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Abstract: The concept of maldistribution was recently introduced by Myer-

son [3]. We give some new criteria for maldistribution in higher dimensions.

1. Introduction

We ﬁfst introduce the following notation. For x = (z1,...,z5) €
€ R® let
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[0,x) = {(t1,..-,ts) ER° : 0<¢; <z for 1 <3< s},
[O,X) {(tl,.. )ERSZOStiSIEifOI‘lS’I:SS},
The function ¢ : [0,1]° — [0 1] is said to be a distribution function if
g(x) = P([0,x)) for every x € [0,1]°, where P is a probability measure
on [0,1)%.
Two distribution functions g; and g are identified if they have
the same values of integrals

[ [ Fenanmdne = [ [ Py
[0,1]> J[0,1]° [0,1}* J/[0,1]°

for any continuous function F' on [0, 1]° x [0,1]°. An alternative defini-
tion can be found in [4, p. xii].

Let w = (x,)82; in [0,1)%, x, = (Tn1...,Tns) be a given se-
quence. We set

A([0,x),wn) =#{n < N :x, €[0,x)}.
Now, let g : [0,1]* — [0,1] be a given distribution function. If there
exists an increasing sequence of natural numbers (N)32 ;, such that
kli)ngo A([0,x),wn, )/ Nk = g(x) for x € [0,1]°,

then g(x) is called a distribution function of w. As a standard mono-
graph on distribution functions and uniform distribution we refer to
[2].

Let G(w) be the set of all distribution functions of w.

For a given continuous function F(x,y) on [0,1]° x [0,1]° G(F)
denotes the set of all distribution functions g : [0, 1]* — [0, 1] satisfying

/ F(x, y)dg(x)dg(y) = 0.
[0,1]s J[0,1]®

We will specify the following d15tr1but1on function off : [0, 1]°* —
—[0,1]:
1, forx€ [a,1]
cff(x) = { 0, otherwise.
Furthermore we consider two types of sequences w, namely se-
quences of the first class defined by
(1) G(w) =A{cff(x) : @ €[0,1]°};
and sequences of the second class defined by
G(w) ={tefr(x) + (1 — t)efi(x) : £ € [0,1],
a,B e [O,l]s,ai #*0i=a;=1,0; =Of01"l:=1,...,8}.‘
The study of sequences w satisfying
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(3) G(w) D {cf(x) : @ €[0,1]°}
was initiated by Myerson. In [3] he gives an exposition on uniform
distribution and introduces “maldistribution” a notion describing a very
different situation. . A sequence w = (z,) is called maldistributed if for
any interval J C [0, 1)

]imsupi#{n <Nl|z,eJ}=1,

N—oo N
which is equivalent to (3). Furthermore different criteria for uniform
maldistribution are given there and some very general examples show
the existence of such sequences in the one- and multidimensional case.
‘Strauch [5] has obtained a characterization of sequences satisfying (1)
in the one-dimensional case.

The purpose of this paper is to give criterions for the classes (1)

and (2). Explicit examples of sequences satisfying (1) and (2), respec-

tively, are given.

2. Results

The starting point of this paper is the following proposition.
Proposition 1. Let (M;)2, be a sequence of positive numbers sat-
isfying klim Zi.:ll M;/My, = 0. For a given sequence o = (yg)$2, in

—00
[0,1]°, let the sequence w = (x,,)%%; in [0, 1]° be constructed by x, = yy
for Zf;ll M, <n< Zi;l M;. Finally, let H, C [0,1]° % [0,1]* denote
the set of all limit points of the sequence ((Yx—1,¥k))se,. Then
G(w) = {teff(x) + (1 — t)efi(x) : ¢ €[0,1], (e, B) € H}.
Proof. For N = Y5 "' M; 4 6, My, 0 < 6 < 1, we have

A([0,x), wn) = A([0, %), (Yk—1,¥%)) + o(IV).
Moreover, we write

( My_1, if yr—1 € [0,x) and
Y & [07X)7

A([0,%), (Yr-1,¥%)) = { OxMjg, if yx—1 ¢ [0,x) and
vk € [0,x),

\ My_1+ 0 My, ifyr_1,yx€ [O,X).

