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Abstract: Spectral representations of the multiple sampling cardinal series
expansion for a non-band-limited homogeneous random field are established.
With the help of obtained representations mean-square aliasing error upper
bounds are derived and the structure of the aliasing error is discussed.

1. Introduction

The spectral representation of a random signal plays a very useful
role in the sampling restoration error analysis since the Hilbert-space
background and the related correlation theory of homogeneous random
fields. The well-known isometry between the Hilbert-space of the con-
sidered field and the Lo-space of the functions integrable with respect to
the corresponding spectral measure ensures the easy derivation of the
upper bound for the mean-square aliasing error in the sampling restora-
tion procedure with the usual multiple Kotel'nikov—-Shannon formula.

The mean-square restoration problem connected to the aliasing
error of non-band-limited (NBL) stochastic signals by its sampling car-
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dinal series (Kotel'nikov-formula) has been considered by Brown (1978),
Pogény (1995), Pogdny and Perunici¢ (1992) (weakly stationary sto-
chastic processes); Kambo and Mehta (1980), Habib and Cambanis
(1981) (harmonizable random processes); Pogany (1991; 1993), (homo-
geneous random fields). Spectral (or Fourier integral-form) represen-
tations of the sampling cardinal series expansion (SCSE) for random
signals are obtained in Habib and Cambanis (1981) with sufficient con-
ditions and in Poginy (1995) by sufficient and necessary conditions
upon the spectral measure of the considered stochastic process. At this
point we have to remark that all this restoration and spectral represen-
tation formulas deal with the uniform sampling case.

The main goal of this paper is to establish such representation for
multiple SCSE for the NBL homogeneous random fields (HRF). Also
we discuss the convergence problems of the multiple SCSE when the
bandwidth vector W increases to infinity and we obtain mean-square
aliasing error upper upper bounds, generalizing in the same way the
well-known Brown bound to the multidimensional case.

2. Preliminary definitions and results

We define on a probability space (2, F,P) the complex random
field as a random function {(w,x) : Q@ x X — C, X CR". If r =
= 1 then £(x) := £(w,x) is a stochastic process. If 7 > 1 then £(x)
is an r-dimensional random field (RF). Troughout this paper we will
consider random fields with the finite second moment, i.e. we assume
El¢(x]? < oo.

Let us consider an r-dimensional RF {{(x)| x € R"} defined on
the probability space (Q, F,P). The RF £(x) is said to be homogeneous
if its mathematical expectation E£(x) is constant (zero, for simplic-
ity!) and when its correlation function K(x,y) 1= E{(x)£*(y) depends
only on the difference x —y = (z1 — y1, --+, Tr — Yr), L.e. K(x,¥) =
=K(x-y,00=Kx-y)?

The value K(0) is the variance of the HRF £(x), i.e. 02£(x) =
= B|¢(x|? = K(0). Since we concentrate our attention to the non-band-

1If E£(x) # 0 then the HRF &o(x) := £(x) — E£(x) has the mathematical
expectation equal to zero; the analysis entails no restriction and &p contains all
informations about the field £.

2The asterisk * denotes complex conjugation.
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limited HR, case, the field £(x) and its correlation function possess the
following spectral representations:

(1) €0 = [ eNaz(); K00 = [ etNaae,
Rr Rr
where (x, ) = ZZ:; Ti Ak is the inner product of the r-dimensional

vectors x and A; Z(X) is the random spectral field and ®()) denotes the
spectral distribution function of {(x). Moreover d®()\) = E|dZ())|? and
Z() possesses orthogonal increments, see Yaglom (1987a; 327-329).
The sampling cardinal series expansion (SCSE in the sequel)
§W (x) with respect to the given choice of bandwidth-vector W = (wy,- -
,wr); w; > 0,7 =1,r for the considered NBL HRF £(x) is defined

as
j=r nj=00 k=r ,

(2) Ew(x) : Z Z (z™) H sinc(wg Ty — ng7),
j=lnj=—o00 k=1

where sinc(t) := 2 for ¢ # 0 and sinc0) := 1; the quantity ™ runs

over the lattice

LOW) = {(%12’ TZ”) Inj € z}
™

The truncated sampling expansion {w, v (x) with respect to the given W
and to the glven coordinatewise sampling sizes N;, j = 1,7 is defined
by the expression

j=r

(3) Ew,n(x) = Z Z £(z™) H sinc(wgzy — nEm).

