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Abstraect: In this paper we are going to give a computer-program which

solves linear functional equations.

In the present work we deal with the linear functional equation

n+1
(1) > filpiz+aqy)=0 =zyel
i=0
where n is a positive integer, po, P1,- - -, Pn+1, 90,91, - - -, dn+1 are ratio-

nal numbers, L, M are linear spaces over the rationals and fo, fi,...

oy fne1 ¢ L = M are unknown functions. Our aim is to give a
computer-program which solves functional equations of this type. The
description of this program can be found in Part 3 of the paper. The
theoretical background of the program, discussed in Part 4, is based on
the results of L. Székelyhidi ([2], [3]). The problem of writing such a
program is also due to L. Székelyhidi.

Some parts of the results published here were achieved during the author’s
stay at the University of Karlsruhe, funded by the Deutscher Akademischer Aus-
tauschdienst (DAAD).
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1. Notation and terminology

In the whole paper L and M denote linear spaces over the ratio-
nals. For a function f: L — M, for z,y € Land n € N={1,2,3,...}
define

Ayf(z) = Ayf(z) = f(z +y) — f(2)
and
AZHf(ac) = Ay (A7 f(z)).

We call a function f : L —+ M a polynomial function of degree n, (n €
€ NU{0}) if AP+! f(z) = Oholds for all z,y € L. A function f : L — M
is called a monomial function of degree n € N if A} = n!f(y) holds
for all z,y € L. Constant functions are called monomial functions of
degree 0. For a positive integer n a function A : L™ — M is said
to be n-additive (for n = 1 additive) if for every kK = 1,2,...,n and
T1, L2, Thy Yky - +»Tn € L

A(z1, %2y« o, Tho1, Tk + Ybs Thg 1y -+ -, Tn) =
= A(:El, T2y oy Lp—1y Ty Thtly-+ -, :En)+
| +A(1, T2, -5 Tlom 1, Yios Thet 1y -« - Tn)
holds; a function A : L™ — M is called symmetrical if for every permu-
tation 41,49, ..., 4, of the integers 1,2,...,n and for all z1,z9,...,z, €
el
A(xl,mz, v .,:En) = A(mil,aziz, . .,.’Bin)

holds. We define the diagonal of a function A : L™ — M as follows:
A* . L - M, A*(z) = A(z,z,...,z). In the case when n = 0 we
take L° = {0} with the zero-element of L, and we call the function
A : L® — M 0-additive. The diagonal of an A : L% — M is defined by
A*(z) = A(0), (z € L).

It is known that for a nonnegative integer n if A : L — M is
an n-additive symmetrical function then A* is a monomial function of
degree n, and conversely, if f : L — M is a monomial function of degree
n then there exists an n-additive, symmetrical function A4 : L™ — M
for which A* = f holds. (See [2], Th. 3.2.)

We call a function f: L — M by [2] a function of degree n € NU
U {0} if for ¢ = 1,2,...,n + 1 there exist functions f; : L — M and
additive functions ;,v; : L — L, such that for all 1 = 1,2,...,n+ 1
we have Rg p; C Rg); and
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n+1

f(:v)—l—Zfi(gai(:c)-i—v,bi(y)):O (z,y € L).

(Here Rg means the range of the functions above.)

L. Székelyhidi has proved that for a function f : L — M of degree
n € NU{0} there exist k-additive symmetrical functions Ay : L* — M,
(k=0,1,...,n) such that f = >"7_, A*, and f uniquely determines
the functions Ag, A1,..., A,. (See [2], Th. 3.6 and Cor. 3.3.)

2. Theoretical background

Lemma 2.1. Let n be a nonnegative integer. If for the functions
fo, fi,- oy fas1 : I = M functional equation (1) holds where for the

rational numbers po,p1, ..., Pnt1, and qo,q1,- - -, Gnr1 We have
then the functions fo, f1,..., fant1 are functions of degree n.

