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Abstract: The aim of this paper is to continue the study of general topo-
logical properties via ideals. Extremal disconnectedness is considered from a.
more global point of view. Some already existing concepts are unified utilizing

the notion of a topological ideal.

1. Extremally disconnected spaces: an introduction

In this preliminary section we make an attempt to cover the recent
progress in the study of extremally disconnected spaces.

A topology 7 on a set X is extremally disconnected (= ED) [47]
if the 7-closure of every member of 7 is also in 7. Extremally discon-
nected spaces exist in profusion: all hyperconnected, i.e. irreducible
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spaces and all partition spaces are extremally disconnected. Herrman
[28, 29] showed that every S-closed weakly Hausdorff and every S-closed
almost regular space is extremally disconnected. In 1978, Cameron [4]
proved that every maximally S-closed space is extremally disconnected. -
In 1980, Noiri [38] showed that if a space X is locally S-closed and either
weakly Hausdorff or almost regular, then X is extremally disconnected.
Recently [16] it was shown that every locally countably S-closed km-
perfect space is extremally disconnected.

In [25], Ganster and Andrijevié proved that SPO(X,r)=PO(X,T)
if and only if (X, 7) is extremally disconnected, i.e. if and only if every
set which is dense in some regular closed subspace is included in the
interior of its closure. Several characterizations of extremally discon-
nected space were given by Noiri in [39].

In [37], Nagura considered extremally disconnected spaces in con-
nection with the concept extension property. A property P is said to
be an extension property if it is closed-hereditary and productive and
each P-regular space has a P-regular compactification (see [37] for de-
tails. An extension theorem for extremally disconnected L-spaces is
given by Kubiak in [34]. Long, Herrington and Jankovi¢ [36], proved
that if an invertible space X has a nonempty open subset U which is
as a subspace extremally disconnected, then so is X.

By saying that a point z of a topological space X is discretely
untouchable, one means that z cannot be obtained as a cluster point
of a countable discrete subset of X. Having in view the conjecture
that extremally disconnected compact spaces always have discretely
untouchable points, Simon [44] proved that if additionally X is CCC,
has the weight continuum and cf(g(CO(X))) > w, then the conclusion
of the conjecture holds. Here, CO(X) stands for the Boolean algebra of
all clopen subsets of X and g(B) means the minimal cardinality of those
C, C C B, for which B is the completion. Recently extremally discon-
nected spaces were studied by Dow and Vermeer [21] and by Blaszczyk
and Vermeer [1]. Contrasequentialness, a weaker form of extremal dis-
connectedness in the class of Hausdorff spaces, was recently studied by
Dow and Vaughan in [20].

There exists a way of generating extremally disconnected topolo-
gies from Hausdorff spaces, namely for every Hausdorff space (X, 1),
there exists an associated topological space EX, called the Iliadis ab-
solute of X, which is unique (up to homeomorphism) with respect to
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being ED (see [8, 41] for details). In [8], Csdszar derived some funda-
mental properties of the spaces FX such as: the full subcategory of
9-TOP whose objects are the regular extremally disconnected spaces
is coreflective. For a systematic study of various ramifications of the
construction of an Iliadis absolute, beyond the class of regular spaces,
the reader may check another paper of Csdszar [9)].

Extremally disconnectedness has been recently under considera-
tion in connection with the space Seq(¢) [6, 18, 32, 35]. Let Seq denote
the set of all finite sequences on w along with the empty sequence. If
€ is a free ultrafilter on w, then Seq(¢) denotes the topological space
whose underlying set is Seq and whose topology is defined in the fol-
lowing way: U in Seq is open if and only if for every s € U, the set
{n € w:s ~n € U} is a member of £&. In the definition of the topol-
ogy on Seq, s — n denotes the concatenation of the two sequences s
and {(1,n)}. Not only the space Seq() is extremally disconnected [18]
but also the orbit of every point of the Stone-Cech compactification of
Seq(€) is a homogeneous extremally disconnected countably compact
space [6, 32]. Other recent contributions to the theory of extremally
disconnected spaces are [2, 10, 11, 19, 26, 49, 50, 51].

