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Abstract: We study categories of partial algebras of the same type. In
these categories we define a binary operation of exponentiation for objects and
investigate its behaviour. We discover two cartesian closed initially structured

subcategories in every category of partial algebras of the same type.

It 1s well known that concrete categories having well-behaved func-
tion spaces, 1.e. being initially structured and cartesian closed, play an
important role in applications to many branches of mathematics. It 1s
therefore worthwhile to look for such categories also among categories
of general algebraic systems. In this note we focus our interest onto
categories of partial algebras. As for generality, partial algebras lie be-
tween total (i.e. universal) algebras and relational systems. Therefore,
when studying partial algebras, we can extend considerations known for
total algebras or restrict those known for relational systems. However,
such an extension or restriction is often not quite trivial and many new
particular considerations have to be done for partial algebras.
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In our study of partial algebras we shall be sustained by results

of [12] and [13] concerning categories of total algebras and by those of
[9] concerning categories of relational systems. We shall define and in-
vestigate a binary operation of exponentiation for objects of categories
of partial algebras of the same type. This operation can not be re-
stricted to categories of total algebras in general. However, in some
special cases such a restriction is possible and we then receive certain
results for total algebras as consequences of results proved for partial
algebras. Throughout the paper, all categories are considered to be
concrete categories over the category of sets, i.e. to be categories of
structured stes and structure-compatible maps. For any object A of a
category we denote by |A| the underlying set of A.
Definition 1. [11] Let K be a category with finite products and S, T be
full isomorphism closed subcategories of K. Let T be finitely productive
in K. We say that T 1s exponential for S in K provided that for any
two objects A € S and B € T there exists an object A € K with
|AB| = Mork (B, A) such that

(i) ABeSNnT

(i1) the pair (AP e), where e : B x AP — A is the evaluation map
(given by e(y, f) = f(y)), is a co-universal map for A with respect to
the functor B x —: T = K.

If a category T is exponential for K in K, then T will be called an
exponential subcategory of K (cf. [7]). If K is an exponential subcategory
of itself, then K is cartesian closed [2], i.e. the functor B x —: K - K
has a right adjoint for each object B € K (and vice versa whenever in
K all constant maps are morphisms). Especially, if T is exponential for
S in K and if also S 1s finitely productive in K, then SN'T 1s cartesian
closed.

The objects AP from the definition are unique up to the isomor-
phisms that are identity maps, and thus they are unique whenever K 1s
transportable. These objects fulfil the first exponential law, 1.e. the law
(AB)C ~ ABXC (where ~ denotes the isomorphism in K).

The concepts concerning partial algebras are taken from [1].
Throughout the paper, 2 will designate an arbitrary, but fixed set, and
7 will designate an arbitrary, but fixed family of sets 7 = (K; A € £2).
The family 7 will be called a type. By a partial algebra of type 7 we
understand a pair {X, (px; A € ©)) where X is a set and p) 1s a partial
K y-ary operation on X (i.e. a partial map py : X% — X)) for each A €
€ 1. For any A € {! we denote by D, the domain of the operation p»,
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i.e. the subset of X®* having the property that py(2x; k € K) is defined
Ul (xp; k€ Ky) € Dy, UG =(X,(py; A€ Q) and H = (Y, (ga; A €
€ 1)) are partial algebras of type 7, then by a homemorphism of G
into I we mean any map f : X — VY such that py(xr;k € K)\) =
= = q(f(er);k € K)) = f(x) for each A € Q. The set of all
homomorphisms from G into H will be denoted by Hom(G, ). We
denote by Pal. the category of all partial algebras of type 7 with homo-
morphisms as morphisms. Obviously, Pal. 1s a transportable category
with products (given by the direct products — see [1]).

Definition 2. For any pair of objects G = (X, (px;A € Q)), H =
= (Y, (g; A € Q) € Pal, we put G = (Hom(H,G),(r\; ) € Q))
where, for each A € €2, r, is the K\-ary partial operation on Hom(H, G)
given by r\(fr;k € K,) = f iff f € Hom(H,G) is a unique homo-
morphism with the property that g\(yx; b € Ky) = y = pa(felyr);
k€ Ky) = f(y). The objects G will be called the powers of (G and H.

The above defined powers of partial algebras of the same type do
not fulfil the first exponential law in general. Nevertheless, they fulfil
some other usual exponential laws. For example, the following statement
is valid (J] and ~ denote the direct product and isomorphism in Pal; ):

Proposition 1. Let G; € Pal, for cach i € I and H € Pal, be objecis.
Then (] Gi) ~ [] GE.
i€l el
Proof. Let G; = (X; (p\; A € Q)) for each i € [ and let H =
=V, (gx; X € Q)). Foreach A € Qlet py, sy, v (i € I), ry be the Ky-ary
partial operations of the partial algebras [ G;, ([ Gi)¥,GH, 1 G#
iel iel 1=
respectively. We denote by pr; (i € I) the i-th projection pr; : [[ Gi —
el
— Gy. For any f € Hom(H, [] G;) put ¢(f) = g where g : [ —
el
— |J Hom(H, G;) is the map given by g(i) = pr; o f whenever ¢ €
el
€ I. Tt can easily be seen that ¢ is a bijection of Hom(H, [] G;) onto
el

