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Abstract: We obtain several characterisations of the Kiepert, Jarabek, and
Feuerbach hyperbolas of a triangle ABC using the family of triangles with
vertices on Euler lines of triangles BCP, CAP, and ABP for a variable point
P in the plane and the notion of orthologic triangles.

1. Introduction

Among conics which pass through the vertices A, B, C of the
triangle ABC and its orthocentre H the most interesting are Feuerbach,
Kiepert, and Jarabek hyperbolas. These are equilateral hyperbolas’
that go through the incentre I, the centroid G, and the circumcentre
O, respectively. They have been extensively studied in the past. The
following are some more recent papers that consider them: [1], [2], [6],
[7], [5], [11], [19], [18], and [22].

In this paper we shall present new characterisations of the Kiepert, -
Jarabek, and Feuerbach hyperbolas associated to a triangle ABC. We
shall use the same method for all three hyperbolas. Our idea is to
associate to every point' P and every real number A # —1 a triangle
P)P}P2 and to look for triangles XY Z having the property that P
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lies on a hyperbola if and only if the triangles P)‘PbAPA and X YZ are
orthologic.

Recall that triangles ABC and XY Z are orthologic prov1ded the
perpendiculars at vertices of ABC onto sides YZ, ZX, and XY of
XY Z are concurrent. The point of concurrence of these perpendicu-
lars is denoted by [ABC, XY Z]. It is well-known that the relation of
orthology for triangles is reflexive and symmetric. Hence, the perpen-
diculars at vertices of XY Z onto sides BC, CA, and AB of ABC are
concurrent at the point [XY Z, ABC].

In this definition and throughout this paper all triangles are non-
degenerate, that is, their vertices are not collinear. The last assumption
implies that in our approach we must exclude some points P so that
ours are characterisations of three named hyperbolas without a small
number of their points.

In order to describe triangles P} PP} more precisely, we need
the following definitions. Let A # —1 be a real number. For points A
and B, let [4, B; A] be a point A when A = B and a unique point P
on the line AB such that |AP|/|PB| = A when A # B. For a triangle
ABC, let W(ABC) denote the complement in the plane of the union
of the side lines BC, CA, AB. For a point P in W(ABC), let GE, GF,
GF and or, O OP denote centroids and circumcentres of trlangles

o BC’P C’AP ABP respectively. Let

P} =1[07,G3; N, B} =[0f,Gf; N, and P}=[0F,GE; )]
and let 7, denote the function which associates to a point P a triangle
PAPAP)]

In the Section 3 we shall prove that the points P}, P}, and P}
are collinear if and only if P lies on a plane quartic denoted here by Q5.
Hence, the domain of the function F) is the complement W) (ABC) of
@ in W(ABC). Let VA(ABC) denote the complement of the circum-
circle yg of ABC in W, (ABC).

Let v be a curve in the plane. Let { be a ﬁmctlon from a subset
S of the plane that associates to each point P of S a triangle F(P).
A triangle XY Z is (F, ~y)-simple in S provided XY Z is orthologic to
F(P) if and only if a point P is in the set yN S.

Let v, 77, and vk denote the Feuerbach, Jarabek, and Kiepert
hyperbola of the triangle ABC, respectively. With the above definitions
and notation we can formulate the results of this paper as contributions
to the following problem.
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Problem. For v € {vr, 77, 7k}, find (F», 7)-simple in V3 (ABC) tri-
angles.

Observe that when we know that a triangle X YZis (Fx, 7v)-simple
‘in VA (ABC) for v € {vr, 77, 7K }, then we have the following charac-
terization of v:

~ The hyperbola v is the closure of all points P in V3(ABC) such
that the triangles P} P} P} and XY Z are orthologic.

The triangles XY Z which we prove in this paper to provide solu-
tions to the above problem are all endpoints of segments of controlled
length perpendicular to sides of ABC. A more formal description uses
the following notation.

