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Abstract: By using relator spaces instead of topological and uniform spaces,
we extend, unify and supplement several standard characterization theorems
on compactness and precompactness.

Introduction

In this paper, we show that the following basic characterization
theorems of Kelley [11, p. 136], G4l [9] and Sieber and Pervin [20] can be
nicely extended to relator spaces [21], [24], which are, in a certain sence,
the ultimate reasonable generalizations of Weil’s uniform spaces [30].
Theorem 1. A topological space X is compact if and only if every
family of closed subsets of X having the finite intersection property has
a non-void intersection.
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Theorem 2. A topological space X is compact if and only if every net
in X has a convergent subnet.

Theorem 3. A regular topological space X is compact if it has a dense
subset A such that every net in A has a subnet which converges in X .
Theorem 4. A quasi-uniform space X is precompact if and only if
every net in X has a Cauchy subnet.

Theorem 5. A quasi-uniform space X is compact if and only if it is
both complete and precompact.

Theorem 6. A topological space X is compact if and only if it is com-
plete with respect to every quasi-uniformity which generates its topol-
0gy.

More precisely, taking up an unnoticed idea of Konishi [12, p. 169]
and Nakano-Nakano [17, p. 211] that compactness is actually a partic-
ular case of precompacness, we show that Th. 4 has a far reaching
generalization which easily yields several extensions of the above theo-
rems.

1. A few basic facts on relators

If R is a family of binary relations on a set X, then we say that
the family R is a relator on X and the ordered pair X(R) = (X, R) is
a relator space. (See [21] for the origins.)

If (z4) is a net in X(R), then limg (z,) (adhg(zs)) denotes the
set of all points z in X such that (z,) is eventually (frequently) in R(z)
for all R € R. (See [11, p. 65].)

The net (z,) is called convergent (adherent) if limg(zy) # 0
(adhg (zs) # 0). Since a can now be required to run only in a nonvoid
preordered set, a convergent net need not be adherent.

If Ais aset in X(R), then A~ = clp(4) (A° = intg(A)) denotes
the set of all points z in X such that R(z) N A # 0 (R(z) C A) for all
(some) R € R.

The set A is called closed (open) if A~ C A (A C A°). Since
now the set A~ (A°) need not be closed (open), the closed (open) sets
cannot play an important role here.

If R is a relator on X, then the relator R™' = {R™': Re R} is
called the inverse of R, and the relators
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R*={ScX?:3ReR:RcC S},
R#* ={ScX*:VACX:3ReR:R(4) c S(4)},
R"={ScX?:Vze X:3ReR: R(z) C S(z)}
are called the uniform, prozimal and topological refinements of R, res-
pectively.

The latter terminology is mainly motivated by the fact that if R #
#0, then R" is the largest relator on X such that limgs=limg (athA =
=adhz ) or clpa = clp (int'R/\ = intp )

Two relators R and S on X are called topologically (proximally)
equivalent if R" = 8" (R# = S#). Therefore, relators generating the
same closed (open) sets need not be topologically equivalent.

If R is a relator on X, then we say that:

(1) R is non-degenerated if X # 0 and R # 0; R is non-partial if
R(z)# 0 forall z € X and R R.

(2) R is reflerive if each R € R is reflexive; R is quasi-topological
if z € R(z)°° for all z € X and R € R; R is topological if R is reflexive
and quasi-topological.

(3) R is topologically symmetric if for each z € X and R € R
there exists an S € R such that S(z) C R~ !(z); R is topologically
transitive if for each x € X and R € R there exist S,T € R such that
T(S(z)) C R(z).

(4) R is strongly symmetric if each R € R is symmetric; R is
uniformly filtered if for each R,S € R there exists T € R such that
TCRNS.

Whenever a relator R on X has a property P, then we also say
that the relator space X (R) has the property P. Moreover, if the inverse
relator R~! is P, then we also say that R is inversely P.

Quite similarly, a subset A of a relator space X (R) is called in-
versely dense if clr-1(A) = X. Therefore, a dense subset of a topolog-
ically symmetric relator space is inversely dense.

Finally, we remark that a family A of subsets of a set X is called
centred 3, p. 57] if the family A’ of all finite intersections of members
of A does not contain the empty set.

A family A of subset of a relator space X (R) is called an interior
cover [1, p. 285] of X(R) if the family A° = {4° : A € A} is a cover
of X in the sense that | JA° = X.




