut A

(11) Aut A s @ Hamultonian group.

Proof. According to Cor. 3.8, the implication (i) = (i) is obvious.

(i1) = (i): We have only to prove f(#) = 6 for all f € Aut A
and § € Con A. Tt is obvious, that for any 8 > @au a4 we have f(8) =
=0, f € Aut A. Since (A4, I') is subalgebra-simple, for any 6 < a4,
there exists an G < Aut A such that 85 = €. Since Aut A 1s Hamil-
tonian, according to Prop. 3.5 (ii), we have f(fg) = fg for any G <
< Aut A. Thus f(#) = . Take now a § € Con A arbitrary. We can

write:
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JO)YNbGauta = FO)ANf(Bauea) = F(BAOauta) =0 Abausa,

FO)VOaua=FO)V f0auwa)=F0VOauwa)=0Vhaua.
Thus & and f(f) are both complements of @, 4 in the interval [§ A
Abauta, 0V Oy a]. According to our assumptions we obtain f(8) = 6,
re: felnv A &

Corollary 3.15. If (A, ') s a subalgebra-simple unary algebra and if
Oaut A ts a standard element of Con A, then Inv A = Aut A <= Aut A
18 Hamaltoman.

Proof. It 1s known, that a standard element of a lattice has at most
one complement in any interval containing it (see for ex. [2]) — thus the
conditions of Prop. 3.14 hold. ¢

Corollary 3.16. If (A,T') is a subalgebra-simple unary algebra with
Con A distrebutive, then Inv A = Aut A and Aut A s a locally cyclic
group.

Proof. Since Fix(Aut A) = @, the second assertion follows from
Cor. 2.16. Since Aut A is Abelian and any element of the distributive
lattice Con A is a standard, applying Cor. 3.15 we get Inv A = Aut A. &

Problems

1) Find a necessary and sufficient condition for T:S{AutA) —
— [04, 0aut 4] to be: a) injective, b) lattice isomorphism.

2) Find a necessary and sufficient condition to have: a) Fix(Inv A) # A,
b) Inv A Hamiltonian group.

3) If | Con A| = n(n € ), find an upper bound for | Aut A| or [S(Aut 4)].
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