For a triple h = (s1, 2, s3) of real numbers and for triangles ABC
and XY Z, let [ABC, XY Z, h| denote a triangle UVW such that UX,
VY, WZ are perpendicular to BC, CA, AB and the directed distances
|{UX|, |VY|, |WZ| are equal to si, sa2, s3, respectively. When s; = 0,
we put U = X, and we do similar assignments when s, and ss are
Z€ero. ‘

For an expression ¢ in terms of side lengths a, b, and ¢ of the
triangle ABC and a real number h, let e[h] denote the triple (he,
©(€), h1(€)). In other words, the coordinates e[h]1, [h]2, €[h]3 of
g[h] are products with h of €, the first cyclic permutation of e, and
the second’ cyclic permutation of ¢, respectlvely For example a[h] =
= (ha, kb, hc) and if w, = BHE=2 w, = <H2=b and w, = 242=¢, then -
welh] = (hwa‘, hwy, hwe).’ o SR
- With this notation at hand, we can describe our task in this paper
as a search for expressions ¢ and points X, Y, and Z in the plane of the
triangle ABC such that the triangles [ABC, XY Z, [h]] are (F», 7)-
simple in V) (ABC) for v either vg, 77, or vk. R

Recall that the triangles [ABC, XY Z, ¢[h]] have already been
used for characterizations: of Kiepert and Feuerbach hyperbolas. In-
deed, the original description of the Kiepert hyperbola is that it is a
locus of centres of perspective of triangles ABC and X,Y,Z;, where
XnYnZn, = [ABC, Ay By Chn, alh]] and Ay, Bm,r C'm are midpoints of
sides (see [6]). :

Another application of triangles X,YxZ, on vertices of similar
isosceles triangles build on sides of ABC is a result in [12] which
shows that triangles ABC and XY 7, are orthologic and the point
[ABC, XY, Z] traces the Kiepert hyperbola as h goes through re-
als.
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The description of the Feuerbach hyperbola due to Kariya [10]
is that it is a locus of centres of perspective of triangles ABC and
PrQnRy,, where PLQpRy, = [ABC, A,B,Cy, 1[h]] and Ap, By, Cp are
projections of the incentre onto sides. ‘

Another application of triangles P, Qp Ry, whose vertices are inter-
sections of circles concentric to the incircle with perpendiculars through
incentre to sides is a result which shows that triangles ABC and
P, Qr Ry, are orthologic and the point [ABC, P, Qp Ry traces the Feuer-
bach hyperbola as h goes through reals.

2. Preliminaries on complex numbers

We shall use complex numbers because they lead to the sim-
plest expressions. Hence, our proofs are entirely algebraic. Every
book on the use of complex numbers in geometry from the references
below give excellent and adequate introductions to this technique of
proof. In this section we give only the most basic notions and conven-
tions.

A point P in the Gauss plane is represented by a complex num-
ber p. This number is called the affic of P and we write P = p
or P(p) to indicate this. The complex conjugate of p is denoted p.
However, we shall be avoiding this notation by using next letter (now
letter g) for the complex conjugate and sometimes write P(p, ¢) or
P = (p, q) in order to describe affix of a point and to describe its
complex conjugate. In order to avoid quotients, we shall use z* for
1/=.

In the sections on the Kiepert and Jarabek hyperbolas, we follow
the standard assumption that the vertexes A, B, and C of the reference
triangle are represented by numbers u, v, and w on the unit circle so
that the circumcentre O of ABC is the origin. Hence, the affix of O is
number 0 (zero) and complex conjugates of u, v, and w are 1/u, 1/v,
and 1/w (or, in our notation, u*, v*, and w*).

Most interesting points, lines, circles, curves, ... associated with
the triangle ABC are expressions that involve symmetric functions of
u, v, and w that we denote as follows.

c=u+v+w, T=vwtuw-tuv, L=uUvW,

Og=—u+v+w, op=u—v+w, 0o.,=uUu4+v—w,
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Te = —VW+WUF UV, Tp=VW—WUTUY, Tc=0W+WU— U,
Ba =VW, [p=WU, pPc=UV, b0, =v—w,

ph=w-—-u, d=u—v, (g=v+w, G=w+t+u, ((=u-+tv.

For each k > 2, ok, Oka, Okp, and oy are derived from o, o4, 0p,
and o, with the substitution v = u*, v = v*, w = w*. In a similar
fashion we can define analogous expressions using letters 7, u, 6, and
(. We shall use corresponding small Latin letters to denote analogous
symmetric functions in a, b, and ¢ (lengths of sides of ABC). For
example, m = abc, s =a+b+c¢,t =bc+ca+ab, z, = b+ ¢, and
S9q = 0% + 2 — a?. ‘

The expressions which appear in triangle geometry usually depend

on sets that are of the form {a, b, ¢, ..., z, y, 2z} (that is, union of
triples of letters). Let ¢ and % stand for permutations |b, ¢, a, ...
.y Y, 2z, z|and |e a,b, ..., 2, Y]

Let f = f(z, y, ...) be an expression that depends on a set S =
= {z, y, ...} of variables and let o : S — S be a permutation of S.
Then f¢ is a short notation for f(o(z), o(y), ...). For permutations
0, ..., of S weshall use S, . ¢f and P, . ¢ f to shorten f 4 f2+
+---+f%and ffe... f¢. Finally, Sf and Pf replace S,  f and P, 4 f.