J=1|n;|<N; k=1

wy ?
denotes the multiindex (Ny,---, N,.). ‘
The 2w-periodic extension of the Fourier-kernel e’ from (—w, w)
to the whole real axis possesses the Fourier-series
Z e smc(wt—n7r)

Now, it follows by standard Fourier-theory results that for any fixed ¢
and w

it{A—2kw) . 1 Y 2% + 1
(4) E etn sinc(wt — nw) = € (2k Jw <A< (2k 4+ Dw
cos(wt) A= (2k + 1)w,

Here z™ € C%)(W) = {("1—” ,%rﬂ)l In;] SNj,j:W} and N

=00

for all A boundedly, see e.g. Habib and Cambanis (1981; pp. 145-146).
Let us denote the function (4) by A, (%, A).
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Similarly, we get the multiple Fourier-series of the r-variate

Fourier-kernel e***) for fixed bandwidth W > 0 and for fixed time-
vector x as follows

Z Z mJ w5 H sinc(wjz; — njw).

j=ln;=
This Fourier-series converges coordmaterse boundedly with respect to
A to the depending functions Ay, (%}, Aj); J = 1,r. Thus, according to
the already used notations we get

j=r nj=0o0 k__ j=r
mJ wj sinc(wgTy — nEm) = Ay (T4, 25) = Aw(x, A).
' 3 7
j=ln;=—co k=1 ji=1

The so-called mean-square aliasing error Ew(x) we define as the r-

variate time function E|¢(x) — &w (x) |2

Finally let #H(¢) be the Hilbert-space of the NBL HRF £(x), i.e.
H(£) is the linear mean-square span of the set {{(x)| x € R"}. Put
L2 (d®; R") for the space of all functions, square -integrable on R"™ with

respect to the measure d®, i.e. Ly(d®; R") = {¢| f lo(A)[2d®(N)}.

Then there exists the well-known isometry £(x) e*(x ’\> between H (&)
and Ly(d®; R") realized by the mathematical expectation, or in other
words

(6) Bletx) - € = [

RT‘

et A) _ gily,A) ‘2 da()).

By this result we will derive our principal efforts.

3. General results

At first we will establish a spectral (Fourier-integral form) repre-
sentation for the SCSE of the NBL HRF £(x), sampled equidistantly
with respect to the given bandwidth vector W = (wy, -+ ,w,) > 0

coordinatewise.
Theorem 1. Let {£(x)| x € R"} be an r-dimensional NBL HRF with
random spectral field Z, spectral distribution function ® and with the
multidimensional SCSE Ew (x). Then for all fized x € R™ and W > 0,
we have

Jj=r Nj=00 k=r
(7 Ew (%) —Z Z &(z™) H sing( wkmk—nhw) /.Aw(x A)dZ(N),

= Br

j=ln;=

where the equality is with the probability 1 and the series {w(x) con-
verges in the mean-square. Also
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(8) K (%) := Béw (x)¢5 (0) = / Aw (%, A)dB(A),
RT‘

where Kw (x) is the correlation function® of the SCSE Ew (x).

Proof. According to the already noted isometry between H(€) and
Ly(d®; R"), the quoted Fourier-series results ensure, by (6) and the
dominated convergence theorem, that

EIEW,N(X)—/AW(X,A)dZ(A)F:
rRr

2

i=r R k=r
.
= / Z Z e wg H sinc(wzy — npmw) — Aw(x, )| d®(A) — 0,
B |3=11n;[<N, k=1

as N* = min; <<, N; — 00, since the series (5) converges boundedly,
and @ has finite total variation |®| (£(x) is with the finite second mo-
ment). This shows (7). Using the derived spectral representation (7)
we have

Kw (x) = B&w (x)&y(0) =
- / / Aw (%, ) Al (0, NE|dZ(A)2 = / Aw (x, \)dB(),
R™ RT RT
since Aw (0,A) = 1, compare (4). ¢
Now, we are interested in the mean-square restoration error upper
bound in approximating the NBL HRF &(x) by its SCSE & (x) for the
given choice of the bandwidth-vector W > 0.