106 A. Sziz

2. Cauchy nets and a mixed completeness

Definition 2.1. A net (z,) in a relator space X (R) is called conver-
gence (adherence) Cauchy if it is convergent (adherent) in each of the
spaces X ({R}), where R € R. Moreover, (%) is called uniformly, proz-
amally and topologically convergence (adherence) Cauchy if it is conver-
gence (adherence) Cauchy in the spaces X(R*), X (R#) and X (R"),
respectively.

The appropriateness of this unusual definition and the validity of
the next important theorem have been partly established in [26].
Theorem 2.2. If (z,) is a net in a relator space X(R), then the
following assertions are equivalent:

(1) (z4) is convergent (adherent);

(2) (z4) is topologically convergence (adherence) Cauchy.
Remark 2.3. Hence, it is also clear that a convergent (adherent) net
is, in particular, convergence (adherence) Cauchy.

Definition 2.4. A relator R on X is called directedly convergence-
adherence complete if each directed convergence Cauchy net in X (R) is
adherent. Moreover, R is called uniformly, prozimally and topologically
directedly convergence-adherence complete if the relators R*, R#* and
R are directedly convergence-adherence complete, respectively.

The appropriateness of this particular definition and the validity
of the next useful theorem have also been established in [26].
Theorem 2.5. IfR is a relator on X, then the following assertions
are equivalent:

(1) R is directedly convergence-adherence complete;
(2) each directed universal convergence Cauchy net in X (R) is con-
vergent.

Remark 2.6. Note that a net may naturally be called universal if it is
eventually in every set in which it is frequently.

3. Uniform, proximal and topologiéal compact-
nesses

Definition 3.1. A relator R on X will be called compact if for each R
in R there exists a finite subset A of X such that R(A) = X. Moreover,
R will be called uniformly, prozimally and topologically compact if the
relators R*, R¥ and R are compact, respectively.
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Remark 3.2. Because of the inclusions R C R* ¢ R¥ c R", it
is clear that “topologically compact” = “proximally compact” =—>
= “uniformly compact” = “compact”. Moreover, using the cor-
responding definitions, one can easily see that “compact” also implies
“uniformly compact”, and thus these latter terms are equivalent. On
the other hand, the next useful constructions show that in general “uni-
formly compact” == “proximally compact” =~ “topologically com-
pact”.
Theorem 3.3. If R is an inversely non-partial relator on a nonvoid
set X, and for each z € X and R € R we set Vg gy C X x X such that
Vie,r)(2) =X if z=12 and Vi p(2z)=R(2) if zeX\{z},
then

VR ={Vier :z€X, RER}
15 a uniformly compact relator on X such that R and Vi are prozimally
equivalent.
Proof. Since Vi, gy({z}) = X for all z € X and R € R, it is clear that
Vz is, in particular, compact, and hence it is also uniformly compact.
Moreover, since R C V(3 gy for all z € X and R € R, it is clear that in

particular we have Vg C R* C R*, and hence (Vg)* c R%.
On the other hand, if R € R, and A is a proper subset of X and
z € X \ A, then it is clear that

‘/(.'z:,R) U 7V(.'E R) CI,) U R
acA a€A
Moreover, if R € R and ¢ € X, then since R is inversely non-partial it
is clear that
Vie,r)(X) = X = R(X).
Therefore, R C (Vz)¥, and hence R#* C (Vg)¥ is also true. Conse-
quently, R* = (Vz)¥. ¢
As an immediate consequence of this theorem, now we can also
state
Example 3.4. If X is an infinite set and R = {Ax}, then Vg is a
uniformly compact relator on X such that Vg is not proximally com-
pact. Namely, we now have Ay € R C R* = (Vg)¥, and thus (Vg)¥*
cannot be compact.
Remark 3.5. Note that in this case the relators (Vg)' and (Vg) ™" are
not compact either.
Analogously to Th. 3.3, we can also prove the following more
important
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Theorem 3.6. IfR is a relator on X, with card(X) > 1, and for each
z € X and R € R we set W, gy C X X X such that
Wer(2) =R(z) if z=z and Wger(z)=X if z€X\{z},
then
Wr={Wgr:z€X, RER}
is a prozimally compact relator on X such that R and Vg are topolog-
1cally equivalent.
Proof. If a,b € X, with a # b, and A = {a, b}, then we evidently have
Wiz,r)(A) = Wiz,r)(a) UW(g R (b) = X
for all z € X and R € R. And hence, it is clear that we also have
W(A) =X forall W € (Wg)¥. Thus, Wg is, in particular, proximally
compact.
On the other hand, since
v RC W(m,R) and W(:z:,R) (:L‘) = R(.’L‘)
for all z € X and R € R, it is clear that in particular we also have
W C R* CRN and R cC (We)",
and hence R = Wg)". ¢
As an immediate consequence of this theorem, now we can also
state
Example 3.7. If X is an infinite set and R = {Ax}, then Wr is a
proximally compact relator on X such that Wxg is not topologically
compact. Namely, we now have Ax € R C R" = (WR)A, and thus
(Wg)" cannot be compact.
Remark 3.8. Note that in this case the relators (Wg)' and (Wg)™"
are also compact.

