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Abstract: The objective of this paper is to gain some insight into how well
sparsity is preserved under determinant computations. For a square matrix
A whose elements are indeterminates z1,..., T, and zeros, the determinant
det{4) is a polynomidl in 1,..., T, with integer coefficients. We derive an
upper bound on the number of monomials in det(A) for a class of determinants
which includes bigradients, Sylvester resultants and determinants of Toeplitz
and Hankel matrices. Our approach is based on a result by Stanley in the
theory of partially ordered sets.

1. Introduction

Solving systems of linear and non-linear equations is a fundamen-
tal problem in computer algebra. Since many systems arising in practice
are sparse it is important to develop algorithms which take advantage

of the sparseness of the input (see, for instance, [13], [6], [10], [3]). In
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this context it is interesting to know how well sparsity is preserved un-
der certain basic operations. The objective of this paper is to study
this problem for determinant computations.

Let A be a square matrix whose elements are indeterminates
Z1,...,Ty and zeros. Then the determinant det(A) of A is a poly-
nomial in z1,...,z, with integer coefficients. In this paper we derive
an upper bound on the number of monomials in det(A) for a class
of determinants which includes bigradients (see [5] for a definition),
Sylvester resultants and determinants of Toeplitz and Hankel matrices.
The bound depends on the order of the matrix A and on n, the number
of distinct indeterminates in A.

Qur approach is based on a result in the theory of partially or-
dered sets. We show that there exists a relation between the number of
monomials in det(A) and the size s of the largest antichain in a specific
partially ordered set P. Since P has the Sperner property [8] we easily
obtain a recursive formula for s. Our bound is based on this formula.

For Sylvester resultants of binomials and determinants of three-
diagonal Toeplitz matrices we derive explicit formulas in terms of mono-
mials and show that for these classes the upper bound is attained. In
order to assess the quality of the bound we have computed several ex-
amples and we have compared the bound with the actual numbers.
These comparisons are presented in the last section.

2. The Sperner property in partially ordered sets

We first recall a few definitions from the theory of partially ordered
sets (see, for instance, [2] and [9]). Let P be a finite partially ordered
set with zero element. A subset C of P is called a chain of P if any
two elements of C are comparable. An antichain of P is a subset A
of P such that any two distinct elements of A are incomparable. The
length of a chain C is defined to be |[C| — 1. If every maximal chain of
P has the same length k then we say that P is graded of rank k. In
this case all maximal chains between the same endpoints have the same
length. We define the rank of z € P to be the length of a maximal
chain between 0 and z, denoted by rank(z). Let INV; denote the number
of elements of rank i. The numbers Ny, Ny,..., Ny are called the rank
numbers of P. The rank numbers form a unimodal sequence if there
exists a 7 such that
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N()SNlﬁ...SNj, N]ZZN]‘,
A graded poset P is said to have the Sperner property if the size of the
largest antichain in P is the largest rank number. A map h from P to a
partially ordered set P’ is an isomorphism if  is a bijection and z < y
if and only if h(z) < h(y) for every z,y € P.
Let k € N, | € Ny. We now turn our attention to the poset L(k,1)
defined by

L(k,l) = {(z1,...,zk) | z; integers, 0 <z <22 < ... <z < I}
with order relation < defined by
z=(T1,...,2%) 2y=(y1,...,yk) if z; < y; for each .

Obviously, the poset L(k,[) is graded of rank k! and rank(zr) =
=1+ ...+ zk. Fori¢€ Zlet N(k,l,1) denote the number of elements
of L(k,1) of rank 4. It is well-known (see [2, p.47]) that

(a) the rank numbers of L(k,!) form a unimodal sequence and

(b) N(k,1,i) = N(k,1, kl — i) for each i.

Using deep algebraic methods Stanley showed that L(k,!) has the
Sperner property [8]. Hence, together with (a) and (b), we obtain the
following theorem. :

Theorem 1. The largest antichain in L(k,l) has cardinalily
N(k,l,|kl/2]).

It follows from the definition of L(k,l) that the N(k,[,1) satisfy
the following recurrence: ‘

N(1,1,i) =1 if0<i<l,
N(1,l,1)=0 otherwise,

l
N(k,1,i)=> N(k—1,4,i—j) ifk>1.