A topological ideal is a nonempty collection of subsets of a topo-
logical space (X, 7), which is closed under heredity and finite additivity.
Proper ideals are called dual filters. Throughout this paper we will be
interested only in such ideals. Except the trivial ideals, the following
collections of sets form important ideals on any topological space (X, 7):
the finite sets F, the countable sets C, the closed and discrete sets CD,
the nowhere dense sets N, the meager sets M, the scattered sets S
(only when X is Ty [17]), the bounded sets B, the relatively compact
sets R, the S-bounded sets SB [33] and the Lebesgue null sets L.

2. 7-ED-spaces

Definition 1. A topological space (X, 7,Z) is called an Z-extremally
disconnected space (= I-ED-space) if for each regular open set R C X,
bd(R) € T.

Clearly, whatever ideal Z we set on a topological space (X, 7), the
extremal disconnectedness of (X, 7) always implies the validity of the
newly defined condition Z-ED on the space (X, 7,Z), since a space X is
ED if and only if regular open sets have empty boundaries. Moreover,
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every space is N-ED and hence also M-ED, since N is contained in M
and boundaries of regular open sets are nowhere dense.

Proposition 2.1. IfT and J are ideals with I contained in J, then
X is IT-ED implies that X is J-ED. {

Throughout this paper, by an ideal we will always mean a dual
filter, since the fundamental definition of Z-ED-spaces is always valid
when 7 is the maximal ideal. The following proposition shows that
under different settings on Z, we obtain from the definition of Z-ED-
spaces some already known classes of topological spaces.

Recall first that a topological space (X, 7) is called almost ez-
tremally disconnected [12] (resp. wy-eztremally disconnected [15]) if the
boundary of every regular open set is finite (resp. countable). By RB,
we denote the ideal of all R-bounded sets. A set A in a space X is
R-bounded (cf. [33]) if every cover of X by regular semi-open sets in X
has a finite subfamily covering A. A set A is called regular semi-open
[5] if A lies between a regular open set and its closure.

Proposition 2.2. Let (X, ) be a topological space. Then:

(i) X is {0}-ED if and only if X is extremally disconnected.
(ii) X is F-ED if and only if X 1is RB-ED if and only if X is almost
extremally disconnected.
(i) X is C-ED if and only if X is wy-extremally disconnected. {

The ideal Cantor-Bendizson derivative ID(X) of a topological
space (X, 7,Z) is the set of all non-isolated non-ideal points of X, where
a point z is said to be an ideal point if {z} € Z. The set of all isolated
points of X will be denoted as usual by I(X). Recall that a topological
space (X, 7) is called Bolzano- Weierstrass (compact) [3] if every (count-
ably) infinite subset of X has at least one cluster point or equivalently
if every discrete and closed subset of X is finite. A point z € A C
C (X, 7,Z) is called K-isolated in A if there exists U € 7 such that the
set UN (X \ (ID(X)UI(X)) is compact and UN A = {z}. Aset Ais
called K-dense-in-itself if A has no K-isolated points. Note that every
dense-in-itself set is K-dense-in-itself but not vice versa as the set of all
integers in the space (R, 7, V') shows, where (R, 7) is the real line with
the usual topology. In the case of the minimal ideal the two concepts
coincide. By a T3-space, we mean a regular 7}-space.