[ Hom(#, G;). Let A € Q,(fr; k € Ky\) € Dy, and sx(fr; b € K)\) =
el

= f. Next, let (yx; k € K\) € Dy, and qx(yx; k € Ix/\) = y. Then for
cach i € I we have ph(9(fe)(D(ur)i b € En) = p(ori(fo(gn)i b €
€ Ky = prilpalfelyn)ik € K))) = pr(f(y) = «(F))y). As

©(f)(i) is clearly unique (because f is unique), for each i € [ we

have rf\(np(fk)(z),k € Ky) = ¢(f)i). Consequently, ra(p(fr);k €
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€ K\) = ¢(f) which means that ¢ : ([] G))¥ — [] G¥ is a ho-
€T iel
momorphism. Clearly, the inverse map ¢~ ! to ¢ is given by @71 (g) =
= f where f(y)(i) = g(i)(y) for all y € ¥V and i € I. Let (gn: k €
€ KA) € D,, and ry(gx; k € K/\) = g. Then for each ¢ € I we have
O (g (i )(0); b € fu) Py (gx (D) (y ) k € Ky) = g(i)(y) because
Pk € R0 = o). But (i) = ¢~ g)9)0) ond conseenly

But g
pAle™ k) )ik € ) = 1(s')(y) "(g) is clearly unique (be-
cause g is unique), s)(¢ 1(gk), k€ ) = ¢ 1(g) which means that
s

LTI GE S (T] G isa homomorphlsm ¢
=¥ €]

A partial algebra {X, (px; A € Q)) of type 7 is called idempotent if
all its operations are idempotent, 1.e. if for any # € X and any A € (1
the family (xr; k € K)) given by 5, = @ for each k € K fulfils (z5; k €
€ Ky) € D,, and pr(ap; k € ) = . We denote by IPal; the full
subcategory of Pal, whose objects are precisely the idempotent partial
algebras of type 7. Clearly, [Pal, is an initially structured category (in
the sense of [6]).

Theorem 1. IPal; is an exponential subcategory of Pal,.

Proof. Clearly, [Pal; is productive in Pal,. Let G = (X, (p»; A € Q)) €
€ Pal, and I = (Y, (gx; A € )} € [Pal. be objects. Then, obviously,
GH cTPal,. Let ¢ : H x G¥ — (& be the evaluation map and, for each
A € Q, let 7y and sy be the K\-ary partial operations of G¥ and H x GH |
respectively. Let A € Q, ((yr, fr); &k € K)\) € Dy, and sx((yk, fr); k

€ K1) = (y.£). Then pale(yn fi)ik € Kn) = palfiu(ge)ik € Rn) =
= fly) = e(y, f) because qr(yx; k € Ky) = y and ra(fr; k € Ky\) = [.
Therefore e : H x G¥ — @ is a homomorphism. Let K = (7, (t\; )\ €
€ )) € IPal, be an object and ¢ : H X K — G a homomorphism.
For any z € 7 and y € Y put ¢(z)(y) = ¢(y,z). Now, if A € Q
and g\(yx; k € Ky) = y, then px(P(2)(yx)i k € Ki) = palolyr, 2)ik €
€ K)\) = ¢y, z) = ¢(z)(y) foreach z € Z. Consequently, ¢(z) : H - G
is a homomorphism for each z € Z. Let A € Q, (23, k € K) € Dy, and
ta(zr;k € Ky) = z. Then from g)(yx; & € K)\) = y it follows that
Pa(@(zn)(yk)i k € Ki) = palelyr, )ik € Ky) = oy, 2) = 8(2)(y).
Because of the idempotency of H,$(z) is a unique homomorphism of
H into GG having this property. Therefore r\(@(zx); k € K)\) = @(2)
and we have shown that $ € Hom(K, GH). Clearly, eo (id, x $) = ¢
and @ is a unique homomorphism of K into G¥ fulfilling this equality.
Consequently, (G | ¢) is a co-universal map for G with respect to the
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functor # x — : IPal, — Pal,. ¢
Corollary 1. [Pal; is a cartesian closed category.
Definition 3. Let G = (X, (px; A € Q2)) be a partial algebra of type 7.

a) G is said to fulfil the interchange law if for any pair of elements
A€ Qfrom (a3l € Ky) € Dy, foreach k € Ky, (pu(en;l € Ky)ik €
€ K\) € D,, and (2p;;k € K)\) € D,, for each [ € K, it follows that
(palzrisk € Ky);l € Ky) € Dy, and palpp(an;l € K )ik € Ky) =
= pu(prleri; k € Kyl € K,).

b) G is called diagonal if for any element A € Q from (ap;! €
€ K\) € D,, foreach k € K and (pa(ap;;l € Ky )k € K\) € Dy, it
follows that (xgr; k € K)) € Dpy and pa(paler;l € Ky )ik € Ky) =
= palzrri k € Ky).