3. A bound on generalized bigradients

We use the result in the previous section to obtain a bound on the
number of monomials in a specific type of determinant which we will
call generalized bigradient.

Throughout this paper let m € NO, neN z1,...,Zr, Y1, s
distinct indeterminates and A = (a;,;) a square matrlx of order m +
+ n such that for every i € {1,...,m}, j € {m+1,...,m+n} and
ke{l,...,m+n}
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aik € {21,...,2,,0} and a;x € {y1,...,¥s 0}.
Then its determinant can be written as a polynomial in the z’s and y’s
with integer coefficients, i.e.

(1) | det(4) = ) cpgzPy?,

where p = .(pla-" apr) € NT) q = (q17 . )QS) € N87 zP = iL;
y? = [1;y. Define S(4) := {(p,q) € Nj** | cpg # 0}. Note that
S(A) C Sr, x S2, where

S = {(c1,...,c;) €N ]ch:i}.

We call det(A) a generalized bigradient if 1t has the following property:
For every p € ST and every q = (ql,... 14s), @ = (d4,...,4d}) € Cp
with g # ¢’ there exists a j € {1 . .5'} with

Zqz>2q“

where Cp, := {g € S2 | (p, q) E S( )}

We now assume that det(A) is a generalized bigradient and derive
a bound on the number of monomials in det(A), i.e. a bound on the
cardinality of S(A). Obviously,
(2) 1S(A)= " Cyl-

peST,

We define a partial ordering < on S2. Let ¢ = (g4, ... ,qs) and ¢’ =
= (g1, .. ,4;) be elements of S5. Then

J J
¢=q if > <Y g for j=1,...,s

= =
By definition of generalized bigradients, »
(3) Cp is an antichain for every p € ST.
We define a map h from S5 to L(s — 1,n) by
(g1, ,8) = (g @1+ a2, @1+ @2+ +gs1).
Lemma 1. The map h is an isomorphism between the posets S and
L(s—1,n).
Proof. Obviously, & is well-defined and injective. For a given (uq,...
s 'U's—l) € L(S - la'n')
(ur,ug —uy, ..., Us—1 — Us_g,n — us_1) €S,
is mapped to (u1, ... ,us—1). Hence, his surjective. Let ¢ = (q1,--- ,qs)
and ¢' = (¢}, ... ,q,) be elements of S2. It follows from

pz
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J J
g=q iff ZqiSZqz{ for j=1,...,s iff h(q) Xh(d)
i=1 =1

that h is an isomorphism. ¢
Theorem 2. Ifdet(A) is a generalized bigradient the number of mono-
- mials in det(A) is at most

@ N(s=1,m (= Dn/2))- ("7 1),

where for everyk €N, | e Ny andi € Z
N(1,1,7):
N(1,1,7) :

if 0 <1<,

1
0 otherwise,

l
N(k,1,i):=Y N(k—1,4,i—3) ifk> 1.
J=0

Proof. Let p € S7,. By Lemma 1 and (3), the sets C, and h(C,) have
the same cardinality and h(C}) is an antichain in L(s—1,n). Hence, by
Th. 1, the number of elements in Cy, is at most N(s—1,n, |(s — 1)n/2]).

Together with (2) and
- m-+r—1
sl = ("0,

this proves the bound. ¢
Using induction and the recursion formula for binomial numbers
(see, for instance, [1, p.160]) we obtain for every k € N, | € Ny and
t €7
I+k-1
N(k,1,4) < ( +l >

and therefore the simpler but weaker bound

(5) 1S(4)] < ("”*T;‘1> - (”“*2).

n
Hence, for fixed r and s the number of monomials in det(A) is bounded

by a polynomial function in m and n of total degree r + s — 3.
4. Which determinants are generalized bigradients?

