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“Abstract: In this paper the:coincidence of radical classes on a given class

of rings is considered in three senses. It is asked whether for a given radical
and given class of rings there must be smallest or largest radicals coinciding

"' with the given radical. For each case it is either shown to be so or a counter-
'+ example is provided. - Additional conditions are introduced which guarantee

~.:such existence in these cases.

“We shall work in the class of associative rings but shall not assume
that each ring has an 1dent1ty element. The fundamental definitions and
results on rad1ca1 theory may be found i in Divinsky [2] and Wiegandt

If C is any class of rings there is a smallest radical class containing
C which we shall denote by I(C). There is also a smallest semisimple
class containing C and, corresponding to it, there is a largest radical
class such that all rings in C are semisimple. We shall denote this
radical class by u(C). Equivalently
u(C) = {R: no non-zero homomorphic image of R

is 1somorphlc to an accessible subring of a ring in C}.

As usual we assume that classes of rings are closed with respect to the
formation of isomorphic images.
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Let R; and R, be radicals and let C be a class of rings. Divinsky
[1], [2] and Mlitz [3] have considered the coincidence of R; and R; on
C in various senses. Mlitz works in the wider class of £-groups and
consider both radicals in our sense, i.e. Kurosh-Amitsur radicals, and
also in the wider sense of Hoehnke radicals. So while certain of his
results hold, usually with the same proof, in the present setting, this is
not so for all his results and we shall give some examples to illustrate
this. The coincidence of radicals R; and Ry on C is defined in three
senses:

1. For each A in C, A is R;-radical if and only if A is Ry-radical.

2. For each A in C, A is R;-semisimple if and only if A is Ry-
semisimple. '

3. For each A in C, R1(A4) = Ry(4).

Divinsky [1], [2] refers to (1) as coincidence in the weak sense and
to (3) as coincidence in the strong sense. Mlitz [3] refers to (1) as r-
coincidence, to (2) as s-coincidence and to (3) as coincidence. We shall
use this notation of Mlitz. '

Mlitz points out that if C is homomorphically closed then s-
coincidenc e implies coincidence, while if C is hereditary, i.e. closed
under formation of ideals, r-coincidence implies coincidence.

If R, and Ry are radicals coinciding on a class C in any of these
senses and Ry is a radical lying between R; and Ry then it also coin-
cides on C with them in the same sense. So it is natural to consider
whether there is a smallest or greatest radical coinciding with a given
radical R on a class C in each sense. Mlitz has shown that, for a given
radical R, there is a smallest radical r-coincident with R on C. It is
obtained by taking the intersection of all such radical classes. However
no largest such radical need exist. There is a largest such radical s-
coincident with R on C. It is obtained as the upper radical of the class
which is the intersection of the semisimple classes of all such radicals.
However no smallest such radical need exist. For radicals coinciding
with R on C the corresponding constructions yield both a smallest and
a largest such radical. However these need not equal, respectively, the
smallest 7-coincident radical nor the largest s-coincident radical.

We illustrate these situations with the following examples. Let E,
F and G be distinct, i.e. non-isomorphic, fields.

Example 1. Let C = {0,E & F'}. Let R; be any radical such that
F is radical and F' is semisimple. Let Ry be any radical such that
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E is semisimple and F is radical. Then R;, Ry are r-coincident and
s-coincident on C, but are not coincident. So, in general, r- and s-
coincidence together do not imply coincidence. The smallest radical
r-coinciding with R; on C is the zero radical, where only 0 is radical.
If a largest such radical existed it would contain Ry and also, of course,
R,. This is not possible as then £ @ F' would belong to this radical and
to C but not to R;. The largest radical s-coinciding with R; on C is
the radical consisting of all rings. If a smallest such radical existed it
would be contained in R; and also R;. However E @ F' is semisimple
for such a radical but not for R;. So no smallest such radical can
exist. Any radical coinciding with R; must contain F and so [{E} is
the smallest such radical, which is strictly larger than the smallest r-
coincident radical. Similarly F must be in the semisimple class of any
radical coinciding with R; on C . So the largest such radical is u{F'}
which is strictly smaller than the largest s-coincident radical.

Example 2. Let C = {O,E,E® F,E® F ® G}. Let ¢ be a radical
such that F is radical and F,G are semisimple. Then it is routine to
check that the largest radical s-coincident with o on C is the class of
all rings, the largest radical r-coincident with o on C is u(F) and the
largest radical coinciding with ¢ on C is u(F, ). These three largest
radicals are distinct. Furthermore, since the upper radicals involved
are generated by special classes of rings, these radicals are also the
greatest such Hoehnke radicals. So we have an example which provides
an answer to Problem 1 of [3].