4. Generalized sequential characterizations of com-
pactnesses

Theorem 4.1. If R is a relator on X, then the following assertions
are equivalent:
(1) R is compact;
(2) each directed net in X (R) is adherence Cauchy;
(3) each directed universal net in X (R) is convergence Cauchy;
(4) each directed net in X(R) has a directed convergence Cauchy
subnet;
(5) each directed net in X (R) has a directed adherence Cauchy sub-
net.
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(6) each directed net in X(R) has an adherence Cauchy subnet.

Proof. If (2) does not hold, then there exist a directed net (z,) in
X(R) and an R € R such that (z4) is eventually in X \ R(z) for all z €
€ X. On the other hand, if (1) holds, then there exists a finite subset A
of X such that X = R(A) = [J,c4 R(a), and hence (), 4(X \ R(a)) =
= (). Hence, because of the directedness of (z,), it follows that (z,)
is eventually in the empty set, which is a contradiction. Therefore, (1)
implies (2).

The implications (2) = (3) = (4) = (5) are immediate con-
sequences of the facts that

(a) each adherent universal net is convergent;

(b) each directed net has a directed universal subnet [10, Th. 20];

(c) each directed convergent net is adherent. Moreover, (5) triv-
ially implies (6).

Therefore, we need only show that (6) also implies (1). For this
note that if (1) does not hold, then there exists an R € R such that
for each finite subset A of X there exists an z4 € X such that x4 ¢
¢ R(A). Hence, by directing the family of all finite subsets of X with
the ordinary set inclusion, we can at once state that (z4) is a directed
net in X(R) such that (z4) has no adherence Cauchy subnet. And
thus (6) cannot hold. Namely, if (z4,) is an adherence Cauchy subnet
of (z4), then there exists an z € X such that (z4,) is frequently in
R(z). Moreover, there exists an g such that {z} C A, for all a > ay.
Hence, by choosing a; > ag such that z4, € R(z), we clearly have
T4, € R(Aq,), which contradicts the choice of (z4). ¢
Remark 4.2. Note that the standard sequential proof of Kelley [11, p.
199] cannot be applied in the present generality.

From Th. 4.1, by Th. 2.2, it is clear that we also have
Theorem 4.3. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically compact;

(2) each directed net in X(R) is adherent;

(3) each directed universal net in X (R) is convergent;

(4) each directed net in X(R) has a directed convergent subnet;
(5) each directed net in X (R) has a directed adherent subnet;
(6) each directed net in X (R) has an adherent subnet.

Remark 4.4. Note that traditionally the corresponding particular cases
of Th. 4.3 are considered to be completely independent from those of
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Th. 4.1. (See, for instance, [11, pp. 136].)

From Th. 4.3 and 4.1, by Th. 2.5, it is clear that we also have
Theorem 4.5. If R is a relator on X, then the following assertions
are equivalent:

(1) R is topologically compact;
(2) R is compact and directedly convergence-adherence complete.

Moreover, from Th. 4.5, by Th. 3.6, it is clear that we also have

Theorem 4.6. If R is a relator on X, with card(X) > 1, then the
following assertions are equivalent:

(1) R is topologically compact;

(2) each relator on X which is topologically equwalent to R is di-
rectedly convergence-adherence complete.

Remark 4.7. Note that this theorem is only a partial extension of [20,

Th. 2.2] of Sieber and Pervin, which is also only a partial extension of
the famous Niemytzki—-Tychonoff theorem [19].

