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Abstract: We study surfaces, X, embedded in the Segre variety P x P° C
C P25+l which do not have trisecant lines. If s = 3 and X is smooth we
prove that deg(X) < 37.

Let U(r,s) = P" x P® C P+ " be the Segre variety defined
over an algebraically closed field K. Our main interest is when K is the
algebraic closure of a finite field GF(q), but even if char(K) = 0 to the
best of our knowledge the key results were previously unknown. Here
we study surfaces X C U(1, s) without trisecant lines (in the sense of
Def. 1.1). Denote by PG(N,q) the projective space of dimension N
defined over GF(q). There is a close relation between such surfaces
and objects coming from Galois geometries, namely K-caps, K € N,
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in PG(N, q); by definition a K-cap A of PG(N, q) is a set of K points
in PG(N, q) such that no 3 points of A are collinear. However, when
we claim to have proved the existence of at least a trisecant line' D on
a surface Y defined over GF(q), it could happen that D is not defined
over GF(q) but only over some finite (a priori unknown) extension of
GF(q); even if D is defined over GF(g), it could be that D N GF(q)
does not contain points defined over GF(g). If r = 1 and s is low, the
non existence of trisecant lines is a very strong restriction on X and
such surfaces are very few (see Th. 0.1 below for a precise statement).
Theorem 0.1. Assume char(K) # 2,3. Let X C U(1,3) be a smooth
surface without trisecant lines. Then deg(X) < 37.

Th. 0.1 will be proved in Section 3. We do not know what is the
situation for low deg(X). We expect that no such example exists, unless
deg(X) is very, very small. For large s, say s > 6, the non existence of
trisecant lines is a very mild restriction (see 2.7 and Remark 1.4).

1. Preliminary remarks

7

We work over an algebraically closed field K. Our main interest
is when K is the algebraic closure of a finite field GF'(g). Fix integers
r>1 8 >1 Let U(r,s) ~ P" x P* C P"*7+% be the Segre vari-
ety. Let 7' : U(r,s) = P" and #” : U(r,s) — P*® be the projections.
Set OU(r,s)(LO) = W'*(Opr (1)) and OU(r,s)(O: 1) = 71'”*(01:5(1)). By
definition of Segre embedding we have Oy, s)(1) = Oyqr,s)(1,0) +
+ Oy(r,5)(0,1). Hence we have deg(U(r, s)) = (r + s)!/rls.
Definition 1.1. Let WP¥ be a closed subscheme (even not reduced or
not irreducible). A line L C PV will be called a trisecant line of W if
the scheme W N L contains a length 3 subscheme of L, i.e. if and only
if either L is contained in W or W N L is finite but contains at least 3
points or card(W N L) = 1 or 2, but the sum of the multiplicities of the
divisor W N L of the smooth curve L at the points of W N L (i.e. its
degree) is at least 3. '

Remark 1.2. Let W C U(r, s) be a closed integral variety. Assume
that W has no trisecant line. Set w := dim(W) and assume r < w < s.
Assume 7/(W) = P" and dim(#n”(W)) = w. For general P € P" and
Q € m” (W), let a be the degree of the subscheme 7'~ (P) N W of P*
and b the degree of the 0-dimensional subscheme 7” ~'(Q) N W of PT,
i.e. set b := deg(n”|W). Since W has no trisecant line, if r = 1 we have
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1 < b < 2. We have deg(W) := 3 o< (w!/(w — 5)13)Ov(r,6)(1,0)5 -
- Oy(r,s)(0,1)7 . W. We have a = Oy r5)(1,0)" - Oy(r,5)(0, 1) - W
and b - deg(7” (W)) = Oy(r,s)(0,1)* - W. Note that for a general linear
subspace M of P7, we have deg(n” (7'~ (M)NW)) < b. Hence if M is
a general hyperplane of P™ the subscheme 7'~ (M) N W of dimension
w—1o0f M xP* ~ U(r — 1, s) has invariants o’ and b’ with o' = a
and b’ < b. Hence by induction on r and w we obtain the existence of
an upper bound for the integer deg(W') depending only on w, r, s, a,
b and on the numerical invariants of 7' ~* (M) N W. We were unable to
obtain an explicit closed form for such upper bound. If » = 1 we have
deg(W) =b - deg(n”(W)) + wa.