Let (k, m, n) be a notation for —k pu + S u?(mv + nw). Let S be
area of ABC. ‘

Since points, lines, conics, . .. associated to a triangle often appear
in triples in which two members are build from a third by appropriate
permutation, we shall often give only one of them while the other two
(relatives) are obtained from it by cyclic permutations.

Let us close these preliminaries with few words on analytic geom-
etry that we shall use.

In triangle geometry lines play an important role so that we have
special notation [f, g, h] for the set of all points P(p, ¢) that satisfy the
equation fp+ gqg+ h = 0. When g is a complex conjugate of f and h
is a real number, this set is a line.

Let X (z, a), Y(y, b), and Z(z, ¢) be three points and let £ be a
line [f, g, h] in the plane. Then the line XY is [a—b, y — z, bz —ay],
the parallel to £ through X is [f, g, —ga — f =] and the perpendicular
to £ through X is [f, —g, ga — f z|, where g is a complex conjugate of
f. The conditions for points X, Y, and Z to be collinear and for lines
[f, g, k], [k, m, n], and [r, s, t] to be concurrent are
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1 a =z f g h
1 b y|=0, and |k m n|=0.
1 ¢ =z r s t

3. Statements of results

Letnpzﬁand'n,J-—nK—5 For X = KFJleth,for
i=1, ..., nx, denote the following expressions.

K1=a, Ky=az, K3=a’2, Ky =as,z}, Ky = dd.
* * * . *
=1, Fy=s,, F3=as,, Fys=as,, F5=152q245,, F6=245,

Ji=a* Jo=3542., Js=ass,, Js=2z,585,, Js=a"s5,.
For i = Js, Jy, Js we must assume in addition that ABC has no right
angle.
Theorem 1. Let A # —1 and h # 0 be real numbers. For any triangle
PQR homothetic to the triangle ABC, for X = K, J, F', and for i =
=1, ..., nx, the triangle ;

[ABC, PQR, X;[h]]

is (Fx, vx)- simple in VA(ABCQC).
Remark. Since there can be at most two values of the pa,rameter h for
which the vertices of the "triangle” [ABC, PQR, X;[h]] are collinear,
we must exclude these values in addition to the value A = 0. In the
above statement this is 1mphc1t in the assumption that we consider only
nondegenerate triangles.

In the above theorem the triangle PQR can be for example, the
triangle ABC, the complementary triangle A, B C’m, the anticomple-
mentary triangle A, B,C,, the Euler triangle A;B;C}, and the opposite
triangle A;B;C;, where A,,, Bn, C,, denote midpoints of sides of the
triangle ABC, A,, B,, C, intersections of parallels through vertices
to sides, Af, By, Cy midpoints of segments joining vertices with the
orthocentre H, and A;, B, C; reflections of vertices at the circumcen-
tre O.

Theorem 2. For any triangle PQR homothetic to the triangle ABC,
for X =K, F, J, and fori,j=1,..., nx, the triangle
[ABC, [ABC, PQR, X;[h]], X;[k]]

is (Fa, vx)-simple in V) (ABC) for all real numbers h and all real num-
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bers k except the value —h a;;, where a;; is the (4, j) entry of the matriz
MX w’l:th

- 2z 2z 2z -
1 v y £ 2z
1 ¥ ¥ =zy
2z v u Sz
BCI) SR T
Mg = 2z y 1 u z ’
. ou u 1 uz
2z Yy v z
1z 2z 1

*
T =89, y=3s, Z = Zg 2p Z¢,

u=4st—4m—s3, v=s>—-2st+2m,

1 0w s ¥ w Yo

v T T z u

» 1 v v v

w Ty s z su

z =Yy 1 ¥ zY =TY

) v s 4 sSUu

MF: ?

z sz s 1 sz =z

Yy v Yy z u

zZ z =z =z 1 Z

w v Ty ST “su

s su  uw osu
Ly v Ty T F4 -

z =2m, Y= 8a8p8c;, 2= 824 52b9S2¢

u=4st—6m—s®, v=u+2m, w=1652
-1 2 ¥y ¥z Y5
ms 4m?2 msu sz
ms 1 Sy Y my
z 4mz u Tz
4m?> dmz 4dmz 4m?
MJ— Yy sy 1 su s ?
msu u su mu
yz y' 4m z Tz
sz Tz sz Tz 1
-y my 4m?2 mu e

T =8g8p8¢; Y = 520452b52c; 2 = 2q2pZ2c,

u=4st—4m — s°.