Corollary 1. Let £(x) be the same as in the previous theorem. Then
we have uniformly in x that

(9) £(x)= lim &w(x).

w* — 00

Here the equality holds in the mean-square sense; w* = min; <<, Wj.
Proof. At first consider the mean-square aliasing error

. 2
i) _ Ay (x, /\)‘ dd()).

(10)  Ew(x) = El&(x) — tw ()2 = /
RT‘

Denotes W := xg::g(——wj,wj). Because of Aw (x, ) coincides on W

with e***) the relation (10) becomes

3The correlation function coincides with the covariance function for the mean
zero random functions.
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(1) Ew(x) = / i) — Ay (e, 3)|” () < 4J@IRT\W),
RT\W
Denote by B(R") the Borel o-field of R". As ®(-) is a finite measure of
R™ and ®(B) = [ d®(}\), B € B(R"), by putting P(B) = Ego—) [d®(N)
B B

we get a probability measure. Since it is vanishing with respect to the
decreasing sequences of events, by the evaluation (11) it immediately
follows that Ew (x) — 0 as w* increases to infinity. ¢
Remark 1. The inequality

Ew (x) = Bl£(x) — Ew () < 4|2|(R™\ W)
is a generalization of the multidimensional variant of the well-known
Brown mean-square aliasing error upper bound, compare with Brown
(1978). Moreover, we have the following robust improvement of this

inequality. The mixed-exponent |s| = Z;Z

integers, i.e. for some a = (a1, -+, ) it is atlsl .= H?Z a}s", v € R.
Then, if £(x) possesses |s| > 0 mean-square derivatives, it follows that

s;, say, s; nonnegative

(12)  Ew) <o [ APlde() <

RAW

4
w2ls|

82IsKc(0)

?
Bz2®L ... zZor

where the constant 4 is sharp, compare with Pogany (1993; Th. (ii)).
In the sequel we will be interested in the structure of the mean-
square aliasing error £w (x). Notice that (a,b) = ;Z a;b;, the inner
product on R". Without changing the order of coordinates of the vector
a = (a1, - ,a,), we choose ¢ coordinates from a, 0 < ¢ <7, a" =
=a; a® = (0,---,0)1x,. Let a? denotes the new vector which consists
.of such ¢ coordinates, and let a"~7 be its ”complement” with respect
to a. Thus (a%b9) = Y 1% ax,bx;, where k; € {1, ,q}. Also put
(maP, bP) = Y 1=% mja;b; for the p-tuple of integers m = (my,-- - ,Mp).
It will be not hard to recognize the difference between the partial-time
vector xP and the lattice point z" € L (W).
Theorem 2. Let a NBL HRF {£(x)| x € R"} the same as in the
Th. 1 and let 1 = (I3, , 1) be the permutation of (1,---,r) defined by

choosing W9, W™™9; also put k = (k1,--- , k). Then:
(13) Ew(x) <
X 2
g=r j=r
< S>> <1+ 11 coswzjzzj> |B|(Cr,q(k), (2k + 1)W"~9)
ki k1, kp#0 =0 j=q+1

where
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|®|(Cr,q(k), (2k + YW ~9) =
(2k1+1)wy —  (2kg+1l)wy, —
= / e / dq;()\q’ (21{ + 1)}_/[!——,-_,_1),

(2k1—L)wyy +  (2kg—1)w; +

and Crq(k) = xJZ% ((2k; — 1)wy;, (2k; + Dwy,) is the g-dimensional
open rectangle where the integration is done.

Proof. According to the definition of the function Aw (x, ) we need
the decomposition

R = > [((%j — Dwyy, (2k;5 + 1)wz,.) + {(2k; + Dwy, }] )

ka—oo
Bearing in mind the above introduced notations, we have

Ew(x) =
L CkAlug - (2kgrlwg, -

- S

ki, ke q=0(2k1_1)wl1+ (2kq_1)wlq+

i(x9,29) Li(x7 9, (2k+1) W1
. . ) _

— Aw (x%,x"79, 7, (2k + DI 9)|*de(A, (2k + )W),

Since ¢ coincides with Aw (x,A) on the principal rectangle W =
= x7Z1 (—wj, w;) we have

Ew (x) =
R 2
q=r J=r
— Z Z 1 - e’i((x,Zkﬂ’)‘*’(ET—q1W_T_q)) H . COSwWj]. T, x
3
k: k1,0 ok 0 g=0 j=a+l

X |2}(Cr,q(k), (2k + )W 1) =
q=r j=r 2 j=r '
= Z Z [ (1 - H cos wy .'l?lj) +4 COS Wy Ty ; X
k: ki, ,kr#0 g=0 j=q+1 j=q+1

sin2 (X, 2kW> + (Kr_qwa-_q)
2

(15)

X

} 12|(Cr,q(k), (2 + YW ).

