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Abstract: Let P be a plane convex polygon inscribed in the unit circle K,

~and let P* be the polar reciprocal of P with respect to K. J. Aczél and
L. Fuchs [1] showed that the area sum of P and P*, denoted by S(P), is
greater than or equal to 6, with equality only if P is a square. In this paper
we prové a corresponding stability theorem: assuming that S(P) is not much
greater than 6, we give upper bounds for a special deviation of P from a square -
as well as for the Hausdorff distance. The Handbook article of H. Groemer
[4] is a survey of stability results for geometric inequalities.

Let K be the unit circle centred at the origin O, and let P be a
convex polygon inscribed in K. We denote by P* the polar reciprocal of
P with respect to K, that is, the circumscribed polygon whose points of
contact with K are the vertices of P. J. Aczél and L. Fuchs [1] proved
that
(1) S(P) = a(P) + a(P*) > 6,
where a(X) denotes the area of the set X. Equality holds if and only if
P is a square. The papers [2], [3], [5] and [6] contain alternative proofs
and various extensions of (1).
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In the present paper we deal with the following question: if S(P)
is not much greater than 6, what can be said about the deviation of P
from a square? The deviation of P from a square can be measured, e.g.,
by : :

(2) p™ (P) = min p” (P, Q),

where qp* indicates Hausdorff distance, and the minimum extends over
all squares @ inscribed in K. Still it appears difficult to establish a
connection between S(P) and pf (P).

Without loss of generality we may assume that the origin is an
mterior point of P, since otherwise a(P*) = oco. Throughout this paper
we consider only such polygons which are inscribed in K and contain the
origin as an interior point. This assumption will not be mentioned ex-
plicitly, where there is no danger of misunderstanding. Let us denote
the central angles spanned by the sides of P by 2z1,...,2z,, n > 3,
where
(3) O<zp<n/2 (k=1,...,n), z1+...+2,=m.

We shall refer to z1,...,z, as the parameters of P. Occasionally, it
will be convenient to introduce some additonal z; = 0.

Four of the parameters corresponding to a square are 7/4, the

others being 0. Thus, for any =z € [0,7/2),

) T
min (a0, | 7 2
may be viewed as the deviation of z; from the parameters of a square.
This suggests an alternative concept of deviation of the polygon P (with

parameters z1,...,Z,) from a square.
Definition. The deviation of the polygon P from a square is defined
by

() p(P) = 3" min (a0, |7 — as)
k=1

Observe that rotation of P about O or permutation of its sides leaves
p(P) unchanged.

From (4) it follows that
(5) 0<p(P)<m
holds for any polygon P, with p(P) = 0 only if P is a square, and p(P) =
= m only if maxx, < /8. If T is a triangle, then 7/4 < p(T) < /2.
For a regular n-gon P, we have p(P3) = p(Ps) = n/4, p(Pg) = /2,
p(P7) = 3w /4 and p(P,) = = when n > 8.

We now prove that p is a continuous function of P in the Haus-
dorff metric.
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Let R= A A, ... A,, be a fixed convex m-gon inscribed in K. If
r is a positive number, we denote by R, the outer parallel domain of R
at distance r. Let r be subject to the following three conditions:

(i) Every line segment of the boundary of R, intersects the inte-
rior of K. Then R, N bdK consists of m mutually disjoint arcs
ai,...,Qy with central angles 2ay, ... , 20;,;

(ii) let o < w/8,for k=1,...,m;

(iii) the distance of Ay from the convex hull of |J a; is greater than
ik
r,fork=1,...,m. g

These conditions are clearly satisfied if r is sufficiently small.