Remark. Observe that some important triangles related to the triangle
ABC are of the form [ABC, Ay, ByCr, Ki[h]] for a suitable constant
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h. For example, the first Brocard triangle A,ByCy (for h = 2.5/s2),
the Toricelli triangles A,B,C, and A,B,C, on vertices of equilateral
triangles build on sides either towards outside or towards inside (for
h = 4+/3/2), and Napoleon triangles AynBynCoyn and AypBypCyr on
centres of these equilateral triangles (for h = ++/3/6).

The orthic triangle A,B,C, and the three images triangle A, B,.C,
whose vertices are reflections of A, B, and C at opposite sides of
ABC are of the form [ABC, ABC, J1[h]]. Also, the tangential triangle
A;B;C; (formed by tangents to the circumcircle at vertices of ABC)
has the form [ABC, ApBmCm, J3[h]].

Let v denote the expression a (b2 + c? — a?).

Theorem 3. Let k # 0, h, and A\ # —1 be real numbers. For any
triangle PQR homothetic to the triangle ABC, for X = K, F, J, and
forj =1, ..., nx, the triangle

[ABC’, [ABC, PQR, u[h]], X; [k]]
is (Fa, vx)-simple in Vy(ABC).
Theorem 4. Let k, h # 0, and A # —1 be real numbers. For any
triangle PQR homothetic to the triangle ABC, for X = K, F, J, and
forj =1, ..., nx, the triangle

[ABC, [ABC, PQR, X;[h]], v[K]]
is (Fx, vx)-simple in V)\(ABC).

Let
I = {b, K, Kb, Km, u, ub, v, vb, un, vn},

I; = {h, o, 7, t,tr, w, Hh, Ho, O, Ot},
and ‘

Irp = {e, ep, er, k, kr, p, pp, Ie, Ik, Ip, Oz'}.

For each element ¢ of these three sets we define a triangle A;B;C; by
describing the vertex A;. The vertices B; and C; have analogous de-
scriptions. Let A, be the centre of the A-excircle, A, the projection
of A, onto BC, the point A., is the reflection of A, at BC, the vertex
Ay is the second intersection of the bisector of the angle A with the
circumcircle, Ag, is the reflection of Ay at BC, the point A, is the
projection of the incentre I onto BC, the vertex Ap, is the projection
of A, onto AI, Ap; is a projection onto BC of any point different from
O on line IO joining the incentre with the circumcentre, Ay, is a pro-
jection onto B,Cj of any point different from central point Xgs [9] on
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line IO, Aj. and Ajy are projections onto B.C. and B;C}, of any point
on IO different from the incentre I, the point A, is the projection of
the Grebe-Lemoine point K onto the perpendicular bisector of BC, the
vertices Ax, Axp, and Ag,, are the projection of any point different
from the circumcentre O on the line KO onto BC, ByCh, and OA,,,
vertices A, and A,, are the vertex and the centre of the equilateral
triangle build on BC towards inside, A, and A,, are the vertex and
the centre of the equilateral triangle build on BC towards outside, A,
and A, are projections of the Grebe-Lemoine points of A,B,C, and
A,B,C, onto perpendicular bisectors of B,C, and B,C,, Ap is the
second intersection of altitude line AH with the circumcircle, A, is the
projection of A onto BC, the point A, is the reflection of A at BC,
the intersection of tangents to the circumcircle at B and C is A;, the
reflection of A; at BC is Ay, A, is the intersection of common tan-
gents of the A-excircle with B-excircle and C-excircle, Axp and Apg,
are the projections onto B,C}y and B,C, of any point X on the Euler
line of ABC different from the orthocentre H, and Ap and Ap: are
the projections onto BC and B;C; of any point X on the Euler line of
ABC different from the circumcentre O. »

Some of the cases in the following theorem are clearly conse-
quences of the previous theorem (for example, the first Brocard triangle
Ay ByCy has the form [ABC, Ay ByCm, Ki[k]], for a suitable k& # 0).
Moreover, in some cases we must make additional assumptions about
the triangle ABC. For example, for 1 = b, the triangle ABC can not
be equilateral and for i = ¢ and 7 = w it can not have right angle.
Theorem 5. For X = K, J, F, fori € Ix, and for all real numbers
h, the triangle [ABC, A;B;C;, v[h]] is (F», vx)-simple in Vx(ABC).