Assume that A([0,x),wn)/N — g(x), x € [0,1]° for selected sequences
of indices N = ¢~ M; + 6, My, k = k(N). Then we can further
chose N such that (yr—1,¥%) = (o, 8), Mg—1/(Myg_1 + 0 My) — t,
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and 6xMy/(Mg—1 + 0xMy) — (t — 1), for some o, 3, and ¢t. Thus
g(x) = teff(x) + (1 — t)chi(x).

On the other hand we can construct a sequence Ny = Ef:ll M, +
+ 0p My, satisfying My_1/(Mg—1 + 0 M) — t for any ¢ € [0,1] pro-
vided that (yx—1,¥%) — (a,83). Then A([0,x),wy,)/ Nk — teff(x) +
+(1 —t)efi(x). O
Corollary 1. For a given H C [0,1]° suppose that there ezist a se-
quence 0 = (yg)32, in [0,1]° such that

(i) H coincides with the set of limit points of o,
(11) lim Ye = Yk-1 = 0.
k—oo

Then there exists a sequence w = (x,)32., in [0,1]° such that

Gw) = {cf(x) : @ € H}.

Proof. According to (i) and (ii), we have H, = {(a, @) : a € H}.
Hence, Cor. 1 is a consequence of Prop. 1. ¢

Corollary 2. Let H C [0,1]° be such that there exists a continuous
function ¢;[0,1] — [0,1]%, for which H = {¢(t) : t € [0,1]}. Then there
exists a sequence w = (Xp)5%; in [0,1]° such that G(w) = {c(x): @ €
€ H}.

Proof. For the proof, we note that (i) and (ii) from Cor. 1 hold for
Ye = ¢(yk), k=1,2,..., where

Yk = {(—1)[‘/’:]@} :

Here [z] denotes the integral part and {z} the fractional part of z. The
density of (yx)%2 ; and k]im Yr —Yr—1 = 0 are proved (in a more general
—00

form) in Ex. 1, below. ¢

In the multidimensional case the fundamental First Theorem of
Helly and Second Theorem of Helly (see [4, p. xiii]) are also valid. Fol-
lowing the same reasoning as in [5] the following analogues of one-
dimensional results can be proved:
Proposition 2. Let F(x,y) be continious function defined on [0, 1]° x
x [0,1]%. For any w = (%), in [0,1]® we have

n=1
1 N
G(w) C G(F) = lim — ;lF(xm,xn) = 0.

The proof of this proposition can be given in a way analogous to
the proof of [5, Prop. 11].
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Criterion. Let H C [0, 1]® be a closed set, and let F(x,y) be a continu-
ous function defined on [0, 1]°x[0, 1]° satisfying, for every x,y € [0, 1]¢,

(i) F(x,y) >0, and

i) F(x,y)=0&x=y. ;
Then, for any sequence w = (%)%, in[0,1]°, G(w) = {cf(x) : @ € H}
if and only if

1 & '
— Z F(xpm,%xn,) =0,

N——»oo]\f2
m,n=1

where H coincides with the set of all limit points of the sequence

( X:IX")N‘_ |

Proof. For continuous F satisfying (i) and (ii), we have G(F) =
= {cff(x) : a € [0,1]°}. Moreover, if G(w) C {cff(x) : o € [0;1]°},
then, for selected NV, :

N
Nli_n)loo ]—1; an = / xdeff(x) = a.