Let t € Nwith m < tand n < ¢, z1,...,%21,%2t,Y1,. .-
- 1 Y2t—1, Yot distinct indeterminates and B = (b; ;) the 2¢ x 2¢-matrix
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ry T ... Tot
0 ry ... T2t—-1
Y1 Y2 -.- Y2
0 w1 ... Y21

with ¢ rows of z’s and ¢ rows of y’s.
Theorem 3. Assume that A = (a; ;) is a submatriz of B obtained by
deleting t — m arbitrary z-rows, t — n arbitrary y-rows and 2t —m —
— n arbitrary columns. Then the determinant of A is a generalized
bigradient. '
Proof. Let v1, ..., Umin, Wi« s Wmtn € {1,...,2t} such that v; <
<vg < oo < Ui, W1 < W2 < ... < Wmtn and a;,j = by, w; for every
i,5 € {1,... ,m+ n}. By definition,

Q5 = iIij_,ui+1 if 1 <m, Wy — U > 0,

Qij = Yw;—vi+14t I 1>, wy — v 2 —t,

a;; =0 otherwise.
Let (p,q) = (P1,---,P2t:41,--- ,q2t) € S(A) and o a permutation of
{1,...,m+n} with

m+n
11 aicw) = =Py
=1

Hence, for k € {1,...,2t}
Pr = |{’i€{1,... ,m}lwa(i)—vi+1:k}[,
a={ie{m+1,...,m+n}|wouy —vi +1+t =4k}
Therefore

m-n
kak+Qk (ng(,)—vl—{-l)-}—( Z wa(i)_vi+1+t)=
i=m+1
m+n m+n+
:m—i—n-{-tn—l—zwi—zvi,
=1 i=1

Let p € S2 and ¢ = (q1,. .. ,q2¢), @' = (ah, - - - +dhe) € Cp with g # ¢
Then

2t

> k(gr —qi) = 0.

k=1
Thus,
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ZQL > qu

for some j € {1,...,2t}. ¢

Assume that the determinant of the matrix A is a generalized
bigradient and that the matrix A’ has been obtained from A by substi-
tuting zeros for some indeterminates. Then it is obvious that det(A’)
is a generalized bigradient as well. Therefore, we obtain the following
two corollaries.
Corollary 1. Each of the following conditions implies that det(A) is
a generalized bigradient:

(a) det(A) is a bigradient.

(b) det(A) is a Sylvester resultant.

(c) det(A) is a determinant of a Toeplitz matriz.

(d) det(A) is a determinant of a Hankel matriz.
Corollary 2. Letz1,... ,Tr,Y1,--- ,Ys be distinct indeterminates, [ =
= g12M 4. .4 z,.2% and g = y12% +. .. +ys2° univariate polynomials
in z and S(4, f,9) = ¢;j2° + ...+ co the j-th subresultant of f and g,
where 0 < j < min(m,n), n := deg(f) and m := deg(g). Then ¢;
is a generalized bigradient for every i € {0,...,j} and the number of
monomials in S(J, f,g) is at most

G+1): Nis—1n—7, (s - Dn—)/2)) (’”““’ﬁ‘l)-

m-—=7

5. Formulas for restricted classes of determinants

In this section we derive explicit formulas for two restricted classes
of determinants and show that for both classes bound (4) is actually
attained.

Theorem 4. Let z1,%2,Y1,Yy2 be distinct indeterminates and f =
— £,2" + 75 and g = y12™ + Y2 univariate polynomials in z. Then
the Sylvester resultant of f and g is of the form

res(f, g) (961 g+ (~1) "oy ),
where d := ged(m,n), m' == m/d and n' = n/d
Proof. Define f' := z12" + 3 and ¢’ := ylz m' 4 y, and let B =
= (b;,;) be the Sylvester matrix of i and ¢ and o a permuta,tlon of
{1,...,m' +n'} such that b; ;¢ # O for every i € {1,...,m'+ n'}.
Then
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/

o(i)=% oro(i)=i+n" fori=1,...,m and

o(j)=j5 oro(f)=j-m' forj=m'+1,...,m +n'
Assume that ¢ has a k-cycle (I1,1,...,I;) with 1 < k < m/+n'. Since
lity1 =1l;+n' or ;11 = 1; — m' it follows that there exist 0 < i < n’ and
0 < j < m' with 4m’ = jn'. This is a contradiction because m' and n’
are relatively prime. Therefore,

o(i) =1 : fori=1,...,m'+n" or
o(i)=i4+n', c(j)=j—-m' fori=1,...,m, j=m'+1,...m +n'
and . L