For X =K, J, F, for any i € Ix, and all j, 5’ =1, ..., nx one
can show that triangles

[ABC, [ABC, A;B;C;, v[h]], X;[K]],

[ABC, [ABC, A; B;C;, Xj/[h]], Xj[k]],
are (F, vx)-simple in V) (ABC) for all real values of constants h and
'k except exactly one value of either h or k. The matrices of exceptions
are similar to the matrices My, M, and Mp.

An important source of (F, vx)-simple in V) (ABC) triangles is
the following general result.
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Theorem 6. Let Q € Vy(ABC) be a point different from the ortho-
centre H. The antipedal triangle Q*QPQ° of Q with respect to ABC is
orthologic with the triangle P} P} P2 if and only if P lies on a conic
through the points A, B, C, H, and Q.

Corollary. For X = K, J, F, the antipedal triangle Q*Q%Q° with
respect to ABC' of any point @ on the hyperbola yx outside the cir-

cumcircle o and different from the orthocentre H is (Fy, vx)-simple
in VA(ABC).

4. Proofs

Preliminaries. Let us first determine the affixes of points P, P,

and P). Since the affix of GF is 3*(p + (,) and the affix of OF is

n* pe (pq—1), where ng = p+ fig ¢ — (g, it follows that P, has the affix
F*A+1)*nkBpra(pg—1)+ An, (¢ +p)).

The affixes of P and P2 are relatives of the affix of P,

Observe that points P}, P, P are collinear if and only if the
point P lies on a quartic Q, with equation 3 (2 + 3) (pg — 1)% +
+ AXngnpn. =0.

Triangles XY Z and PQR with affixes of vertices z, y, 2, p, ¢, and
r are orthologic if and only if (XY Z, PQR) = 0, where

 (XYZ,PQR)=S[z(g—7)+Z(g—T)].

Proof of Theorem 1 for X = K and i = 1. Since triangles ABC
and PQR are homothetic, there is a point T'(z, y) and a real number
£+ —1 such that P = (£ +1)* (u+£z), Q = o(P), and R = (D).

Let h be a real number. Let U, V, and W be vertices of the
triangle [ABC, PQR, K1[h]]. Then U = P + I h(v — w), where I =
= /=1. Also, V = ¢(U) and W = 4(U).

Let us observe that points U, V, and W will be collinear if and
only if h is different from 12* S* (£ + 1)* (s £ 2+/s4 — t2), where S
denotes the area of ABC.

The orthology condition for triangles P} P} P} and UVW is

(P)P}P), UVW) = 2T hegx eqo () + 1)* Pu* n,
where eqp = 1 — pq and
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eqx =(7 — 3uo)p® — p*(0® — 37)¢*+
+(4po® — o1 — 3uT)p — w(dr® — o?r — 3uo)g+ 73 — pod.
Notice that egy = 0 is the equation of the circumcircle of ABC
while egz = 0 is the equation of the Kiepert hyperbola of ABC since the
vertices A(u, u*), B(v, v*), and C(w, w*), the orthocentre H (o, T u*),
and the centroid G(3* o, 3* 7 u*) satisfy it. This shows that UVW is

(Fx, vi)-simple in V3 (ABC) for all h # 0 except for at most two addi-
tional values of & found above when points U, V, and W are collinear.

Proof of Theorem 1 for X = J and i = 1. We first determine P, Q,
and R as above. Let h be a real number. Let U, V, and W be vertices
of the triangle [ABC, PQR, Ji[h]|. Then U=P+Thvw(—w)*,
V = ¢(U), and W = 3(0).
Let us observe that points U, V, and W will be collinear if and
only if h is different from 4* S* (£ +1)*s5m (3m £ v/3ma — Sa?sy,).
The orthology condition for triangles Pcf‘Pg\Pc’\ and UVW is

(PXP}P), UVW) =T hegyeqo (A + 1)*Pn?,

where eq; = op? —purg? + (1 -0 p+ (12 — po)g.