Theorem 2.3. The ideal Cantor-Bendizson derivative of every Bol-
zano- Weierstrass, T-extremally disconnected, Ts-space (X, 1,ZT) is K-
dense-in-itself.
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Proof. Assume that ID(X) is not K-dense-in-itself, i.e., let U € 7 and
z € ID(X) such that UNID(X)={z} and K =UN(X \ (ID(X)U
UI(X)) is compact. Set U’ = U \ K. Since X is Hausdorfl and K is
compact, then K is closed in X and thus U’ is an open neighborhood
of z. Since X is regular; then there exist a regular open set V' such that
z €V Ccl(V) CU'. Since every point of the boundary of V' must be
isolated in X, then bd(V) is empty and thus V is clopen. Note that
since z € D(X), D(X) being the (usual) Cantor-Bendixson derivative
of X, and since X is a T}-space, then every neighborhood of z is infinite,
in particular, V is infinite too. Let V = AU B, where both A and B
are infinite and disjoint. We can assume that z € B. If z ¢ cl(A),
then A must be closed. Since A C I(X), so A is discrete, and since
X is Bolzano-Weierstrass, then by contradiction z € cl(A). Set W =
=cl(4A) = AU {z}. If z & int(W), then {z} = bd(int(W)) € Z, since
(X,7,Z) is Z-ED. By contradiction ({z} ¢ Z), z € int(W), and thus
W is open and hence clopen. Now, since finite intersection of clopen
sets is clopen, B\ {z} = V N (X \ W) is clopen and since it is discrete
by being a subset of I(X), then we have been able to construct an
infinite closed and discrete subset of the Bolzano-Weierstrass space X.
By contradiction, z is not a K-isolated point of ID(X), i.e. the ideal
Cantor-Bendixson derivative of (X, 7,Z) is K-dense-in-itself. ¢
Corollary 2.4.

(i) [42, Semadeni] The Cantor-Bendizson derivative of every count-
ably compact, extremally disconnected, Ts3-space is dense-in-
itself. A

(ii) BEvery Bolzano-Weierstrass, scattered, extremally disconnected
T3-space (X, T) is discrete and hence finite. ¢

Recall that a topological space (X, 7) is called nearly compact
[45] if every cover of X by regular open sets has a finite subcover. A
topological space (X, 7) is called quasi-H-closed or almost compact [40]
if every open cover of X has a finite proximate subcover, i.e. finite
subfamily the closures of whose members cover X.
Proposition 2.5. FEwvery almost compact F-ED space is nearly com-
pact.
Proof. Let X be almost compact. Then for every open cover there
is a finite subcollection V whose union is dense. If X is also F-ED,
then cl(V) \ int(cl(V)) is finite for each V in the subcollection V. Thus,
X \Uyp (int(cl(V)) is finite. But this finite set requires only finitely many
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more open sets from the original open cover to be covered. Therefore,
the open cover has a finite subcollection such that the union of the
int(cl(V')) from this subcollection covers X. ¢

Corollary 2.6. Every H-closed F-ED-space is nearly compact. ¢
Corollary 2.7. Every minimal Hausdorff F-ED-space is compact.
Proof. If X is minimal Hausdorff, then X is a semiregular H-closed
space.

Recall that a subset A of a topological space (X, 7) is called locally
dense [7] (= preopen) if A C int(cl(4)). Note that every open and
every dense set is locally dense but not vice versa. Recall also [14] that
a subset S of a topological space (X, 7,Z) is a topological space with
anideal Zg = {I € Z:I1 C S} = {INS:I € Z} on S. The families of
all regular open (resp. regular closed) subsets of a space (X, ) will be
denoted by RO(X) (resp. RC(X)).

Theorem 2.8.

(i) Ewvery locally dense subset of an Z-ED-space is Z-ED.
(ii) Every regular closed subset of an IT-ED-space is Z-ED.

Proof. (i) Let (X,7,7) be Z-ED and let S C X be locally dense. If
R is a regular open subset of (S, 7s,Zs), then R = SNT, where T is
regular open in (X,7) [13 Lemma 1.1]. Since (X, 7,Z) is Z-ED, then
c(TY)\T € Z. Hence (cI(T)NS)\(SNT) = (c(T)NS)\ R € Is. Note
that clg(R) C cl(R) C cl(T). Thus, cls(R)\ R C (cI(T)NS)\ R €
€ Is. This shows that (S, 7g,Zg) is Z-ED, more precisely, (S, 7s,Zg) is
Is-ED.