- Now, the estimate (13) is the immediate consequence of (15). ¢

We are also interested in the exact form of the mean-square alias-
ing error and its upper bound (13) under some restrictions upon the
spectral distribution function ®(X) of the considered HRF £(x).
Theorem 3. If |®|(C,q(k), 2k+ 1) W) =0 forall0<qg<r-1,
then we have
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16 eweo= [(f00) L aa), Kwk) = [ (67, oo,

Rr Rr

where (e“x’}‘))zw stays for the 2W -periodic extension of e“x %) from
W < A< W toR". Also we have

(17) | Ewx)=4 > sinz(x',kW)lél(CT,r(k)).
k: k1, ,kp7#0

Proof. The assumption |®|(Cr 4(k), (2k+1)W""?) =0, g€ {1,---,r—
—1} means a kind of ” continuity” of ® on the whole lattice {(2k+ HW
= ((2ky + D)wy, - -+, 2k, + 1)wy)| k; integers}. This gives us, with the
help of the isometry (6), the following relation:

E L/ (ei(x,h))zw dZ()) — /-AW(X, /\)dZ()\)) l2 _

T RT

— / {(eﬁx,x))zw — Aw(x, ,\)‘2 d®(\) = 0,
o

while (¢2N), = Aw(x,A) on A € R"\ {(2k + 1)W}. Therefore it
follows that

) = [ Awlx Ndz) = [ (V) a2
R Rr
in the mean-square. Now, the spectral representation &w(x) =

= [ (ei*N)awdZ()) enables the computation of the of the correla-
RT’
tion function Kw (x) = E&w (x)&5(0), i-e.

Kw (x) = / / (e (emi0N)  BlZO)? = / (i) da(),

RTR" Rr

where the isometry (6) is used between #(£) and La(d®; R"). Thus
(16) is proved. ,

Finally, considering the assumptions of the theorem, from (15) we
conclude

Ew(x) = > 1 — iKW |2 |3|(Cr,r (k) =
Kk: Ky, kp#0
=4 > sin? (x, kW)|®|(Cr,r(k)).
K: ke y-kn#0

These finish the proof of the theorem. ¢
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4. Final remarks

When only the randomness of the given NBL HRF £(x) is consid-
ered, then the field £(x) —&w (x) is not homogeneous in the general since
its second moment, which coincides with the aliasing error & (x), de-
pends on x. Practically, we have &y (z™) = 0, ™ € LO(W); for
the onedimensional case (weakly stationary stochastic processes) see
Brown(1978).

If () is absolutely continuous with respect to the ordinary Le-
besgue-measure 9, then there exists the spectral density (compare e.g.
Yaglom (1987a; 336):

o) = 22

OA1 -+ - OAr
In this case the assumption |®|(C; 4(k), 2k + )W ™9 =0,¢9€ {1,---
...,7 — 1} of the Th. 3. 18 automatically satisfied. By (16) it follows
immediately that

(18)  Ew(x) = / ei(x,/\)_(ei(X,A))2W12¢()\)dA§4 / S(N)dA.

RT\W RT\W

This result is precisely the Brown multidimensional mean-square alias-
ing error upper bound. Indeed, in Brown (1978)(where just the onedi-
mensional case is studied) it is supposed that there exists the spectral
density, because in the Lebesgue-decomposition the possible existence
of the singular part of the spectral distribution function can be ignored
in applied problems and in practice, see Yaglom (1987b; 2).

The mean-square aliasing error upper bounds (13), (17) and (18)
give modest generalizations of the bound (11). However the problem
of similar bound for the |s|-fold differentiable NBL, HRF £(x) remains.
Also it would be interesting to derive similar aliasing error upper bounds
for the harmonizable random fields and for more general NBL HRF as
well, when it belongs to the so-called Lip-classes. In the latter case we
would get some further generalizations of certain results by Habib and
Cambanis (1981), derived for non-band-limited harmonizable stochastic
processes.
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