The proof can now be easﬂy completed O
Remark 1. In applications, we can work with F(x,y) = HX - ¥ll1,
where ||x||1 = >0, |z

In the following we present two general results which will be used
later.
Definition. Let m4,...,m; be integers > 2. A sequence (x,) =
= (Tpiy... ,Tns) In RS is called (mq,...,ms)-uniformly distributed,
if the sequence (Zny,...,Tns, [Tni]modmy,. .. ,[Tns] modm,) is uni-
formly distributed in [0,1]° X Zyy, X <+ X Zpy, .
Proposition 3. A sequence (x,,) in R® is (my,...,m;)-uniformly
distributed, if and only if (zp1/ma, . .. , Tns/ms) is uniformly distributed
modulo 1.
Proof. The necessary part of the theorem is clear, because
m{z/m} = [z]modm + {z}. We insert this equality into the com-
ponents of (zn1/m1,...,Tns/ms) and use the uniform distribution of
(Tniy .-+ Tns, [Tni]modmy,. .., [Tns] modms).

For the sufficient part we let xi,m be the characteristic function
of the residue class k modm. Then we have
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1 . |
N Z Xiez,ma ([Zr1]) * * Xkym, ([Tns]) €xp 2mi(hiTn1+ - - +hstns)) =
n<N

—_ZX 11 <@)X" kg+1 (m"s)x

) \m [=5550) \'m,

xexp(27ri(h1m1{i;ﬂ}+ -+ hg ms{f’:s}>>—>0,
1 s

which is a consequence of X m([z]) = X[k kil (Z) and the Weyl-
criterion for uniform distribution. ¢

Corollary 3. Let1,az,...,as be linearly independent over the ratio-
nals and set a=(ay,... ,as). Then the sequence (nar) is (mq,... ,ms)-
uniformly distributed for any choice of (my,...,ms).

Remark 2. If a sequence (Zp1,.-.,%ns) 18 (2,...,2)-uniformly dis-
tributed, then ((—1)®=lg, 4, ..., (=1)Brelz, ;) is uniformly distributed
modulo 1. ‘
Proposition 4. Let a;,b;,¢; be real numbers with a;,b; # 0 (1 =
=1,...,8) and 0 < u; < 1 and let v; be given such that 0 < ujv; <
Uy < < -+ < ugvy and u;v; € Z foralli=1,...,s. Set
Tni = (a:[bin”] + )™,
and Xp =(Zn1,...,ZTns). Then the s-dimensional sequence w= (x,),
is uniformly distributed modulo 1.
Proof. Let h = (hy,...,hs) € Z°\ {0}. We have to show that the
one-dimensional sequence
L}
= Z hiTni
i=1

is u.d. mod 1. Let r be the maximal index (1 < r < s) such that h, # 0
and h; =0 for all i > r. We havefor 1 <i<r:

(aZ[b n? ] + cz)m (az )u,n'v,u, + 0( v,(ui—l)),
by the Binomial Theorem. Thus we get

r
Tn = E hiTn; =
i=1

r
= hr(arbr)urnurvr “+ o+ hl(albl)ulnulvl + Z O(nvi(ui—l))_
i=1
Set €, = Zgle(n”*’(“i_l)). Then, because of the assumption, &,
tends to zero for n — oco. Set furthermore u;v; = z; and h;(a;b;)% =
= A;. Since g, — 0, we have to show that
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f(n):=Amn + Ap_in®rt + ...+ Ajn™
is u.d. mod1. Because of the assumption we have A, # 0 and 0 <
< 21 < -++ < z.. Thus we can apply [2, Th. 3.5] (this is a theorem
which results from a combination of Fejér’s theorem and the difference
theorem) to the sequence f(n) and the proof is complete. ¢

3. Examples

The existence of examples for (1) can be shown by using Cor. 2
and the well-known existence of Peano curve in [0, 1]*. We note that in
[1] Peano curves are used to construct uniformly distributed sequences
in the unit cube. An alternative example for (1) can be shown by using
the construction as in Prop. 1. :
Example 1. Let w be defined as