Proof. For an arbitrary rational number ¢ the function A : L —
— L, h(z) = cz is an additive function, and for ¢ 0 we have Rgh=
= L. Moreover for the rational numbers pg, p1,. .., Pn+1, 90, G1y - - - Gnt1
which satisfy condition (2) one and only one of the following properties
is valid:

— p;q; #0fori=0,1,...,n+1,
— there exists a A € {0,1,...,n+1} for which p) =0, g, # 0 and
piqz—#Oforizo,l,...,n—l—l,z';é)\,
— there exists a A € {0,1,...,n+ 1} for which ¢, =0, py # 0 and
pigi #0fori=0,1,...,n+1,7# A,
— there exist integers A\, 4 € {0,1,...,n+1}, A # psuch that py =
=0,q0#0,¢,=0,p, #0and p;g; #0 for : =0,1,...,n+1,
i FE A 1 FE p.
In each of these cases it can be shown by a simple variable transforma-
tion, that the functions fo, f1,..., fny1 are functions of degree n. ¢

Theorem 2.2. For a nonnegative integer n' let po,p1,-.-,DPnit,
q0,q1,- -, qn+1 be rational numbers and for i = 0,1,...,n+ 1, k =
=0,1,...,n let the functions A,(:) : L¥ = M be k-additive symmetrical
functions. The functions
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=AY (i=0,1,...,n+1)
k=0

solve functional equation (1) if and only if

n+1
Zp kJA* (z)=0 z€L)

holds for all k =0,1,...,n and j =0,1,...,k. (Here 0° =1.)
Proof. See at L. Székelyhidi [2], Cor. 3.8. ¢

Theorem 2.3. For a nonnegative integer n let po,pi1,--.,Pni1,
90,91, - - -, qn+1 be rational numbers which satisfy property (2). The
functions fo, f1,..., fnt1: L = M solve functional equation (1) if and

only if they have the form
(3) =Y 40 (i=0,1,...,n+1)
k=0

where Ag) :L* - M, (i=0,1,...,n+1, k=0,1,...,n) are k-additive
symmetrical functions for which

n-t+1 :

Yoplg AP (@)=0  (weL, k=0,1,...,n, j=0,1,...,k)
=0

holds. (Here 0° =1.)

Proof. It follows from Th. 3.2 that the functions fo, f1, ..., fnt1 Which

have properties (3) and (4) solve equation (1).

The functions fo, fi,..., fny1 which solve (1) are, by Lemma 3.1,
functions of degree n, so they have the form (3). And then, by Th. 3.2
we get that (4) also holds. ¢
Remark. In the last two theorems, because of the connection between
monomial functions and multi-additive symmetrical functions, we may
write monomial functions of degree k instead of k-additive symmetrical
functions.

Example. The functions f,g,h : L — M solve the so called Pexider
equation (see among others [1], 316)

(5) fla+y)—g(z)—h(y) =0 (z,y€L)
if and only if they have the form
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f@y= M +M) (el
(6) glz)= MM +MO) (el
h(z) = M — M{" + MO (z)  (zel)

where M,gz) :L —- M are fori=0,1 and k = 0,1 monomial functions
of degree k.

Proof. Because of Lemma 3.1 the functions f,g,h are functions of
degree 1, so, by 3.3 and 3.4, they solve (5) if and only if they have the
form

f@) =M +MO(@)  (zel)
g(z) =M + MP (@)  (zel)
@)= MP + MP(z)  (zel),

where M,gi) :L—+ M, (i=0,1,2, k =0,1) are monomial functions of
degree k, for which