The equation of the Jarabek hyperbola of ABC is eq; =0 since the
vertices A(u, u*), B(v, v*), and C(w, w*), the orthocentre H (o, T u*),
and the circumcentre O(0, 0) satisfy it.

Proof of Theorem 1 for X = F and 7 = 1. In contrast with the
previous two sections, in order to avoid square roots, here we shall
assume that the vertices A, B, and C of the base triangle have affixes
u?, v?, and w?, with the same assumption about u, v, and w. Let g
denote a transformation which replaces variables u, v, and w with u?,
v2, and w?. ) )

This time P = (¢ + 1)* (u? 4+ £z), Q = @(P), and R = ¢(P).

Let h be a real number. Let U, V, and W be vertices of the
triangle [ABC, PQR, Fi[h]]. Then U = P + hvw, V = ¢(U), and
W =y(U).

Let us observe that points U, V, and W will be collinear if and
only if h is different from 4* S* (£ + 1)* (m £ /m (s — 4mt + 9m)).

The orthology condition for triangles P} PP} and UVW is

(PaP)P}, UVW) = heqrego (A +1)*Pd, u* o(ng)",

where
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eqr =7p* —p3o g’ + (uo +2p0 —o? 1) p+
e ZUzﬁ—u'r)q—l—Ts — o3 p.
Observe that eqr = 0 is the equation of the Feuerbach hyperbola of
ABC since the vertices A(u2, 1/u?), B(v?, 1/v?), and C(w?, 1/w?),
the orthocentre H(g(o, 7 1*)), and the incentre I(—7, —o u*) satisfy it.

Proof of Theorem 2 for X = K,i=1,and j =5. Let UVW =
[ABC PQR, K;[h]] and LMN = [ABC, UVW, Ks[k]]. We know
U,V,and W from the proof of Thm. 1, so that it is not difficult to see

that L = U + T k63 u?, M = o(L), a,ndN (D).
Let us note that there exist at most two values of k& when points

L, M, and N are collinear. These values have rather complicated form.
The orthology condition for triangles P} P} P2 and LM N is

(PXP}P}, LMN) =1((6,1, 1)k +2uh)eqx ego (A + 1)* p*2 Pn?,

This shows that LM N is (F», vk )-simple in Vy(ABC) for all k
except the value 24 s5 and at most two more values for which points
L, M, and N are collinear.

Proof of Theorem 3 for X=K and i=1. Let UVW =[ABC, PQR,
v[h]] and LM N = [ABC, UVW, K1[k]]. It is easy to check that U=
=P+ Th{p*Pdy, V = o(U), and W = 4(U). It follows that L =
=U+4Tké,, M = (L), and N = (L).

Once again there exist at most two values of k¥ when points L,
M, and N are collinear. These values have complicated expressions in

terms of side lengths.
The orthology condition for triangles P} PP} and LMN is

(PXP)P}, LMN) =21 keqx eqo (A + 1)* u* Pn?,

Proof of Theorem 5for X = Fand i =e. Assume A =12, B = ¢2,
and C = w?. Recall [13] that A, =1, B.=m, and C, = 7.. Let U,
V,w denote vertices of the triangle [ABC, A.B.Ce, v[h]]. It is easy
to check that U = 7, + T h (aq p*2 Péoa, V = (,D(U) and W = w(U)

Once again there exist at most two values of A when points U, V,
and W are collinear. These are 2* $* (—m=£+/m (s —4st+9m))Ps:.
Finally,

(PXP)PY, UVW) = 2eqreqy (A + 1)* * Pd, o(ng)*.
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Proof of Theorem 6. Let Q = (z,y). Then Q% = (ugzy — 22 +
+Ca®—2p)(z+ oy — Ca)*, Qb = ¢(Q9), and Q¢ = 1(Q2). It follows
that ;
(PaP)P2, Q°Q°Q°) = 2(zy—1) eqq eqo (A+1)* Pda n (z+1a y—Ca)*,
where eqg = ap? +bq? +cp+dg+e,
a=py’—z—-TY+o0,
b=p(oz—a+py—1),
c:mz_ﬂay2+CaCchy—0'2_T’
d=712" - (ol — 2y’ + 12+ pio,
e=(02+T)m-qm2+,u'ry2——('rz—l—,ua)y.

It is obvious that egg = 0 is an equation of a conic. One can easily
check that it goes through A, B, C, H, and Q.
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