Let P = B1By... By, be a convex n-gon inscribed in K such that
(6) p?(P,R)=r.
By (6) and (i), every B; lies on some ag, and by (6) and (iii) every
ar contains some B;. Let 2z and 2y; denote the central angles cor-
responding to AgxAky; and B;Bj,, respectively. We distinguish two
cases:

(a) If B; and Bj 1 lie on the same arc ag, then (ii) implies that
min (y;, |5 —y;]) = yj- -

(b) If the vertex B; lies on ak, and Bj;1 on ag+1, we make use of
the inequality ‘

: T . T

i o5 - ) 5 )| < s -
which holds for any z; € [0,7/2) and any y; € [0,7/2) and which
can be proved by straightforward calculation. Alternatively, (7) follows
from the fact that the graph of the function min (w, ]% — a:|) consists
of three segments, each of which forms with the positive z-axis either

the angle 7/4 or —m /4.
Thus we finally obtain

m m
(8) o(P) = p(R) <D > wi+ > lys — ol
k=1 j k=1
where the first term and the second term correspond to the cases (a)
and (b), respectively. The right side of (8) attains its maximum when
both endpoints of every ay are vertices of P. This shows that
(9) 10(P) — p(R)| < 20z + ...+ am).
But Y ;. ; oy tends to 0 when r — 0, as required. ¢
We shall state our main result (Theorem 1) in terms of the func-
tion p. The following lemma establishes the existence of two positive
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numerical constants confining the ratio p (P)/p(P) for every polygon
P different from a square. '
Lemma. For any convez polygon P inscribed in K and containing O
in its interior we have

(10) > (cos T —cos ) plP) < 7 (P) < 20(P).

Proof. (a) Let Q be a square and put p™(P,Q) = r. Since p(P) < m,

we may assume that

(11) rgcos%—cosg—.

If we maintain the above notation with R = @) and write « for a; =
= a9 = a3 = g4, then by (11)
T

z arccos ! +r) <
= — — I — — .
“T Y V2 =3
The distance of the vertex A; of @ from the convex hull of (J a; is
i#k
1 —sina > 7. Thus the conditions (i), (ii), (iii) are satisfied. Since
p(Q) = 0, inequality (9) implies that p(P) < 8« or

T _ arccos [ = 7‘)
op) g (G r)
T T
The right side of (12) being an increasing function of r, the first in-
equality (10) is a consequence of (11) and (12).
If we take oo = 7 /8, then the endpoints of ai,as,as,as are the
vertices of a regular octagon P with p™ (P, Q) = cos /8 — cos /4. As

p(P) = m, we have equality in the first inequality (10). This holds also

(12)

. 4

for the polygon P’ =conv(PUM), where M is any finite subset of |J a;:
i=1

(b)If P is any convex polygon inscribed in K containing O in its

interior, and if @ is any inscribed square, then p? (P, Q) < 1. Therefore,

for the proof of the second inequality (10), we can assume that
(13) 0<p(P)< 5,

and write p(P) = p.

Let z1,...,x, be the parameters of P. We shall frequently refer
to the arc 2z instead of the respective central angle. If z < 7/8, we
continue to denote this by zj and call 2z a small arc. If z > /8, we
shall write y in place of zy and call 2y a large arc. By (3) and (4),
we have
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(14) o+ ) yp=m,
Zﬁck”*‘Z'__yk‘

For any polygon, the number of large arcs is at most seven. On the
assumption (13), this number is exactly four. To show this, set |m/4 —
— Y| = di, whence

Vi3 Vs
15 — —d < < —+dp.
(15) ) k_yk__4+k

Suppose that there are five large arcs, 2y1, ..., 2ys. Then, by (15), (14)
and (13),
5T 5T

5

Next, suppose that there are at most three large arcs 2yi. Then, by
(15), (14) and (13),

ka+2ykézmk+§g+2dk=§f+ §43+ 5 <
which leads to a contradiction in either case. .

~ We shall prove the second inequality (10) by showing that there
is a square () such that
(16) P (P,Q) < 2sinp.

Let A be any vertex of P and let Q = ABCD be a square. We

progress on the boundary of K in the direction A - B - C — D —
— A covering the large arcs 2y1, 2ys2, 2y3, 2y4 as well as the intermediate
small arcs. By (14), the endpoint of every small arc between A and 2y; -
has from A a circular distance < 2"z < 2p. The endpoint of 2y; has
from B a circular distance < 2d; +2 ) zx < 2p, and this holds also for
the endpoints of the small arcs between 2y; and 2ys. The endpoint of
2ys has from C a circular distance < 2dy +2ds +2 >z < 2p, and this
holds also for the endpoints of the small arcs between 2y, and 2ys, and
so on. Therefore, every vertex of P has an Fuclidean distance < 2sin p
from some vertex of Q, and vice versa. This completes the proof of the
lemma. §
Remarks. i) If a sequence of polygons (P,,) is H-convergent to a poly-
gon P, then p(P,,) tends to 0 if and only if P is a square. However, the
mere assumption p(Pp) — 0 does not imply the convergence of (P ).
Still, for any square () there exists a sequence of rotations about O, say
(rm), such that rp, Py — Q.