(6) res(f',9') = 21" yy + (1) "2y}

Since res(f’, g') can be represented as symmetric function of the roots
of f" and g’ (see [12 p.107]) we obtain

res(f, g) = res(f'(z%), g'(2%)) = res(f’, g)°
and together with (6) the desired formula. ¢

Hence, the number of monomials in res(f, g) is ged(m,n) + 1. If
m = n then this number is m + 1 and bound (4) as well as bound (5)
is attained. Note that

res(z"f, g) = y5 res(f, g).
Therefore, Th. 4 can be used for computing Sylvester resultants of
arbitrary binomials. ,

Let I,n € Nwith 1 <1 <n—1 and let y1,...,y2y1 be distinct
indeterminates. We now turn to 2/+1-diagonal Toeplitz matrices Iy =
= (t;,;) of order n defined by

t',;,j = Yj—ip i+l if —1 < j — 1 < l and ti’j =0 otherwise.
Marr and Vineyard [7] give a closed expression for determinants of five-
diagonal Toeplitz matrices T3 , which involves Chebyshev polynomials
of the second kind of order n+1. In the following theorem we present a
decomposition of determinants of three-diagonal Toeplitz matrices into
a sum of monomials.

Theorem 5. The determinant of T4 ,, has the form

tn/2) o o

et = Y ("7 ) (-0ivid
=0

Proof. The proof of this formula easily follows from the recurrence

relation
det(T1,n) = y2 - det(T1 n—1) — y1ys3 - det(Thn_2)
and the recursion formula for binomial numbers. ¢
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For n x n Toeplitz matrices with 3 indeterminates bound (4) be-
comes

N(2,n,n) = ZN(l,],n 7) Z N(1,j,n—j7)=|n/2] + 1.
j=[n/2]
By Th. 5, this upper bound is exact for three-diagonal Toeplitz matri-

ces.

6. Computational experiments and open problems

Motivated by Th. 4 we consider Sylvester resultants of the follow-
ing form: for natural numbers 4, j let R;; be the Sylvester resultant
of

;29 + 2120V 4 41z, and ;24 + yq;_lz(i“l)j + ...+ yo,
where z;, ... ,Tg, Y, ... , Yo are distinct indeterminates. We know from
Th. 4 that bound (4) gives the exact number for i = 1. For small 7 >
> 1 we have increased j as much as possible. For those R; ; which we
could compute bound (4) is approximately twice the exact number of
monomials in R; j. The results are listed below. The first row gives the

exact number of monomials in the resultant, the second row gives the
bound.

Ro1 Ras Rg10 Rp1s Rapoo Rapes R3zi Rss R3s Rai Ryp
7 201 1252 3976 9051 17207 34 1530 13382 219 6054
12 396 2541 7936 18081 34476 60 3300 29376 560 16335

We know from Th. 5 that bound (4) gives the exact number of mono-
mials in the determinant det(T} ) of a three-diagonal Toeplitz matrix
for every order n € N. The results below show that also for small i > 1
bound (4) is close to the exact number of monomials in det(T; ). Again
the first row gives the exact number, the second row gives the bound.

Toaz Toe Tog To12 To1s5 T2as Tz21 To2a Toor To30
5 14 43 85 148 225 360 517 713 921
5 18 43 86 150 241 362 519 715 956

T34 T35 T37 T3s 310 T311 T3,33 T334 T3,16 13,17
16 31 86 141 314 462 901 1202 2123 2717
18 32 94 151 338 480 920 1242 2137 2739

Tas Tae Tar Tas Tao Taio Tann
58 131 270 478 830 1339 2270
73 151 289 526 910 1514 2430
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In this paper we have presented an upper bound on the number
of monomials in det(A). We also consider it interesting to derive lower
bounds on the number of monomials and formulas respectively bounds
for the coefficients ¢, in the decomposition (1) of det(A) (see [4]).

The convex hull of S(A4) in R™*¢ is called the Newton polytope of
det(A). An interesting problem is the characterization of the Newton
polytopes of specific classes of determinants. This has been done for
Sylvester resultants and multivariate resultants in [4] respectively [11].
Acknowledgement. I am grateful to Rafael Sendra and Bernd Sturm-
fels for many interesting discussions.
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