5. Covéring characterizations of topological com-
pactness

Theorem 5.1. If R is a relator on X, then the following assertions
are equivalent:
(1) R is topologically compact;
(2) if (Aq) is a decreasing directed net of nonvoid subsets of X, then
NAz #0;
(3) if (Aqa) is a increasing directed net of proper subsets of X, then
UAS # X.
54

Proof. If (z,) is a directed net in X(R), then the family (A,) of the
sets A, = {Zp}p>a is a decreasing directed net of nonvoid subsets of
X(R). Moreover, by the corresponding definitions, we have

adhr(z,) = ﬂA;.

«
Hence, by Th. 4.3, it is clear that (2) implies (1).
On the other hand, if (A,) is a decreasing directed net of nonvoid
subsets of X(R), then by choosing a point z, in each A, we can at
once state that (z,) is is a directed net in X (R) such that
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ath(wa) = m ({.’L’ﬁ}gZQ)_ C ﬂA;.

«
Hence, again by Th. 4.3, it is clear that (1) also implies (2).

Finally, we note that the equivalence of the assertions (2) and (3)
is an immediate consequence of the De Morgan’s laws and the simple
fact that X \ A° = (X \A)" foral AC X. {

This intermediate theorem allows us to easily get the following
more familiar ‘

Theorem 5.2. IfR is a relator on X, then the following assertions
are equivalent:

(1) R is topologically compact;

(2) each centred family A of subsets of X (R) satisfies (A~ # 0;

(3) each interior cover B of X(R) has a finite subcover.
Proof. If (A,) is a decreasing directed net of nonvoid subsets of X (R),
then the set {A,} is a centred family of nonvoid subsets of X(R).
Hence, by Th. 5.1, it is clear that (2) implies (1).

On the other hand, if A is a centred family of subsets of X(R),
then 4’ is a nonvoid directed set of nonvoid subsets of X (R) with
respect to the reverse set inclusion such that A C A’. Thus, by con-
sidering the net (A)aec.ar, we can again apply Th. 5.1 to show that (1)
also implies (2). :

The equivalence of the assertions (2) and (3) is again an immediate
consequence of the De Morgan’s laws and the fact that a subset X (R)
is open if and only if its complement is closed. ¢

From Th. 5.2, by [22, Th. 2.3], it is clear that in particular we also
have
Theorem 5.3. If R is a topological relator on X, then the following
assertions are equivalent:

(1) R is topologically compact;

(2) each centred family A of closed subsets of X(R) has a nonvoid
intersection;

(3) each open cover B of X(R) has a finite subcover.

Remark 5.4. By the corresponding theorems, it is clear that the im-
plications (1) == (2) <= (3) do not require R to be topological.

On the other hand, the next simple example shows that the im-
plication (3) = (1) does not, in general, hold if R is not topological.
Example 5.5. If X is the set of all real numbers and R C X x X such
that
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R(z) =] - 00,2] U {z + 1}
for all z € X, then R = {R} is a noncompact relator on X such that
and X are the only open subsets of X (R). '

6. Denseness conditions implying compactnesses

A simple reformulation of Def. 3.1 gives
Theorem 6.1. If R is a relator on X, then the following assertions
are equivalent:

(1) R is compact;
(2) each of the spaces X ({R}), where R € R, has a finite inversely
dense subset.

Proof. Because of the corresponding definitions, we evidently have
C].{R}—-l (A) = R(A)

for all A ¢ X, and hence the equivalence of (1) and (2) is immediate. ¢

Hence, it is clear that in particular we also have
Corollary 6.2. A strongly symmetric relator R on X is compact if
and only if each of the spaces X ({R}), where R € R, has a finite dense
subset.

Moreover, as another easy consequence of Def. 3.1, we can also
state
Theorem 6.3. If a relator space X(R) has a finite inversely dense
subset A, then X (R) is is prozimally compact. '
Proof. Because of the corresponding definitions, now we evidently have

X =clg-1(4) = (] R(A).
RER

This implies that R(A) = X for all R € R. And therefore, we also have
S(A) =X for all S € R#. {

- Hence, it is clear that in particular we also have
Corollary 6.4. A topologically symmetric relator space X (R) having
a finite dense subset is prozimally compact.

