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Abstract: A connection is established between early results of Abel and
Tchebycheff on pseudo-elliptic integrals and a result of Baker concerning the
values of the Weierstrass {-function at torsion points.

1. Introduction

Let E be an elliptic curve defined over a number field K C C and
p(2), p'(2) the corresponding Weierstrass functions. We assume that
E is given through the usual parameterization

Parak: C — E
z — (p(2),6'(2))
such that
(1) p'(2)* = 4p(2)* — gao(2) — g3
where gq, g3 € K. We denote the periods of E with w;, wy and the lattice
generated by the periods with A. .

Assume that there is a point zo € C such that p(20) € E(K).
Then it follows easily from the relation (1) that the values of all deriva-
tives of p(z) at zp lie in the field K. This is not correct for {(zg), the
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value of the Weierstrass ¢(-function, the primitive of —p(z), at zo. The
value ((zp) is transcendental by the theorem of Schneider (cf. [9]). How-
ever A. Baker proved the following fact (cf. [2], lemma 5): let E be an
elliptic curve defined over the number field K C C and let 2y = rjw; +
+ rowsg, 71,72 € bbg be a torsion point of this curve, then the value
¢(20) — (r1m1 + ramz) where n;: = 2¢(w;/2), i = 1,2, denote the quasi-
periods of E, is an element of K. In particular, there is a canonical -
splitting ((20) = T'(z0) + A(20) into a transcendental and an algebraic
part.

The purpose of this note is to show how this splitting can be ex-
pressed in terms of a pseudo-elliptic integral and to derive an algorithm
which allows t he computation of A(zp) by the means of a continued
fraction expansion of an appropriate algebraic function. Our exposition
is structured as follows. Section 2 assembles some known results and
describes the pseudo-elliptic integrals involved. Section 3 states the pre-
cise connection to Weierstrass’ (-function. In Section 4 the connection
proved by Baker is re-established in the context of pseudo-elliptic inte-
grals using an early result by Abel. In Section 5 we present a computed
example.

2. The integrals
Let p(z), ((2), o(z) be the Weierstrass elliptic functions belonging
to the lattice A generated by wi,ws € C. Let us recall the following

relations (cf. [6], p. 239):

(2) C(u—i—v)—C(u)—C(u):%%,

a'(u)

3 togo(w) = T = C(w).

Let an elliptic curve be given by the equation

(4) y? = 4z — gox — g3,

together with a point 29 € C such that (.’Eo,yg) = (p(z0), p'(20)) €
€ F(K), i.e., is a K-rational point.

By means of the rational transformation
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ly—y 1/y—vo\°
g=-2"5 n=2:c+a:o——< 0)

21— xg , 4 \z—xq
one obtains a singular model Sg defined over the field K. We say this
model is generated by the point zy and write sometimes Sk (zg). This
model is parameterized by the function
ParaS: C — Sk (z0)
z — (P(2),P'(2))
where
Pl = 1) =)
2 p(z) — p(20)
Sk (z0) is the zero set of the equation
(5) 1% = Ry (€): = €' + 28 + cab +ca
where

¢y = —6xp, c3 = 4yo, Cqg = ga — 3:1:8.
The singular locus of Sk is the image of the points 0, zg € C by ParaS :,
the points at infinity.
Elliptic integrals of the form

€+A

V Rz (
which are defined on Sk were extenswely studied in the last century
(cf. [10], [11]]): Tchebycheff was able to reduce the problem of integra-
tion in finite terms (cf. [4], [7]) for elliptic integrals to the question of
pseudo-ellipticity of integrals of the form (6): Int is pseudo-elliptic if
there exist p(£), ¢(&) € C[¢] such that

_Q(g)\/ zo
) fnt = 3log - (>+q<g> zo<5)

(6) | Int: =

for some A € Z (cf. [3]).

It is easy to see that for a given R, (5 ) at most one value A exists
such that (7) holds (cf. [10], p. 2).

We recall some facts about continued fraction expansion (cf.
[5], p.84). Let g = >, “Ymt™ ™ be the Laurent expansion of \/R,, at

m2>mo
a point p at infinity. One puts a1:= [apl:= >, Ymt™™ and a;:=
0>m>me

= [a—1] with o; the Laurent expansion of pRarp for i > 1. The

sequence {a;}$2; is called the continued fractmn expansmn of ap at the
point p. One puts as usual
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Py:=1, Py:=a, Pi:=a; P+ P>
Qo:=0, Qi:=1, Qit=0;Qi—1 + Qi_2.

The continued fraction expansion {a;}2, is called pseudo-periodic if
there exists a k¥ € N* such that
—QiR,, =c€ K.
The smallest £ € N* with this property is called the pseudo-period.
The following proposition summarizes various known results
(cf. [8], p.296; [11], p.105; [5], p.90).

Proposition 2.1.  The following conditions for Int = [ ——5% d¢
20

are equivalent

a) the continued fraction ezpansion of \/R,, at one of the points
at infinity (hence on both) is pseudo-periodic with pseudo-period
I—1;

b) there exists a value A such that (7) holds for appropriate p(£),
q(€§) € K[€] of degp =1 and degq =1 — 2, with A\ = 2;

c) 2o is a torsion point of order l.