Remark 1.3. Since Oy 5)(1) = Oy(r,s)(1,0) + Oy(r,5)(0, 1) and both
Oy (r,s)(1,0) and Oyy(r ) (0,1) are spanned, we see that every line D C
C U(r, s) is contained in one of the rulings of U(r, s), i.e. either 7'(D)
is a point or 7" (D) is a point. ‘

Remark 1.4. Fix integers w, » with w > r > 0. Let W be an irre-
ducible projective variety with dim(W) = w. It is a strong condition
on the biregular type of W the existence of a nonconstant morphism
f:W — P". Hence if W C U(1, s) and w > 2, it is a strong condition
on the biregular type of W the fact that W is not contained in a fiber
of 7'.

Remark 1.5. Let X be a closed subscheme of U(r,s). Since the ho-
mogeneous ideal of U(r, s) in PTst7+¢ is generated by quadrics, every
trisecant line to X is contained in U(r, s) by Bézout theorem. Hence by
Remark 1.3 every trisecant line to X is contained in one of the rulings
of U(r, s).

Remark 1.6. Let W C U(r, s) be an integral variety. Assume that
W has no trisecant lines. Set w := dim(W) and assume w < r < s.
Assume dim(n'(W)) = dim(x” (W)) = w. For general P € n'(W) and
Q € n" (W), let a be the degree of the subscheme 7'~ (P)NW of P* and
b the degree of the subscheme 7" ~*(Q) of P". We have a-deg(r'(W)) =
= Oy(r,5)(1,0)” - W and b - deg(n” (W)) = Oy(r,5)(0,1)” - W. We have
deg(W) 1= 3 ocico (W!/(w — )10 (r,6)(1,0)7 - Op(r,s) (0, 1) 77 - W.
Note that for a general linear subspace M of PT, we have
deg(n”|(x' (M) N W)) < b. Hence if M is a hyperplane the sub-
scheme 7'~ (M) N'W of dimension w — 1 of M x P* ~ U(r — 1, 5) has
invariants o’ and b’ with a’ = a and ' < b. The same remark works
for general linear subspaces of P°. Hence by induction on w, r and s
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we obtain the existence of an upper bound for the integer deg(W) as a
function of the integers w, 7, s, a, b and of the numerical invariants of
general linear sections of W in U(r —1,s) and U(r,s —1). Asin 1.2 we
were unable to obtain an explicit closed form for such upper bound.

Remark 1.7. Let T' C P3 be an integral curve without trisecant lines.
Hence T is not a line. If T is a plane curve, then deg(T") = 2 by Bézout,
i.e. T is a smooth conic. Assume that T spans P3. Fix a general
P € T and consider the projection T’ C ‘P2 of T from P. If T —
— T' is not biregular, then there is a trisecant line to T' containing P,
contradiction. Hence we may assume that ' — T is biregular. Since
T — T' is birational we have deg(T”) = deg(T) — 1. By Castelnuovo’s
upper bound for the arithmetic genus of a space curve ([8, Th. IV.6.4])
and the arithmetic genus of a plane curve we see that either T' is a
rational normal curve or T is a quartic curve with p,(7) = 1. In the
latter case T is either a smooth elliptic curve or a rational curve with
a double point which is either an ordinary node or an ordinary cusp.

2. Surfaces in U(1,s)

In this section and the next one we will consider the case r = 1
and w = 2. Let X C U(1, s) be an integral projective surface without
trisecant lines. Furthermore, we assume that X is not contained in a
~ fiber of the first projection 7', Let a be the degree of the curve 7’ ~H(P)N
N X C P?. This degree does not depend on the choice of P ¢ P! if we
count the multiplicities of the components of the scheme 7’ "1(P) Nnx.
Since the fibers of 7" are lines and by assumption X contains no line,
7" |X is finite. In particular dim(7r” (X)) = 2. Furthermore, since X
has no trisecant line, for every Q € n” (X) the scheme 7” ~(Q) W has
length < 2, i.e. it is an effective divisor of the line 77 ~'(Q) with degree
1 or 2. By [7, Prop. 10.2], this degree is the same for all Q € 7" (X);cg.
This integer, b, is the degree of the map 7”|X. Hence either b = 1 or
b= 2. By Remark 1.2 deg(X) = b - deg(n” (X)) + 2a.

Remark 2.1. Since X has no trisecant line, X # U(1,1), i.e. the case
s = 1 is impossible.