W= ((_1)[[10gm n 106 ) /e

( 1) log(’) 1/“ [1 () ]1/Ps) 1m0d1

where log(j )n denotes the jth iterated logarithm log...logn, and
P1,...,Ds are coprime positive integers. Then, for j > 1, the sequence
w satisfies (1).
Proof. The line of construction of w is the same as in Prop. 1. Pre-
cisely, for exp@ k < n < exp@W (k4 1), (exp k = exp...expk) we
have x,, = y, where ‘
yi = ((-0)F g, o ()P ) mod 1.
Thus, in order to show (1) it suffices to prove that
(i) (yx)%2; is dense in [0,1]°, and
(i) hm Yk — Yk-1=0.
COIldlthn (i) follows from Props 3, 4 and Remark 2. Condition
(ii) follows from the expression
{Kt/P:} for k € U [(2n)P:, (2n + 1)P¢)
S {k1/P:}  for k € USLo[(2n + 1)P:, (2n + 2)P+).

Yki, for k € [(2n)P+, (2n+1)P+), increases from 0 to ((2n-+1)P —1) e _
—2n (— 1 as n — oo) with differences yx; — y(x—1); = kP — (k—1)1/P:
(— 0 as k — oo0), and, for k € [(2n + 1), (2n + 2)P+), yx; decreases
from 1 to 1 — (((2n + 2)P — 1)1/”" —(2n+1)) (— 0 as n — oco) with
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differences yr; — yY(r-1y; = (k — 1)¥/7 — k'/Pi (= 0 as k — oo). Thus
lim D Yi — Y(k— 1:=0.¢ '

Example 2. Let w be defined as in previous example without the
factors (—1)I [Dog? nl/™] 4 =1 ... s ie

w= ([log(ﬂn]‘m’l,...,[log(”n]l/p")oc> mod 1.

n=1
Then w satisfies (2).
Proof. As in the previous case, for exp®) k < n < exp(ﬂ)(k +1), we
have x,, = Y& where

Yk = (kl/pl,...,kl/?’) mod 1.

First we show that the sequence ((yx—1,¥x))%e, has two types of
limit points:
(i) (a, ), where a € [0, 1]° is arbitrary, and
(ii) (o, B), where @ # B € [0,1]* and o # B = a; = 1,5, =
=0fori=1,...,s
1°. Let us assume k # nPi, forn = 1,2,... and i = 1,2,...,s
Then there exist positive integers ni,...,ns such that k € (n’l’l, (ny +
+1)P1) N...N (n&, (ns + 1)P*), and so,

— Ye—1)i = (nf* +J')1/pi —(nf*+3j-1) Ve, 0,
as k — oco. By applying Prop. 4 to yx one shows that (yx)5>, is
u.d. in [0,1]°. But the k with & = n®* have zero density, and so we
derive that the sequence ((yr—1,¥%))sy, k # nP, forn=1,2,... and
i=1,2,...,s has limit points of type (i).
2°. Now we take k = n*, for ¢ € I, and assume that k # nP7, for
n=1,2,... and j € {1,2,...,s}\ I. Then yz; =0 and
Y(e—1)i = ( Pi_ l)l/pi - (nz - 1) — 1.
Put [[;c;pi = Aand {1,2,...,5}\ I = {j1...,5i}. Because of the as-
sumption A/pj,, ..., A/p;, are pairwise different and nonintegers. Thus,
using Prop. 4, the sequence ((n#)/?s, ..., (n4)*P4)™ isu.d. mod1.

This property remains, if we restrict n to be # mPs, for m = 1, 2,.
and 7 = 1,...,{. This shows that the sequence ((yk_l,yk)),‘fzz, Where

k=n" andn# mPi form=1,2,... and j € {1,2,...,s} \ [, has a
limit point of type (ii) with coordinates a; = 1 and B; = 0 for i € I,
and aj = fB; for j € {1,2,...,s}\ I for arbitrary o; € [0, 1].

Finally, we apply Prop. 1, and the proof is complete. ¢
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