(i) Let S € RC(X), where (X, 7,7) is Z-ED. Clearly, S = S; U
U S2, where Sy is regular open in (X,7), So € Z and S; N Sy = 0.
Let U € RO(S). Note that bdg(U) = clg(U) \ U = ((cls(U) N S1) U
U (clg(U) N S2)) \ U. Since clg(U) N Sy € Z due to the heredity of Z,
then because of the finite additivity of Z, we only need to show that
(clg(U)N S1)\U € Z. By [13 Lemma 1.1}, U N S is a regular open
subset of S7. Since S; € 7, then bdgs, (U N S1) = (cls, (UNS1))\U €
€ Zs, CT. Since (clg(U)NS1)\U C (cls, (UNS1))\ U, then the proof
is complete. v

Recall next that a subset A of a space (X, 7,7) is said to be Z-open
[31] if A C int(A*), where A* is the local function of A with respect to
Zand 7,ie. A*(Z)={z € X :UNA¢&T for every U € 7(z)}, written
simply as A* when there is no chance for confusion (here 7(z) dénotes
the open neighborhood system at z).
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Corollary 2.9.

(i) Ewvery open and I-open subset of an Z-ED-space (X, 7,T) is an
I-ED-space. :

(i) Ewvery B-open subset of an I-ED-space (X, ,1) is Z-ED, in par-
ticular B-open, i.e. semi-preopen subspaces of extremally discon-
nected spaces are extremally disconnected.

Proof. (i) Note that every Z-open and every open set is locally dense.
(i) If B is B-open in (X, 7,T), then B is dense in some regular
closed subset R of (X, 7). Since R is Z-ED by Th. 2.8 (ii), then B is
Z-ED by Th. 2.8 (i). ¢ '
Recall that the ideal defined on the topological sum X =) - Xa
of the family of spaces (Xa, 7o, Za)ac 18 2=V 4eq Za ={Uacala: o €
€ Zo} [14]. For a set U, cl(U) will denote the closure of U in the
topological sum X.
Corollary 2.10. Let (Xq,Ta,Za)aco be a family of topological spaces.
For the topological sum X = ) .o Xa the following conditions are
equivalent:
(1) X is a Z-ED.
(2) Fach X, is T-ED.

Proof. (1) = (2) follows from Cor. 2.9.

(2) = (1) Let R C X be regular open. Set R, = RN X,. Since
{Ry:c € Q} is a locally finite family of sets in (X, 7), then cl(R) =
= cl(UgeaRa) = Useacl(Ra) = Uaeqclx, (Ra). By (2), for each o €
€ Q, clx, (Ry)\ Ry € Z,. Thus, cl(R)\ R = Ugea(clx, (Ra)) \ Ra € Z.
This shows that X is a Z-ED. ¢
Remark 2.11. Let (X,7;)ier be a family of topological spaces. If
we set on each one of those spaces a ‘same type of ideal’, then the
ideal formed on the topological sum of those spaces, need not be from
the ‘same type’. More precisely, the topological sum of F-ED-space,
i.e., almost extremally disconnected spaces, need not always be almost
extremally disconnected. Let X be the set of all real numbers. Set
X,, = X, while let 7,, be the point excluded topology for each n € w.
Then each (X;, ;) is almost extremally disconnected but one can easily
check that the topological sum ). (X;,7;) is not almost extremally

~ disconnected. However, if each one of the ideals set on a collection of
spaces is the minimal ideal, then the ideal formed on their topological
sum is also the minimal ideal. Thus we have the following corollary.
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Corollary 2.12 [22, Engelking]. The topological sum of extremally
disconnected spaces is also extremally disconnected. ¢

A topological space (X, 7) is called a Py-space [24] (originally to
satisfy condition (P2)) if every nonempty open set contains a nonempty
closed set.

Theorem 2.13. For a Py-space (X, 7,Z), the following conditions are
equivalent:

(1) (X,7,T) is Z-ED.

(2) Ewvery proper open subspace of X is T-ED.
Proof. (1) = (2) is in Cor. 2.9 (i).

(2) = (1) Let U C X be regular open. We can assume that U
is not dense in (X, 7), since otherwise U = X and we are done (the
void set is a member of every ideal). Then clearly V = X \ cl(U) is a
nonempty member of 7. Since X is P, then there exists a nonempty
closed subset W such that W C V. Hence S = X \ W is a proper open
subset of X. Since U is open in S, then by (2), cls(U)\ U = (cl(U) N
NS)\U =c(U)\U € Zg. Since g C Z, then cl(U) \ U € Z. Thus
(X,7,7) is Z-ED. ¢
Corollary 2.14 [30, Isiwata]. A Tychonoff space (X, T) is extremally
disconnected if and only if every proper open subspace of X is extremally
disconnected.