Méz) _ éo) __Mél)
(7) MP (z) = MO (z) (z€l)
MO (z) = MO (z) (z € L)

hold, which implies our statement. ¢
3. The computer-program [fesolve

3.1. General properties

The computer-program [fesolve (linear functional equations
solve) was written in the Computeralgebra-System MAPLE! V, Re-
lease 3. It can be used for solving functional equations of type (1),
where n is a positive integer, po,p1,--«,Pn+1, 90,41, --,qni1 are ra-
tional numbers for which p? + ¢ > 0, (i = 0,1,...,n + 1) holds,
and fo, f1,-.., fay1 : I — M are unknown functions. For some i €
€{0,1,...,n+1}andac;€Q ¢; #0and a j € {0,1,... ,n+ 1} we
might have the connection f; = c;f; between the unknown functions
for 1, -+, fn+1 in (1). If for the rational numbers pg, p1, ..., Ppt1 and

IMAPLE is a registered trademark of Waterloo Maple software.
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90,41, - - -, Gn+1 in (1) property (2) holds, we get the general solution of
the equation; if (2) does not hold, we get only those solutions which
can be written as a sum of monomial functions of degree at most n.

3.2. The input and the output of the program

The program can be started with the command

lfe‘SOl'Ue(fO(pO *33+QO*3/)+- : -+fn+1 (pn+1*m+Qn+1*y), [an R fn—i—l]);
where the first parameter of [ fesolve is the functional equation to be
solved (which must be of type (1), and must be given in the form above),
and the second parameter is the list of the unknown functions in the
functional equation. _

If the parameters are not of this form, we get an error-message,
otherwise the program gives the solutions of the functional equation in
two forms: first we get the connections between the monomial functions
the sum of which provides the solutions (like in (7)); after that the
solutions themselves (like in (6)). The program also tells us if it does
not give the general solution of the considered equation.

3.3. The list of the program?

1fesolve:=proc(e,f)
local aa,ii,i,j,a,b,bi,b2,n,s,ss,hlp,P,qQ,PP,QqQ,
Equat ,Equatl,Fcts; )
global c,M;
restart;
with(linalg);
read (‘ausgabe‘);
read (‘loesung‘);
if nops(convert(f,set))<nops(f)
then ERROR(‘you have given wrong data.‘);
else
s:=1; N
c:=subs(’op(i,f)=0’$’i’=1. .nops(£f),e);
if not c=0
then ERROR(‘you have given wrong data.‘);

else

2For the resource code of the program please write to the author’s E-mail
address:gil@math.klte.hu
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for i to nops(f) do
if not has(e,op(i,f)) then s:=0;
fi;
od;
if s=0
then ERROR(‘you have given wrong data.‘);
elif not whattype(e)=‘+‘ and nops(f)=1
then
for i to nops(e)-1 do
if hastype(op(i,e),function)
then !
ERROR(‘you have given wrong data.‘);
s:=0;
fi;
od;
if s=1

then print(‘Equations like this will not be solved.‘);

£i;
elif not whattype(e)=‘+¢
then ERROR(‘you have given wrong data.‘);
else
P:=array(1. .nops(e));
Q:=array(l..nops(e));
ss:=0;
for i to mnops(e) do
for j to nops(op(i,e))-1 do
if (hastype(op(j,op(i,e)),function) or
has(op(j,op(i,e)),f)) and ss=0
then
print(‘Sorry, this program is not meant
for solving equations like this.‘);

od;

if ss=0

then
for i to nops(e) do
- aa:=op(i,e);

1

63
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while not (type(aa,function) or whattype(aa)="**°
1 or type(aa,string)) do

aa:=op(nops(aa),aa);
od;
if'whattype(aa)=‘**‘ and ss=0
then

print(‘Sorry, this program is not meant

for solving equations like this.);

ss:=1;
elif whattype(aa)=string and ss=0
then
ERROR(‘you have given wrong data.‘);
ss:=1;
else
b:=op(aa);