Remark 2.2. Assume s = 2. Hence X is a divisor of U(1,2). By the
definitions of the integers a and b, X is a divisor of Oy(1,2)(b, a). Since

the curves n/ 7' (P) N X, P € P!, are plane curves without trisecant
lines, every curve m'~*(P) N X is a smooth conic. In particular a =
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= 2. We have b = 1 or 2. Viceversa, every integral divisor of type
(1,2) or of type (2, 2) such that all the corresponding conics are smooth
has no trisecant line. However, we will show that there is no such X
without trisecant lines. The family S := {z” (7' (P) N X)}pep: is a
family of smooth plane conics parametrized by a complete curve, i.e.
P!. However, the variety U of smooth plane conics is an affine variety
because it is an open set of the space P5 parametrizing all conics and
P®\ U is a hypersurface A # () (the zero-locus of the discriminant).
Hence the map S — U is constant, i.e. 7" (X) is a conic, i.e. all fibers of
n”|X are lines. Hence X contains infinitely many lines, contradiction. -

(2.8) Here we assume s = 3. Since the curves C'(P) := 7'~ "(P)N
NX, P € P, are space curves without trisecant lines, by Remark 1.7
we have 2 < a < 4. Furthermore, if a = 2 or 3, then each C'(P)is a
smooth rational curve, while if a = 4, then we have p,(C'(P)) = 1 for
every P. In the next two remarks we will exclude the case ¢ = 3 and
the case a = 2.
Remark 2.4. Here we exclude the case a = 3. Let X C U(1,3) be an
integral surface without trisecant lines and with ¢ = 3. First note that
every degree 3 curve C'(P) := 7' "*(P)NX is a smooth rational normal
curve because it cannot be a plane curve (otherwise it would have trise-
cant lines) and cannot have a line as an irreducible component. Thus
we find a family {C’'(P)}pep: of smooth rational normal curves in P?
parametrized by a complete curve, P'. Such a family must be constant
because the variety, Z, of all rational normal curves is affine (e.g. use
that Z ~ PGL(4)/PGL(2) because it is parametrized by a choice of a
base of H(P', Op1(3)) modulo Aut(P!) and PGL(4)/PGL(2) is affine
because both PGL(4) and PGL(2) are reductive groups). Hence the
projection 7” | X sends each C’'(P) to the same curve, i.e. it has lines as
fibers, contradiction.
Remark 2.5. Since PGL(s+1)/PGL(2) is an affine variety, the proof
of 2.4 shows easily that the case s = a > 2 and with all fiber smooth
rational normal curves is impossible. If s = 2 this is a priori the only
possible case, because every plane curve (reducible or irreducible) which
is not a smooth conic has a trisecant line, either by Bézout (if its degree
is > 2) or as an irreducible component. Hence we have checked again
Remark 2.2. o

(2.6) Here we assume s = 4 and that X has at most isolated

singularities. Consider again the curves C'(P) := «/ " '(P)N X, P ¢
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€ PL. Set again a := deg(C'(P)) and g := p,(C'(P)). If some C'(P)
does not span P*%, we may apply Remark 1.7 and find that either all
C'(P) are smooth plane conics or (a,g) = (3,0) or (4,1) (and in the
first case all curves are smooth).

(2.6.1) Here we assume that for general P the curve C'(P) is
smooth. Since the curve C’(P) has no trisecant line we have (a —2)(a—
—3)(a—4)/6 = g(a—4) (see [6], [12], [13], [15] and the discussion in [4,
§4], of why this is true even in positive characteristic). Hence, as in [4,
Step 2 of the proof of Th. 4.1], we obtain that if C'(P) spans P* only
the following pairs of integers (a, g) may occur: (8,5), (6,2), (5,1), or
(4,0).

(2.6.2) Here we assume that for general P the curve C'(P) is
singular. We will find that char(K) = 2. Since X has isolated singular-
ities, if char(K) = 0 then C’(P) is smooth by the generic smoothness
theorem ([8, p. 272]). Hence we may assume p := char(K) > 0. This
type of fibrations were first considered in [17]. For a detailed study in
the case p = 2 or 3, see [5]. Since C'(P) must have at least a cusp of
weight > (p — 1)/2 ([17]), say at some o € C'(P) with 0 € Xz, the
tangent line D to C’'(P) at o has intersection multiplicity > (p — 1)/2
at 0. Since X has no trisecant line in the sense of Def. 1.1, we have
p < 3. The case p = 3 is analyzed in [5, part (b) of Prop. 1, Prop. 2
and Fig. 1]. |