(ii) It may be that in (10) the upper bound 2p(P) can be replaced
by ¢p(P) with a constant ¢ < 2. The example of the equilateral triangle
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shows that ¢ > 4n~! (cos & — ) = 0.59323. ...

Returning to our stability problem, let us consider a convex n-gon
P with the parameters z1,...,Z,. The area sum of P and P* defined
by (1) can be expressed by the formula

(17) S(P) = flzx),
k=1

where
(18) f(z) =sinzcosz + tanz.

We can now state our main result.
Theorem 1. Let P be a convez polygon inscribed in K and let € be a
given number with 0 < e < g9 = w/12. If p(P) > 2¢, then

S(P) > f(e) +4f <”4'5> = 5(e),

with equality if and only if p(P) = 2¢ and P is a pentagon with the
parameters T1 =€, To = T3 = T4 = T5 = (71 —€) /4.

Proof. First we show that the function S is strictly increasing in 0 <
< e < gg and observe that

(19) e<” ; c.

From .
20 ") = 2cos? ¢ —

( d) f(z) cos*z—1+ ey
an

(21) F'(z) = 2;1:‘3” (1 - 2costz)

we see that f is (i) strictly increasing in 0 < z < w/2, (ii) strictly
concave in 0 < z < zg, and (iii) strictly convex in zo < z < 7/2, where

1
= 32.765...°.
V42
To examine the sign of
S'(e) = 1)~ f (” I 5) ,

we set € = z and (7 — €)/4 = y and obtain from (20)
1
— 2 o2
F'(z) = f'(y) = (cos® z — cos® y) (2 T 05?7 cos? y) .
By (19), the first factor is positive. The function g defined by
9(z) =2coszcosy = cos(y + z) + cos(y — x)
is strictly concave in 0 < z < 7/12, since

Tg = arccos
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9 25
" - _ _ _
g" () I cos(y + z) 16 cos(y — z) < 0,

and takes at the boundary points the values g(0) = v/2 and g(7/12) =
= 1.452... > /2. Hence g(z) > v/2 for 0 < z < 7/12, which implies

f'(z) - f'(y) > 0 and

(22) S'e)>0 if 0<e<eg.
Observe that
(23) S(0) =6, S(ep) = 6.00874. ...

In view of (22) it is sufficient to prove Thm. 1 for 0 < € < «p.

We now describe a procedure that can be used to simplify the
proof (see [2]). Let us assume that two of the parameters of P lie
between 0 and zg:

O0<z1 <z <209
We replace z; and z5 by z} and z} such that
0<z) <z <22 < TH < 24
T +xh =11+ T
and 7 = 0 or z, = zo, or both. The parameters z; > o remain
unchanged. Since f is strictly concave in [0, zg], this process decreases
the sum S. We shall refer to the (possibly repeated) application of this
process as reduction. After a finite number of steps we obtain a finite
set of real numbers, again denoted by {z1,... ,Zn}, satisfying
n

(24) 0<z1<zp <29 < ..an<g, ka:w.
k=1

In the rest of the proof we shall only consider the polygon which cor-
responds to this set {z1,...,z,} and denote it again by P. It should
be noted that reduction may diminish p(P). This point will require
special attention. Because zo > 7/6, it follows from (24) that

n < 6.