Proof. Set T = {0} in Th. 2.13 and note that every Tychonoff space
is a Ps-space. {

Remark 2.15. Isiwata [30] proves that a Tychonoff space is stonian
if and only if it is extremally disconnected. A Tychonoff topological
space (X, 7) is called stonian [30] if every bounded continuous real-
valued function defined on a set U € 7 can be extended over X.
Proposition 2.16. Let (X,7,0) be a bitopological space such that
RO(X,7) = RO(X,0), i.e. both topologies support the same regular
open sets. Then (X, 7) is Z-ED if and only if (X, 0) is Z-ED.

Proof. Let U be a 7-regular open subset of X. Then the 7-boundary
of U is equal to the o-boundary of U. Clearly, bd,(U) = cl.(U) \ U
and bd,(U) = cl,(U) \ U. But, RO(X,7) = RO(X, o) implies that
cl (U) = cl,(U). For if z is an element of cl, (U) \ cl,(U), and if V
is any o-open neighborhood of z which misses U, then cl, (V) misses
U and W = int,(cly(U)) misses U. But, W is also a 7-regular open
set containing z so that W NU # (. Contradlctlon' By symmetry of
argument, the result follows. ¢
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Remark 2.17. It follows that infinite space with cofinite topology or
uncountable space with cocountable topology, etc. is extremally discon-
nected since it has the same regular open sets as the indiscrete topology,
i.e., the two trivial regular open sets, the empty set and the entire space.
Corollary 2.18. If RO(X,7) = RO(X,0) and RO(X, o) is the family
of clopen subsets of (X, o), then RO(X, T) is the family of clopen subsets
of (X, ), and in particular, (X,T) is ED. {

Corollary 2.19. If 7, is the semiregularization of T, then (X,T) is
Z-ED if and only if (X, 7s) is Z-ED. §

Corollary 2.20. If T is T-codense, i.e., I intersected with T contains
only the empty set, then (X,7) is Z-ED if and only if (X,7*(Z)) is
TI-ED, where 7*(Z) = 7[I] is the topology having basic open sets of the
form U\ N, where U € 7 and N € I, i.e., T[L] is the smallest topology
expansion of T in which members of T are closed. :

Proof. Since 7 is 7-codense, then 7*(Z); = 75. O

The next two results are consequences of Cor. 2.19 and Cor. 2.20.
Corollary 2.21. Every minimal Z-ED topology is semiregular. ¢

In Cor. 2.21 minimality may be taken relative to the Z-ED prop-
erty alone or may be taken relative to the Z-ED property in the class
of spaces having the same regular open subsets. In this last sense we
also have the following.

Corollary 2.22. Let I be T-codense. If the space (X, T) is mazimal Z-
ED (in the class of spaces having the same regular open sets as (X, 7)),
then X is CD-ED. § ‘

Recall that a topological space (X,7) is called an «a-space if T
coincides with its a-topology 7*(N), i.e. if 7 = 7*(NV). A topological
space (X, ) is called N-scattered [17] if every nowhere dense subset of
X is scattered. Another way of relating the classes of a-spaces and
N-scattered spaces to the theory of topological ideals is as follows:
Theorem 2.23. ,

(i) Ewvery a-space is a CD-ED-space.
(ii) Fwvery N-scattered space is an S-ED-space.

Proof. (i) It is not difficult to verify that a topological space (X, 7) is
an a-space if and only if the boundary of every open set is closed and
discrete.

(ii) Tt is proved in [17], that a space is N-scattered if and only if
the boundary of every open set is scattered. ¢
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Example 2.24. (i) Every infratopology {0, A, R} on the real line R
(such that |R\ A| # 1) shows that C D-ED-spaces, even hyperconnected
spaces, need not be a-spaces.

(ii) The left ray topology on the real line shows that Ty- S-ED-
spaces, even hyperconnected Ty-spaces, need not be N-scattered.
Definition 2. A topological space (X, 7,Z) is called basically Z-ED if
there is an open base for the topology 7 such that for each basic open
V, (V) \ int(cl(V)) is a member of T.