The fact that this sufficient condition is very far from being nec-
essary is apparent from the next simple
Example 6.5. If X = [0,1] and for each positive integer n we set

Ro={(z,y) e XxX: [z~y|< 1/n},
then R = {Rn}:;1 is a strongly symmetric and topologically compact
relator on X such that the space X (R) has no finite dense subset.
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Moreover, as an important addition to Th. 4.3, we can also prove
Theorem 6.6. If an uniformly filtered and topologically transitive rela-
tor space X (R) has an inversely dense subset A such that each directed
net in A is adherent in X (R), then X (R) is topologically compact.
Proof. Note that if A is in inversely dense subset of X (R), then

X =cg-1(4) = [ R(A).
ReR
Therefore, if (£o)acr is a net in X, then for each « € T and R € R
there exists a point y(,, R) in A such that

Zo € R (y(a,m)) -
Moreover, if I' is directed, then because of the uniform filteredness of
R the family

(y(a,R) el R e ’R)
can be made into a directed net by setting
(a,R) < (o, R) <= « < BandS C R.
Therefore, if each directed net in A is adherent in X (R), then there
exists a point z in X such that
z € adhg (Y(a,R)) -
Hence, because of Th. 4.3, it remains only to show that now we also
have z € adhg (z,). For this, note that if Ry € R, then because of the
topological transitiveness of R, there exist U,V € R such that
V(U(z)) C Ry(x).
Moreover, if ag € T', then because of z € adhg (y(a,R)) there exist
a€l'and R € R, with @ > ag and R C V, such that
Y(a,r) € U(z).

Hence, since

To € R (Y(a,R))
it is clear that

zo € R({U(z)) C V (U(z)) C Ro(z). ¢

Remark 6.7. Note that a relator space X(R) can have an inversely
dense subset if and only if it is inversely non-partial.

From Th. 6.6, it is clear that in particular we also have
Corollary 6.8. An uniformly filtered, topologically transitive and topo-
logically symmetric relator space X (R) is topologically compact if it has
a dense subset A such that each directed net in A is adherent in X (R).
Remark 6.9. Hence, by using Davis [4, Th. 4], one can easily get a
slight improvement of Gal’s theorem [9].
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7. A few supplementary notes and comments

Because of the corresponding definitions of Murdeshwar-Naimpal-
ly [16, pp. 48-49] and Fletcher—Lindgren [7, pp. 12 and 51}, a compact
relator may be called precompact, but cannot be called totally bounded.

The use of the term “compact” instead “precompact” and the
second part of Def. 3.1 are well motivated by our former treatments of
the various continuities and connectednesses [21] and [13].

Th. 3.6 is closely related to [20, Lemma 2.1] of Sieber and Pervin.
Note that according to [24, Th. 9.6] each reasonable generalized closure
can be derived from a relator.

Th. 4.1 greatly extends and supplements not only the correspond-
ing theorems of Kelley [11, p. 189] and Sieber and Pervin [20], but also
those of Davis [5] and Konishi [12, p. 170].

The useful idea of deriving Th. 4.3 from Th. 4.1 has also been
suggested by Konishi [12]. It reveals a remarkable advantage of relator
spaces over quasi-uniform spaces.

Because of a striking proof of Frank [8], it is possible that Th. 4.1
can also be derived from Th. 4.3. This derivation however seems now
to be quite artificial in the light of our present treatment.

Traditionally, a very particular case of Th. 4.3 is derived from that
of Th. 5.3. And the corresponding particular cases of Theorems 5.1 and
5.2 remain usually annoticed.

Th. 5.2 came directly from the statements 41 A.9 and (5.3.1) of
Cech [1, p. 783] and Csészdr [3, p. 193], who also applied some reverses
of Kelley’s treatment [11, p. 136].

The proof of Th. 6.6 is largely based upon that of Davis [5, Th. 5].
Despite that regularity is necessary in Gal’s theorem [9], the conditions
of Th. 6.6 and its corollary can still be weakened.

Finally, we remark that according to [27], [15] and [28] there
are some further important refinements and modifications of a relator.
Therefore, some further particular cases of the present definition of
compactness should also be investigated.

Moreover, the corresponding A-compact relators, where A is a
suitable family of cardinal numbers, should also be investigated. Note
that a relator R on X may be called A-compact if for each I € R there
exists set A C X, with card(A) € A, such that R(4) = X.
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