(2.7) Here we discuss the case w = 2, r = 1 and s > 5. First
we recall the following fact. Let D C P be an integral nondegenerate
curve. For every integer t > 1, let S*(D) C PY be the t-secant variety of
D, i.e. the closure of the union of the linear spaces spanned by t general
points of D. By [1, Cor. 1.5], we have dim(S*(D)) = min{N, 2¢t — 1} for
every t > 1. We fix an integral projective surface X such that there is a
surjective morphism f : X — P!, We assume that every singular point
of X has embedding dimension < s and that there are at most finitely
many singular points of X with embedding dimension > s — 1. We fix
f and we will show that if s > 6 there are several embeddings, ¢, of X
into U(1, s) such that f = «'|¢(X) and (X) has no trisecant line. We
fix any embedding j : X — P™, m large, m > s > 6 such that j(X)
has no trisecant line; for instance, given any embedding of X into P°
we may take as j the composition of this embedding with a Veronese
embedding of order > 2 of P5. Note that the dimension of the union
Proa of the 3-secant varieties f~!(P), P € P, is at most 6. Hence
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if m > 7, a general projection of j(X) into P™~! (i.e. a projection of
J(X) from a point of P™ \ [] such that the corresponding morphism
is an embedding of X) will be an embedding, u, of X into P™~! such
that for every P € P! the curve u(f~1(P)) has no trisecant line. Then
if m — 1 > s we make the same construction m — 1 — s times and we
find an embedding v’ of X into P*® such that for every P € P! the
curve u'(f~!(P)) has no trisecant line. Thus by construction the map
v = (f,u') : X = U(1,s) is an embedding such that v(X) has no
trisecant line. The same construction shows that if s = 5 we find an
embedding v := (f,u') : X — U(1,5) C P! such that v(X) has only a

finite number # 0 of trisecant lines. '

3. Proof of Theorem 0.1

In this section we will prove Th. 0.1. Fix a smooth surface X C
C U(1,3) without trisecant lines. Let-m : X — P3 the composition
of the inclusion of X in U(1,3) and the projection #” : U(1,3) — P3.
Since the fibers of the projection 7” are embedded as lines in the Segre
embeddings, every fiber of m must be a finite subscheme with length
< 2. In particular, 7 is finite and either 7 is birational or deg(r) = 2.

(3.1) Here we assume that  is birational. Set S := 7(X). Since
X has no trisecant line, we see that S has no point of multiplicity > 3.
Set m := deg(S). Let n be the number of pinch points of S and let
z 2 0 be the degree of the one dimensional part, D, of Sing(S). Since
S has no triple point, either D = 0, i.e. 2 = 0, or D is formed by
double points. A priori S may have also isolated double points, but
it cannot have isolated nonnormal double points by Serre’s criterion
of normality (“normal” is equivalent to “S,; and R;”) because S has
only hypersurface singularities and hence it has only S, singularities.
Note that m# : X — S is the normalization map because it is finite
and birational (Zariski Main Theorem ([8, Th. V.4, p. 410])). Hence
Sing(S) is either empty or a curve, i.e. D = Sing(S). Consider the
formulas (i) and (ii) of [14, Prop. 1 at page 211], in which the number,
t, of triple points of S is 0 by assumption. For the discussion of the
truth of these formulas in our situation, see 3.2 below.
(1) a(X)2=m(m—-4)*-(3m—-16)z—n
(2) co(X) =m(m? —4m +6) — (3m —8)z —2n
Let C be a general hyperplane section of X C U(1, 3) C P7. Hence C is
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a smooth non degenerate curve of P®. Set d := deg(C) and g := p,(C).
We have d = m+2a = m+8 and g = py(H)+4 = (m—1)(m—2)/2—2+4
because the arithmetic genus is the same for all hyperplane sectlons ([8,
Cor. I11.9.10]) and for the reducible hyperplane section H U 7'~ Y(p),
P € P!, the arithmetic genus is pg(H) +4. Set my :=[(d—1)/6], €1 :
:=d—6my—1and yu;:=1ife; =5 and p;:=0 otherwise. Set 71(d, 6) :=
= 6my(my — 1)/2 +mi(e1 + 1) + p1. First assume that g > m;(d, 6).
If d > 20 by [2, p. 123] (in positive characteristic see for instance the
proof of [3, Prop. 2.8] or use [16] and one of the characteristic 0 proofs)
C is contained in a minimal degree surface T of P®; this is the meaning
of the integer my(d, 6); curves of degree and genus 71 (d, 6) on a minimal
degree surface T of P®. By the characteristic free classification of such
surfaces T is either a smooth rational scroll or the cone over a rational
normal curve of P°. If T is a cone over a rational normal curve of P>,
every smooth curve of degree > 11 contained in T has every line of the
cone as trisecant line. Hence we may assume T smooth, i.e. T~ F, (a
Segre-Hirzebruch surface) for some e > 0. We have Pic(F,.) ~ Z? with
basis k, f such that h2 = —e, h- f =1 and f? = 0. By the adjunction
formula wr ~ Or(—2h + (—e — 2)f). Since T is a minimal degree
surface of P, we have e = 1 or e = 3. Assume C € |yh + zf|. By the
structure of curves on F, we have z > ey > 0. If y > 3 all the lines of
the ruling of T are trisecant lines of C, contradiction. If y = 1, then C
is rational, i.e. g = 0, contradicting the assumption g > m;(d, 6) Hence
we may assume y = 2. We have Op (1) ~ Or(h + ((e+ 5)/2)f). Hence
d:=m+8=1x+b5—e,ie. z=m+3+e. Using the adjunction formula
we obtain 29 —2 = ((z —2—e)f) - (2h+zf),ie. g =m+1 < m(d,6),
contradiction.
The inequality g > m1(d, 6) is implied by the mequahty