In the following we shall make repeated use of the strict convexity -
of f in [zg,7/2) and Jensens’s inequality. It will be convenient to
distinguish the cases n = 3,4, 5, 6.

n = 3. For 0 < 1 < zg we have

k=1

and, by [2], (8),
Sa(e1) > Saea) > 3f (5 ) = B VE=6495...> 5(e0) > 5(e)
for 0 < g < gp. »
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n=4. For 0 < z; < g we have

4 T
=Zf($k)2f(fﬂ1)+3f<

k=1

x1> = S4(z1)

~ and, by [2], (8),
54(.’171) > 54(930) =6.044... > S(Eo) > S(EI)
for 0 < e < gg.
n = 5. For 0 < z; < zg we have

:Ii:lf(wk) > f(z1) +4f (ﬂ ml) = S5(z1).

As shown in [2], p. 80, the derivative Si passes from positive to negative
values. Therefore, S5 attains its minimum in any subinterval of [0, o],
e.g. in [e, zg], only at one of the endpoints. From

Ss(e) = f(e) +4f (W _€> = S(e) < S(eo) = 6.00874. ..

4

and :
Ss(zg) = 6.01081 ...

35(371) Z S(E)

for e < z1 < g and 0 < € < g, with equality only if z; = . Hence
(25) S(P) > S(¢g) (e < z1 < zp)
with equality only if 1 = € and 9 = 3 = T4 = 5.

It remains to be shown that
(26) S(P) > S(e) (0 <z <e¢),
which will be proved in three steps.

(a) First we consider the case
(27) g — Ig
with 0 < e < so = 7/12. From

we see that

mT— T -—-~£130>

(28) 5(P) = mek > fleon) + flo0) +31 (T2

by (20) we obtam
Y( ) T’(ﬂ«’l) (371) fl(yl)

1
=(cos?® 21 — cos? 1) (2 - > ,

cos? 1 cos? y;

where

T —X1 — Xy

R

Because of 0 < 1 < y1, we have cos? 1 —cos?y; > 0. If zo+x1 < ﬁ/4,
we have y; > 7/4, so that cosz; cosy; < cosy; < 1/4/2 and, by (29),
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(30) T'(z1) < 0.
If 2o + 21 > 7/4, the inequalities z; > T —m > 12° and y; >
> (71' — 15 — :1:0) /3 > 44° imply that
’ 1
cos 1 cosyy < cos12°cos44° = 0.70362... < —ﬁ =0.70710....
Hence (30) is true also in this case. The required result follows from
(28) and

T(z1) > T(e) = f(2) + (zo) + 3 <%ﬁf2>

4

(b) Therefore, we can now assume, in the second step, that
(31) g < T3z .

It may be that the polygon P is obtained from the original polygon

by a process of reduction. For the moment we denote this original
polygon by P’. According to the assumption of Thm. 1, we have
(32) p(P) > 2e.
At the beginning of the proof we- pointed out that reduction possibly
decreases p(P'). However, we will show that this does not happen if
(31) and z; < € are satisfied. Since reduction does not change any
parameter > zg, we can write the parameters of P’ in the following
way:

> g+ 4f (24 T2 = s

O<y <y <...<yr<z3<z3< 14 < Z5,
where y, < g and r > 2. Because Z;=1 y; is invariant under reduction,

we have
™
E Yi =21 .
i=1

Since z; < 7/8, we see that y; < n/8 (1 = 1,...,r), so that
min (y; , | T — y;|) = y;. Hence we get

p(P) = Zyz+2'__mkl (P),

as required. This shows that
(33) p(P) > 2.
(c) Let us recall that

(34); 0_<_$1<8<$0<$2§$3§m4§$5<g.
Suppose that z5 < m/4. Then, by (33), we obtain
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5
p(P)::c1+7r—Za:k > 2e

k=2
or
2z > 25,
which contradicts (34). Hence
s
(35) Ty > Z .