We denote by CPal; or DPal; the full subcategory of Pal, whose

objects are precisely the partial algebras of type 7 fulfilling the inter-
change law or the diagonal partial algebras of type 7, respectively. Next,
we put CDPal, = CPal, NDPal and CDIPal, = CDPal, NIPal.. The
category CDIPal; is obviously initial structured.
Remark 1. For total algebras the notion of interchange law coincides
with the notion of commutativity studied in [5]. On the other hand,
the notion of diagonality in the case of total algebras is more general
than the notion of diagonality defined and studied in [8] (the diagonality
in [8] means both diagonality and idempotency).

The following assertion is a generalization of a result which 1s well
known for total algebras (see e.g. [5]):

Lemma 1. Let G = (X, (px; A € )) € CPal, and H = (Y, (gx; A €
€ Q)) € Pal, be objects. Then there exists a subalgebra of the direct
product G whose underlying set is Hom(H, G).

Proof. Let GIEI = (XV (s:;0 € Q). Let A € Q, (fi;k € Ky) €
€ (Hom(H,G)E> and s\(fi;k € K\) = f. Let p € Q and (y;1 €
€ K,) € Dy, . Then we have f(qu(yi;{ € Ku)) = palfulauly; ! €
€ Kyu))k € Kn) = palpu(fr(w)il € Ku)ik € Ki) = pulpa(fr(yi)i k €
€ Ky\);le K,)=p.(fly);l € K,). Hence f € Hom(H, G). ¢

We denote by [H, (] the subalgebra of G| from Lemma 1.
Proposition 2. Let G = (X,(px; A € Q)) € CDPal, and H =
={Y,(gx; A € Q)) € IPal. be objects. Then GH =[H, G].

Proof. Let [H, G] = (Hom(H, G), (sx; A € ), G¥ = (Hom(H, G), (7y;
A€ Q)) and let A € 2 be an element. Let s)(fx;k € K\) = f and
let (yi;! € Ky\) € Dy, ga(yi;l € Ky) = y. Then f € Hom(H, G)
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and 1(5) = fpn(uil € E2) = pa(fulasusl € Kk € Ky) =
= palpa(fulm )il € Kk € Ky) = pa(fr(yr); k € Ki). The idempo-
tency of I now implies that f is a unique homomorphism of H into ¢
with this property. We have shown that sx(fr;k € Kx) = f)ma(fx; k €
€ K\) = f for each A € 2. As the converse implication results from the
idempotency of {, the proof 1s complete. ¢

Theorem 2. The category IPal; is exponential for CDPal, in Pal;.
Proof. From Prop. 2 it immediately follows that G¥ € CDIPal, when-
ever (G € CDPal; and H € IPal,. Now the statement follows from
Th. 1. &

Corollary 2. CDIPal; is a cartesian closed category.
Example.Some examples of total algebras fulfilling the interchange law
and being diagonal and idempotent can be found in [12] and [13]. In
order to give a non-trivial but simple example of a non-total partial
algebra having the same properties, let X = (X, p) be a set with a
binary relation (i.e. a directed graph). Let V be the binary partial
operation on X for which #Vy is defined (a,y € X) iff zpy and then
#Vy = x, and let A be the binary partial operation on X that is dual

to V, 1.e. Ay is defined iff zpy and then Ay = y. It can easily bee
see that the algebra (X, V, A) € Paliy 5y (where 2 = {0, 1}) fulfills:

(1) (X,V,A) € CPalgy 4,

(2) pis reflexive iff (X, V,A) € [Pal(5 1),

(3) if p is transitive, then (X, V, A) € CDPalg 1),

(4) X is a preordered set iff (X, V, A) € CDPaly 5.
Of course, the same is valid also for each of the algebras (X, V) € Pal,
and (X, A) € Palgy).
Remark 2. a) The Th. 2, in contrast to Th. 1, remains valid also
when restricting our considerations to total algebras. The Cor. 2 then
coincides with a statement from [13].

b) Let us replace the definition of diagonality of partial algebras

with the following, stronger definition: a partial algebra (X, (px; A € Q))
of type 7 is called diagonal if for any A € Q from (2w k € Ky\) € D),
for each & € K it follows that the condition pa(px(2r;;1 € Ka) k €
€ K\) = x isequivalent with p)(agr; k € K)) = «. Then Prop. 2, Th. 2
and Cor. 2 remain valid and, moreover, for mono- {-ary partial algebras
(K a set), l.e. partial algebras of type 7 = (K), the diagonality implies
the validity of the interchange law. Thus, this case, IPal; is exponential
for DPal; in Pal;, and DIPal; 1s a cartesian closed category. Of course,
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for mono-f{-ary total algebras both definitions of diagonality coincide.
If K is a set with card K = 2, then the mono-A-ary total algebras
fulfilling the interchange law are nothing else than the known medial
groupoids (see e.g. [4]).

c) In [12] it is shown that for 7 = (/), where K is a finite set,
the full subcategory of the category DIPal. given by its total objects 1s
cartesian closed. For arbitrary type 7 the cartesian closedness of the
full subcategory of the category CDIPal; given by its total objects 1s
proved in [13]. A necessary and sufficient condition for a total algebra
to be diagonal is given in [10].
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