The next examples are intended to emphasise the differences be-
tween the cases of Hoehnke radicals studied in [3] and the Kurosh-
Amitsur radicals used here. We show that certain relationships between
these coincidences given there do not hold in the present setting.
Example 3. Let C={0,E,F,E® F,E® F & G}. Let ¢ be a radical
such that F,G are radical and F is semisimple . Then it is routine
to check that [(F) is the smallest radical r-coinciding and s-coinciding
with o on C, but that it does not coincide with it there. This example
shows that Th. 1 of [3], which holds for Hoehnke radicals, does not hold
for Kurosh-Amitsur radicals, i.e. p, = ps; does not imply p, = p.
Example 4. Let C be as in example 3 and let ¢ be as in example 2.
Then [(FE) is the smallest radical coinciding with ¢ on C in all three
senses. The largest radical s-coinciding with ¢ on C is u(F'), while
the largest radical coinciding with ¢ on C is u(F,G). So, for reasons
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similar to those given in Example 3, Th. 2 of [3] does not hold for
Kurosh-Amitsur radicals.

The results on these smallest and largest radical classes have been
presented in an abstract manner in terms of intersections of radical
classes or semisimple classes. We now present them in terms of classes
of rings associated with the radical class R and the class C. We shall
use the following notations:

C; = {R € C: R is R-radical} ;

C; = {R € C: R is R-semisimple} ;

Cs; = {R: R(A) = R for some A € C} ;

C,={R: A/R(A) = R for some A € C} .

We note that C; and C, are subclasses of C but that Cs and Cy
need not be so. C; is a subclass of C3 and equality occurs if C is closed
under formation of ideals. C, is a subclass of C4 and equality occurs
if C is closed under formation of homomorphic images. ‘
Theorem 1. Let R be a radical and let C be a class of rings. Then
[(C1) is the smallest radical r-coinciding with R on C.

Proof. Let o be any radical r-coinciding with R on C. Then A in C;
implies that A is in C and that A is R-radical. Therefore A is a-radical.
Hence [(C;) C «. In particular we have that [(C;) C R and so if A is
[(Cy)-radical it is R-radical. Conversely if A is in C and is R-radical
then A is in C; and so is I(C;)-radical. ¢

Theorem 2. Let R be a radical and let C be a class of rings. Then
u(Cy) is the largest radical s-coinciding with R on C .

Proof. Let o be any radical s-coinciding with R on C. If A is in Cy
then A is in C and is R-semisimple. Therefore it is a-semisimple. It
follows that o C u(C3). In particular we have R C u(C3) and so if A is
in C and is u(Cy)-semisimple it is R-semisimple. Conversely if A4 is in
C and is R-semisimple then A is in Cy and so is u(C3)-semisimple. ¢
Theorem 3. Let R be a radical and let C be a class of rings. Then
I(C3) is the smallest radical coinciding with R on C.

Proof. Let o be any radical coinciding with R on C. If A is in C3 then
there exists R in C such that A = R(R) = o(R). Hence A is o-radical
and so I[(C3) C a. In particular I(C3)(R) C R(R). Conversely for each
R in C we have R(R) in C3 and so R(R) C I(C3)(R). ¢

Theorem 4. Let R be a radical and let C be a class of rings. Then
- u(Cy) is the largest radical coinciding with R on C .

Proof. Let o be any radical coinciding with R on C. If A is in C4
then there exists R in C with A = R/R(R) = R/a(R). It follows that
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a C u(Cy4). In particular we have R(R) C u(C4)(R). Conversely for
each R in C the ring R/R(R) is in C4 and so is u(Cy)-semisimple.
Therefore u(C4)( ) CR(R). ¢