Supposing that z3 > 7/4, we see, from (34) and (35), that EZzQ T >
> m, which is impossible. This shows that

T

Let us denote the number of the parameters zx € (zo,n/4] by m and
their sum by y. From (34), (35) and (36) we deduce that 1 < m < 3
and that

Y

T T—T1—Y
37 LA Py o
( ) T < oy < 4 < i—m
Inequality (33) yields

p(P) =w1+v(m%—y) +(7r—y—:t:1)—(4—m)g— > 2
or
(38) y < mi—r— —€.
leé[gﬁiing use of Jensen’s inequality we get
5 ' _
S(P) = Zf(mk) > f(z1) + mf (%) +(@4—m)f (%m_y>

From (37) and (38) we conclude that
or (Y (T =21 —Y
o2 KA S 0
0y f (m) f 4—m <
s
T(wlay) >T (wlamz - 5)

= f@) +mf (T — =)+ (4-m)f (Z_+s—x1)_

4 —m

and

(40)

The derivative of the right side is
1
f'(z1) = f'(y1) = (cos® 1 — cos® Y1) (2 - ) )

cos? 1 cos? y;

where
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_7I'+E—£131
N=474m
From
< a =
0 a:1<5<4<y1 4+E<2
we see that f/'(z1) — f'(y1) < 0 and in consequence
T :cl,mz—e >T a,m%fe
T € T
0 - s ems 5 ) - (3).
(41) sy +ms (5-E) +a—mys (5

The desired inequality (26) follows from (39) and (40) by applying
Jensen’s inequality to the right side of (41). This concludes the case
n =23.
n = 6. The supposition (24) restricts the variable z; to
0<zy <m—bxg,
Where m—bxy < :co Making use of Jensen’s inequality, we get

Zf Tk) > f($1)+5f< ) = Se(z1).

In [2], p. 80 it was shown that
Se(z1) > S6(0) = 5§ (353) — 6.01035...> S(eo) > S(e)

for any € € (0, &g

This completes the proof of Thm. 1. §

The following statement is equivalent to Thm. 1.
Theorem 2. Let S(gg) = 6o =6.00874..., and 6 <6 < bp. If P i5 a
convez polygon with S(P) < §, then 4

o(P) < 2571(9),

with equality if and only if P is a pentagon with the parameters r, =
=e=S8"1Y0), 19 =13 = T4 = 75 = 125, (Here S—1 denotes the
inverse function of S.)

Let § and P be as before. If S(P) < §, the combination of Thm. 2
and the lemma proves the existence of a square () such that

(42) pH(P,Q) < 4571(5).
We proceed to derive from (42) a simpler upper bound to p#(P, Q).

The following properties of the functlon f defined by (18) can easily be
verified.

70 =0 £ (5) =370 =5 (§) =2 O =0 £ (5) =2
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f"(z) <0 for 0<z< 17T—2, f'"(z)>0 for zo<z< g
As an immediate consequence we note that
' 1
(43)  S(0)=6; S§'(0)=0; §7(0) = 3 S"(e)<0for0<e<eg.

With a constant C we consider the function
F(e) = S(e) — (6 + Ce?)
and obtain from (43)
1

(44) F(0) = F'(0) =0; F"(0) = 3~ 2C; F""(e) < 0for0<e<¢gg.
By taking C = % we see, on the one hand, that

1
(45) S(e) <6+ 152 (0 <e<egg).

From (44) it follows that F’ is strictly concave in [0,e0]. Now we
choose C = 1/8 and calculate F'(gg) = S'(g0) —€0/4'= —0.02724... <
< 0. Therefore, F' passes from positive to negative values, and F'
attains its minimum in € = 0 or € = €g. Since F(0) = 0 and F'(gg) =
=0.000177... > 0, [4] we have, on the other hand,

1
(46) S(e) > 6+ —éez (0 < e < eoq).
Now, (45) and (46) imply the desired inequalities
(47) 2¢/6 — 6 < S7(8) < 24/2(6 — 6).

Combining (42) and (47), we obtain the following corollary.
Corollary. Let6 < § < §y = 6.00874 ... and let P be a convez polygon
with S(P) < §. There ezists a square @ such that

(48) P (P,Q) < 8/2(5-6).

Set S~1(§) = ¢, and let P be the pentagon with the parameters z; = &,
Ty = x3 = 4 = 5 = (T — €)/4, so that S(P) = §. From Theorem 2,
(10) and (47) we conclude that

(49) pP(P,Q) > 4n~? (cos —g — cos %) 5—6

for every square (). The numerical constants in (48) and (49) are

11.313... and 0.276.. ., respectively.
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