For example, every T} rim-scattered space would be basically S-
ED. So, N-scattered (strictly) implies rim-scattered [17] which implies
basically S-ED. Our next example will show that this last implication
is strict.

Example 2.25. Let X denote the real line R and let 7 be a topol-
ogy on X whose non-trivial members are generated by the intervals
(—m,—+) and (%,n), where n = 2,3,.... Note that for each such in-
terval U, cl(U) \ int(cl(U)) = {0}, so clearly (X, 7) is basically S-ED.
However, since for each such interval U, cl(U) \ U contains the non-
scattered ray (z,oco0) for some z € X, then (X, ) is not rim-scattered.
Note additionally that X is a Ty-space.

Definition 3. A topological space (X, 7,Z) is called Z-totally discon-
nected if for each two different points z and y, there exists a regular
open set R containing z such that bd(R) € 7 and y & cl(R).

Recall that a topological space (X, 7) is called totally disconnected
[22, 43] if the quasi-component of each point of X is the point itself.
Clearly a space (X, ) is totally disconnected if and only if it is {(}-
totally disconnected. In [47], totally disconnected spaces are called
ultrahausdorff. We note that some authors use the term totally dis-
connected for spaces whose components (not quasi-components) are
singletons.

Theorem 2.26. FEvery Hausdorff Z-ED-space (X, 7,T) is I-totally
disconnected.

Proof. Let z,y € X such that z # y. Since X is Hausdorff, then =z
and y can be separated by disjoint regular open sets U and V. Since
X is Z-ED, then bd(U) € Z. Moreover, y ¢ cl(U). This shows that
(X, 7,Z) is Z-totally disconnected. ¢)

Corollary 2.27. Ewvery extremally disconnected Hausdorff space is
totally disconnected and hence functionally Hausdorff. ¢

Theorem 2.28. Every locally dense, and hence every open and I-open
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subset of an T-totally disconnected space is T-totally disconnected.

Proof. Let (X,7,7) be Z-totally disconnected and let A C X be
a locally dense subspace of (X,7). Let z,y € A with z # y. By
assumption, there exists U € RO(X,7) such that x € U, bd(U) € T
and y € cl(U). By [13 Lemma 1.1}, R=UN A € RO(A,74). Observe
that y & cla(R). Additionally, bda(R) = cla(R) \ R = cla(R)\ U C
C c{U)\U € Z. Hence bda(R) € Z4. Thus (A,7a,Za) is Ta-totally
disconnected. ¢

Corollary 2.29. Let (X4, 7o, Za)acn be a family of pairwise disjoint
topological spaces. For the topological sum X = Zaeﬂ X4 the following
conditions are equivalent:

(1) X is a Z-totally disconnected.
(2) Each X, is I-totally disconnected.

Proof. (1) = (2) follows from Th. 2.28.

(2) = (1) Let z and y be two different points of X. If z € X,
and y € X, such that {, u € Q and X, # X,,, then X, is the required
regular open subset of X. If z,y € X, for some a € Q, then find (due
to condition (2)) a regular open subset U of (X4, 7o) such that z € U,
bdo(U) € Z, and y ¢ clo(U). Observe easily that U € RO(X) and
y & cl(U). Additionally, bd(U) = cl(U)\ U = clx (U)\U € Z, C T.
All this shows that X is Z-totally disconnected. ¢

Extremal disconnectedness has several other aspects. In that con-
nection we have the following:

Question. Could some of the properties of ED-spaces mentioned in
the introduction as well as the following major properties of ED-spaces
be generalized somehow to Z-ED-spaces:

e [22, Engelking] Every hereditarily normal ED-space is heredi-
tarily ED.

e [23, Frolik] If (U, V) is a pair of separated countable sets of a
regular ED-space (X, 7), then U and V are functionally sepa-
rated.

® [27, Gleason] Every convergent sequence (z1,Ts,...) of a Haus-
dorff ED-space (X, 7) is stationary.

o [48, Strauss] If (X, 7) is Hausdorff and (Y, o) is Hausdorff and
ED, then every irreducible closed surjective mapping f: (X, 7)—
— (Y, o) is a homeomorphism.
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