. If C is closed under formation of ideals then C; = C3 and so
I(C1) = I(Cj3). Dually if C is closed under formation of homomorphic
images then Cy = Cy4 and so u(Csy) = u(Cy4). However in these cases
the stronger results hold that in the first case r-coincidence implies
coincidence and in the second case s-coincidence implies coincidence.
The proofs by Mlitz [3] for these results still hold in this case. Under
the first of these conditions a largest radical r-coinciding with R on
C exists, being equal to the largest coincident radical . Dually under .
the second of these conditions a smallest radical s-coinciding with R
on C exists, being equal to the smallest coincident radical . If both
cond1t1ons hold then all three senses of coincidence are equlvalent In
partlcular this is true for the class of all associative rings. Also if both
conditions hold then all three smallest radlcals are equal as are all three
largest radlcals However such equahtles hold under somewhat weaker
c onditions.
Theorem 6. Let C be a class of mngs ‘closed under the formatzon
of ideals and let R be a radical. If C, is closed under formation of
'homomorphzc 1mages then l (Cl) 18 the smallest mdzcal coznczdmg with
‘Ron C in each of the three senses.
Proof. By Theorems 1, 3 and Prop 1, [3], this résult holds for senses
‘(1)and’ (3). Then, since" 1(C1) coincides with R, on C it s- ~coincides
there’ also Let'a be: ‘any’ radical s-coinciding with' R on C . Let 4
‘be in 'Cy: Then since Cy is closed under formation of homomrphic
‘images, A/a(A) is in Gy C C. As A/a(A ) is o-semisimple it is also
R-semisimple. - “However, since A is'in' C; , we have that A/ a(A) is
R-radical. Therefore a(A) Aandsol(Cy) Ca. O -
Theorem 6. Let C be a class of rings' closed under formatzon of homo-
‘morphic.timages and let R be a radical. "If Cy is closed under formation
‘of ideals then u(Cs) s the largest mdzcal comczdmg wzth R:.on € in
“each: of the three senses.: ..~
Proof. By Theorems 2, 4 and Prop 1 [3] th.lS result holds for senses
(2) and (3). Since U(Cz) coincides with R on C it 7- -coincides also. Let
- be any radical 7-coinciding: with R.on C. Let A be in Cs. Smce Cy
is.closed under formatlon of ideals we have that o(A) is in C3 and so is
in C..Tt follows that c(A) is' R-radical.. However c(4) is in C and so
is R-semisimple. Therefore a(A) = 0O and so C3 C S,; the semisimple
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class of a. It follows that o C u(Cz). ¢

We now turn to some important examples of classes of rings and of
radicals where these results may be applied. Divinsky [1], [2] considered
the case where A is the class of artinian rings and the classical radical
is used, i.e., for each R € A the radical of R is the maximal nilpotent
ideal N(R). Many of the radicals first considered were generalisations
of this radical to the class of all associative rings, defined so as to
coincide with it on the class of artinian rings. A is closed under the
formation of homomorphic images but is not closed under the formation
of ideals. However the semisimple class is closed under the formation of
ideals. So Th. 6 does apply in this case. By means of examples Divinsky
showed that the smallest radical class which is r-coincident in this case is
strictly contained in the smallest coincident radical class, which, by [3],
is also the smallest s-coincident radical class. He showed by means of an
example that this smallest coincident radical class is strictly contained
in the lower Baer radical, i.e. the radical class generated by all nilpotent
rings. He also showed that the largest radicals in the weak and the
strong sense are equal. By Th. 6 this is also the the largest s-coincident
radical class. ‘

In [4] the class of artinian rings is considered also, but using the
von Neumann radical Q or the hereditarily idempotent radical H. Q is
the class of all rings R such that for each a € R the equation aza = a
has a solution in R. H is the class of all rings R such that every ideal A
of R is idempotent. The radical Q is strictly contained in H, but they
coincide on the class A of artinian rings. The H-radical rings in A are
precisely the ‘semisimple’ rings in the classical sense. The H-semisimple
rings in A are the rings R in A such that the maximal nilpotent ideal
N(R) is essential in R. It is shown in [4] that the smallest radicals in
all three senses are equal. Further details of this case are given there.

It is natural also to consider the class N of noetherian rings. This
class is also closed under the formation of homomorphic images but not
under the formation of ideals. The nil radical (upper Baer radical) of
a noetherian ring is nilpotent. The trivial ring defined on the infinite
cyclic group Z by making all products equal to 0 is noetherian. It
generates as its lower radical the lower Baer radical 5. Let R be any
radical lying between the lower and upper Baer radicals, inclusive. Then
R(R) is nilpotent for each R € N. It follows that the smallest radical
in all three senses coinciding with R on N is the lower Baer radical.
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We note that this result does not extend to the Jacobson Radical. For
example the ring of p-adic integers is noetherian and has nil radical
equal to O but has non-zero Jacobson radical.
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