Remark 2.2. If Int is pseudo-elliptic and zj is a torsion point of order

I then p(¢) = P_1(€) and () = Qi_1(£).

3. The splitting

Proposition 3.1.  Let Sk be generated by the torsion point 2o of
order 1. If lzg = niwy + naws € A, then ((20) = T'(20) + A(z0) where
[T (20) = nim + nana, and A(zp) = A where A is the unique value such

that [ —ﬁ%d& is pseudo-elliptic.

Proof. Applying (2) we obtain by elementary calculations:

| (e )

= [ (¢t 20) = €(2) ~ Clao) + A)d =
_ / (¢(z + 20) — ¢(2))dz + (A — {(20)) 2.

Hence putting
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Y(z) =:exp(2! - Int),
(3) implies that

2() = exp(2l - [ (e + 20) = C(2))d2) - exp(@l (A~ G(ao))2) =

oz + 2)%
= 8 exp(2l - (A — {(20))z2).
Since zp is a torsion point, 3(z) must be a doubly periodic function
of z by Prop. 2.1: £(z + w) = X(z). This imposes a condition on the
expression A — ¢(2) :
We have o(z + w) = o(2)e"**¢, where c € C (cf. [6]). Now
_o(z+ w+zp)? _
E(z—{-w)—. a(z+w)2l exp(2l (A C(Zo))(Z+W))—
_o(z+20)% exp(2In(z+20)+2lc)
B o(2)? exp(2lnz+2lc)
=X(z2)-N

-exp(2l-(A—((20))(z+w)) =

where
N:=exp(2l-n-20+ 20 (A - ((20)) - w).
This implies that N = 1. Hence there is a value m(w) € Z such that

l-zg-n—mi-m(w
®) (o) -~ 4= L2 TR

We determine the number m(w) : the expression ((z9) — A is inde-
pendent of w and 7. We substitute wy,n; and then ws, 7, in equation

(8):

lzomy — mim(w1) _ lzome — mim(ws)

lw1 lwz
Applying the Legendre relation nyws — nawy = 2mi (cf. [6], p.241) we
obtain
' 2020 = m(w1)wa — m(ws)w;.
This implies that
ny = —m(wz)/2,ny = m(wy)/2

and that
— 2 y
-C(Zo) — A= (n1w1 + nzwz)m TiNg — nin + nane _ T(zo). o

lwl : l

Example. Let zy = w;/2. Hence | = 2, and ny, = 1,ny = 0. This
-implies that ((w1/2) — A = n1/2. By definition 7, = 2{(w1/2) and
hence A = 0. This implies that the integral [ ﬁd& on Sk (w1/2)

is pseudo-elliptic.
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4. The algebraic part

The following proposition reveals the algebraic nature of A(zg)
and re-establishes Baker’s result.
Proposition 4.1. Let E/K be an elliptic curve defined over K C
C C and po = (p(20), 9'(20)) a K-rational torsion point of E. Then
A(Zo) €eK.
Proof. We expand / R,,(£) at one of the places at infinity in a Lau-
rent series. This series is an element of K ((¢)), where ¢ is a uniformizing
parameter, since the coefficient of £* equals 1. We calculate the con-
tinued fraction expansion {a;}$2, of the Laurent series. Assume that
2p is a torsion point of order . By Prop. 2.1 the continued fraction
expansion is pseudo-periodic with pseudo-period [ — 1. Hence

1312—1 - Ql2—1Rzo

is a constant. Applying the following result of Abel (cf. [1], p. 106)
about the connection between P;_;,(@;_; and the nominator of the
integrand we obtain finally ’

z+A=2(P_1Q;_1 — Qi-1P_1)R: + P1Qi 1 R, € K[z],
and hence Ae K.
Remark 4.2. By the theorem of Schneider mentioned in the intro-
duction it follows now that the expression T'(zp) is transcendental.

5. Examples

Baker’s formula (cf. [2] p. 148) expresses A in terms of p(mzp),
©'(mz), m = 2,...1—1, which can be computed from g2, g3, p(20). The
proof of Prop. 4.1 yields a more local algorithm to compute the value
A(zp) from the data g2, g3, (20). We used this algorithm to calculate
in the following ex ample for some torsion points the corresponding
pseudo-elliptic integrals, i.e., ¢z, c3, ¢4 and A(zp)-

Let the following elliptic curve over Q be given E:y? = 4z° —
— 1722+ 664. Its rational Mordell-Weil group has a subgroup of order 7.
Hence we find 6 torsion points zg = (z,y) # oo defined over Q. The
following table gives the coordinates of the torsion points, the coefficient
of the corresponding equation of degree 4 for the singular model Sk (zp)
and the algebraic part A(zp).
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(z,y)| (3,16) | (=5,—32) | (11,-64) | (11,64) | (—5,32) | (3, —16)
co —18 30 66|  —66 30 —18
c3 64 —128 —256 256 128 —64
ca 145 97 ~191 | -191 97 145
A(z)|  1/7 ~5/7 17/7 | —17/7 5/7 ~1/7

Computations were performed using the symbolic computer algebra
systems Mathematica and Maple.
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