if (not(type(b,polynom(rational,{x,y})))
or not(degree(b,{x,y})=1)) and ss=0
then
print(‘Sorry, this program is not meant
1 for solving equations like this.‘);
" ssi=1;
else :
P[il:=coeff(b,x);
Q[i] :=coeff(b,y);
fi;
£i;
od;
if ss=0
then
P:=convert(P,list);
Q:=convert(Q,list);
hlp:=0;
for i to nops(P) do
for j to nops(P) do
if (not i=j) and P[il*Q[jI1=QL[il*P[j]
then .
hlp:=1
fi;
od;
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od;
if hlp=1
then
print(‘Warning: for functional equations
of this type the program will‘);
print(‘not provide the general solution.‘);
fi;
M:="M’;
Equat:=matrix(nops(e) ,nops(e)-1);
Equatl:=matrix(nops(e),nops(e)-1);
Fcts:=matrix(nops(e) ,nops(e)-1);
for i to nops(e) do
for j to nops(e)~1 do
Equati[i,j]:=M(i-1,j-1);
Equat[i,j]:=M(i-1,j-1);
Fets[i,jl:=M(i-1,j-1);
od;
od;
for i to nops(e) do
for j to nops(e)-1 do
Equati[i,j]:=subs :
(Pop(ii,f)=Equat[ii,j]’$’ii’=1..nops(£),op(i,e))
od;
od;
for i to nops(e) do
for j to nops(e)-1 do
if nops(Equatif[i,jl)>1
then
Equatifi,j]:=
product (’op(ii,EQuati[i,j])’,
’ii’=1..nops(Equati[i,jIl)-1)
*op(0,op(nops(Equati[i,j]),Equati[i,j]))
else .
Equati[i, jl:=op(0,Equatif[i,jl)
fi;
od;
od;
if nops(e)>nops(f)
then
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for i to nops(e)-1 do
for j from nops(£f)+1 to nops(e) do
Fets{j,il:=Fcts[1,i];

od;
od;
fi;
ausgabe(e,f);
loesung(P,Q,Equnati,Fcts,f);
fi;
fi;
fi;
fi;
fi;
end;

ausgabe:= proc(e,f)
local i,j;

print(‘ The form of the solutions:® );
for i to nops(f) do

print (op(i,f)=sum(’°M(i~1,3j)’,’j’=0..nops(e)-2));
od;
print (‘where M(.,k) are monomial functions of degre k,‘);
print(‘for which:¢);
end;

loesung:=proc(P,{,Mat,B,f)
local i,j,k,hlp,g,1t,ult,sult,esult,result,BB,Ph,Qh;
1t:=matrix(nops(P)-1,nops(P)-1,0);
for i from 1 to nops(P) do
for j from 0 to nops(P)-2 do
if P[i]=0 and j=0 then Ph[i,j]:=1 else Ph[i,j]:=P[il*x*]
fi; .
if Q[il=0 and j=0 then Qh[i,jl:=1 else Oh(li,j1:=Q[i]x*%j
B o
od;
od;
for k from 0 to (nops(P)-2) do
for j from O to k do




Solving linear functional equations with computer

1t[j+1,k+1]:=
sum(’Ph[i, j1*Qh[i,k-jI+*Mat [i,k+1]?,?i’=1. .nops(P))=0:
od;
od;
esult:={};
for i to mnops(P)-1 do
ult:=solve(convert(col(lt,i),set),convert(col(B,i),set)):
sult:={};
for j to mnops(ult) do
if not op(2, (op(j,ult)))=op(i, (op(j,ult)))
then
sult:=sult union {op(j,ult)};
fi;
od;
print (sult);
esult:=esult union sult;
od;
for i to nops(f) do
glil:=op(i,f)=sum(*°M(i-1,3j)’,’3j’=0..nops(P)-2)
od; ,
BB:=’op(1,op(i,esult))’$’i’=1..nops(esult);
result:=solve(convert(g,set) union esult,
convert (f,set) union {BB});
print (‘That is:®);
for i to nops(result) do
if has(f,op(1,op(i,result)))
then print(op(i,result));
fi;
od;
end;