(3) (m+17)2/12 < (m—2)(m—=1)/2 —m(m? —4m +6)/(3m —8) +4
which is satisfied if m > 30, i.e. if deg(X) > 38. We claim that ca(X) >
> 0. Let x(X) be the Kodaira dimension of X. Since char(K) # 2,3,
X is not a quasi-elliptic surface in the sense of [5]. Since X has a base
point free pencil of smooth elliptic curves or smooth rational curves we
have k(X) <1 and if xK(X) < 0 (i.e. X is ruled) then h'(X,0x) < 1,
i.e. x(Ox) > 0. Hence the inequality c3(X) > 0 follows from Noether’s
formula ¢ (X)+ca2(X) = 12x(Ox) and the inequality x(Ox) > 0, which
in positive characteristic is called Igusa inequality (see [11, last line of p.
294]). Since c2(X) > 0and n > 0, we have 2(3m—8) < m(m?—4m+6)
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by eq. (2). .
Hence we have proved the inequality (3) needed to obtain a con-
tradiction.

(8.2) Here we discuss why we may use formulas (1) and (2) to
prove Th. 0.1. The triple point formulas in arbitrary characteristic were
proved in [12], [6, Th. 4.4 and §5] and [15]. For a discussion, see also the
introduction of [13]. For a discussion of the reason why if there is no
triple point then the value of the expected number of triple points given
by the enumerative formula is 0, see the discussion in [15, p. 83, lines
6-9] in the framework of curvilinear fibers. However, here the situation
is simpler and [12] would be sufficient, because by assumption all the
scheme-theoretic fibers of 7« have length < 2. ‘

(3.3) Here we assume deg(m) = 2. Set S :=7(X). Let v: 5" — S
be the normalization of S and u : X — S’ the degree 2 map induced by
, i.e. such that m = u-v. Since every fiber of v over a smooth point of
S’ has length 2 (see e.g. [7, Prop. 10.2]), S is locally Cohen-Macaulay
and every fiber of 7 has length < 2, we see that u is bijective. Set
H := u*(Og(1)) and let C S’ be the image of a fiber of the projection
m'|X + X — P!. Hence, calculating the intersection numbers on the
normal surface S’, we have H? = deg(S) and (with the notations of
1.2) a:=T - H. By 2.3 we have a = 2,3 or 4. By Remarks 2.4 and 2.5
we have a = 4, but to prove 0.1 this will not be essential. Furthermore,
S’ is the union of the images of the fibers of n’. Since v has degree 2,
for a general P € S’ there are 2 such images. In particular two general
such images are not disjoint and meet at least over a smooth point of
', except if 7 factors through a 2 to 1 map j' : P! — P!, i.e. there is
an embedding of S’ in U(1,3) and a 2 to 1 map j : U(1,3) — U(1,3)
induced by j' and inducing 7. This case will be discussed in 3.3.1 below.
Here we assume that we are not in this exceptional case. Hence we have
T? > 1. By Hodge Index Theorem we have T2H? < (H - T)? = o2
Hence deg(S) = H? < a?. Since deg(X) = 2deg(S) +2 by Remark 1.2,
we obtain deg(X) < 34.

(3.3.1) Here we discuss the exceptional case left open in 3.3, i.e.
we assume that for every P € P!, there is o(P) € P!, o(P) # P
for general P, and with 7" (C'(P)) = n”(C’(s(P))). This implies that
S := n”(X) has singular locus finite, because all fibers of 7”|X have
length < 2. Hence S is normal. No such surface has a family of degree 4
smooth elliptic curves with self-intersection 0 and with general member
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contained in the smooth locus. Hence even this case cannot occur if
deg(X) > 35.
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