3.4. Some testing results of the program

— The solution of the Pexider equation (see 3.5)

INPUT: I fesolve(f(z +y) — g(z) — h(y), [f, g, R]);

67
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OUTPUT:
The form of the solutions:

fZM(O,O)—I-M(O,l)
g:M(170)+M(1a1)
h = M(2,0) + M(2,1)

where M (., k) are monomial functions of degree k,
for which:
{M(0,0) = M(1,0) + M(2,0)}
{M(1,1) = M(0,1),M(2,1) = M(0,1)}

So the solutions are:

f=M(1,0)+ M(2,0)+M(0,1)
h = M(2,0) + M(0,1)
g=M(1,0)+ M(0,1)

— The square-norm-equation

INPUT: Ifesolve(f(x +y) + f(z —y) — 2 f(z) — 2% f(y), f);
OUTPUT:
The form of the solutions:

f=M(0,0)+ M(0,1)+ M(0,2)
where M (., k) are monomial functions of degree k,
for which:
{M(0,0) =0}
{M(0,1) =0}
{}

So the solutions are:
f=M(0,2)

— A generalization of the square-norm-equation

INPUT: I fesolve(f(z +y) + g(z — y) — h(z) — m(y), [f, g, h, m]);
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OUTPUT:
The form of the solutions:

f=M(0,0)+ M(0,1) + M(0,2)
g=M(1,0)+M(1,1)+ M(1,2)
h=M(2,0)+M(2,1)+ M(2,2)
m = M(3,0) + M(3,1) + M(3,2)
where M (., k) are monomial functions of degree k,
for which:
{M(3,0) = M(0,0) + M(1,0) — M(2,0)}
AM(0,1) = M(1,1) + M(3,1), M(2,1) = 2M(1,1) + M(3, 1)}
{M(0,2) = M(1,2), M(2,2) = 2M(1,2), M(3,2) = 2M(1,2)}
So the solutions are:
h=2M(1,2)+ M(2,0) +2M(1,1) + M(3,1)
g=M(1,0)+M(1,1) + M(1,2)
m = M(0,0) + M(1,0) — M(2,0) + M(3,1) + 2M(1,2)
f=M(1,2)+ M(0,0) + M(1,1) + M(3,1)

— The polynomial equation for n =5

INPUT: I fesolve(f(x+6+y) — 6% f(z+5*y) +15% f(x+4*y) —20*

¥ f@+3xy) +15% f(z +2xy) — 6% f(z+y) + f(z), f);
OUTPUT:
The form of the solutions:

f=M(0,0) + M(0,1) + M(0,2) + M(0,3) + M(0,4) + M(0,5)
where M (., k) .are monomial functions of degree k,
for which:

{}
{}
{}
{}
{}
{
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So the solutions are:
f=M(0,0)+ M(0,1) + M(0,2) + M(0,3) + M(0,4) + M (0,5)

— The functional equation f(z + 3y) — f(z — y) + g(z) — 2h(z) = 0,
(z,y € L), for which we do not get the general solution

INPUT: [ fesolve(f(z +3*y) — f(z —y) + g(z) — 2% h(z),[f, 9, h]);
OUTPUT:
Warning: for functional equations of this type the program will

not provide the general solution.
The form of the solutions:

f=M(0,0)+ M(0,1) + M(0, 2)
g=M(1,0)+M(1,1)+ M(1,2)
h=M(2,0)+ M(2,1) + M(2,2)

where M (., k) are monomial functions of degree k,

for which:
{M(1,0)=2M(2,0)}
{M(0,1)=0,M(1,1) =2M(2,1)}
{M(0,2) =0,M(1,2) =2M(2,2)}

So the solutions are:
h=M(2,0)+ M(2,1) + M(2,2)
f=M(0,0)
g=2M(2,0)+2M(2,1) + 2M (2, 2)
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