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Abstract: For fixed natural numbers 1 < a < b we consider p, 3(n) defined
as the number of pairs (u,v) € N x Z,u > |v| with (u — v)®(u +v)? =n. We
prove a formula analogous to that of Sierpinski for differences of two squares,
and an Q4 result for the remainder term in the asymptotic formula for the

corresponding Dirichlet summatory function.

1. Introduction

For fixed natural numbers 1 < a < b, let
Pap(n) = #{(u,v) ENx Z,u> |v|: (u—v)*(u+v)° = n} (n € N).
To study the average order of this arithmetic function, we consider the
Dirichlet summatory function

(]--]-) a b -'B) Z Pa, b
n<lz
where z is a large real variable.
For the case a = b = 1, the question for the asymptotic behaviour
of T 1(x) is closely related to the classical divisor problem of Dirichlet,
by the elementary formula, due to Sierpinski [11] '
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(L2) pra(n) = d(n) — 24 (3 ) +24 (%),

where d(n) denotes the divisor function with d(-) = 0 for non-integers.
For a historical survey on Dirichlet’s divisor problem and the def-
inition of the O- and the Q-symbols see the textbook of Krétzel [5]. At

present, it is known that
(1.3) Y " d(n) ==zlogz + (2y — 1)z + A(z),
n<z

where v denotes the Euler-Mascheroni constant and
(1.4) Az) = O(a:23/73(log x)461/147>’
due to Huxley [4].
Concerning lower estimates, it is known that
Az) =

1.5 4
(1.5) Q+((a:log:c)l/4(log10gm)(3+21"52)/4exp (—B\/loglogloga:)),

and
(1.6) Az) =0 <x1/4 exp (c(loglog z)*/*(log log log :c)‘3/4)> :

for some positive constants B and ¢, established by Hafner [2], and
Corradi and Kétai [1], respectively.

For the special case a = b = 1, (1.2), (1.3), and (1.4) together
yield,

T x
Ty1(z) = 3 logz + (2 — 1)5 +61,1(x),
with
z z
91,1 = A(iE) —2A ('2—> +2A (Z) ’
and therefore by (1.4)
011 = O(m23/73 (log x)461/147).

Concerning lower estimates, the author proved in [7], [8], on the
basis of (1.2), Q- results for 61 1(z) which are as sharp as (1.5),
resp. (1.6).

We show, that for the general case (a,b) # (1,1), there exists a
formula quite analogous to (1.2), which is closely related to the asym-
metric divisor function
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(1.7) dap(n) = > 1,

uspb=n

and to its corresponding Dirichlet summatory function

_ %) e BEE

(1.8) ;da,b(n) —(<a>x +((3)8" + Dap(a).
~ The corresponding formula for the general case has the form
(1.9)  pap(n) = dop(n) — day (2ﬁ) — dap (%) + 2dap (2:;,) .

A thorough account on the history of the asymmetric divisor prob-
lem and a survey on results concerning upper estimates for the remain-
der term A,p(z) is given in the textbook of Kratzel [5]. The today
sharpest lower estimates were established by Hafner [3] and read

Agp(z) =y (:c5 (log )% (log log z) (2108 2—1)ad+1

(1.10) exp (—B+/logloglog = )),

Agp(z) =Q_ <$5 exp (c(log log £)* (loglog log m)a5”1)> ,
where B, c are positive constants and
1
0= ——-.
2(a + b)
The objective of the present paper, is an - result for the error
term of (1.1), on the basis of (1.9), which is as sharp as (1.10).

Theorem. Forl < a < b natural numbers, and § defined as in (1.11),
we have

(1.11)

. 1 b 1/a 1 a 1/b
Top(z) = 5{ <E> /% + 5( (3) 7 4 04 p(z),
with
ba,5(@) = 2 (2 (log 2) (log log z)(* e 2~ Dad+1
exp (—B+/logloglog z )),

where B is a positive constant.

2. Some results

Lemma 1. Let dyp(n) as in (1.7). If 2°1° divides n we have
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n n n
o) = dap (55) = dos (55) + oo (2) =0
Proof. Write n = 28tb+2y with v odd. Then

dap(2°P) = > 1=

uavb=2a+b+a

:Z1+21—21:

2w yb—gatbta wGyb=sa+tbtc uwtpb=ge+bta
2|u 2| 2|u,2|v
= Y 1+ > 1= Y 1=
yoeyb=2bto yoypb=2a+ta yapb=9c

= da,b(2b+a) + da,b(2a+a) - da,b(za)-
The proof follows from the multiplicativity of dg(-). ¢
Proposition 1 (Generalized Sierpinski identity). Define
pap(n) = #{(v,v) e Nx Z,u> [v] : (u—v)*(u+0)® =n},

then
n n n

(1) pap(n) = dup(n) — dap (55) ~ dap (55 ) + 2das (5057)

where dgp(z) =0 forz ¢ N.
Proof. Let
X(n) = {(z,9) N x Z,z> |y : (2 — 1)*(z +4)° =},
Y(n) = {(u,v) € N* : u%® =n}.
Obviously | X (n)| = pa,p(n) and |Y (n)| = dgp(n).
Case 1: n is odd.
(2,9) € X(n) © (w,0) = (z 4,5 +3) € Y (1)
defines a bijection between X (n) and Y (n). Therefore pg »(n) = dg s(n).
Case 2: 2°%P divides n.

(2,9) € X(n) ¢ (u,0) = (‘”;y‘”‘;y> Y (57)

defines a bijection between X(n) and Y (53%); therefore p,s(n) =
.= da,b(55%%) which equals the right-hand side of (2.1), by Lemma 1.
. Case 3: nis even and n # 0 (mod 221°). In this case it is easily
seen that both sides of (2.1) are zero. ¢
Let a be as above. We say that n is a-full if for any prime ¢ which
divides n, q* divides n too. For large positive real  we define A(z)
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as the set of "a-full”, positive numbers less than z. It is known that
# A(z) < /9 (see e.g. Kritzel [5], p. 276). We put
H(z) = {n€ A(z)| w(n) > 2loglogz — By/loglogz},

where B is a positive constant and w(n) is the number of distinct prime
divisors of n.

Lemma 2.
#H (z) < z'/%(log )1~ 21982 exp (B log 24/log log az) :
Proof. By the definition of H(z), we have
#H (z)(log x)*'°8 % exp (— Blog 24/loglog z) < Z gw(n)
ne A(z)
To determine the asymptotic behaviour of this last sum, define
2¢(")  if n g-full,
n) =

f(n) { 0 else.

Clearly f(n) is multiplicative. Consider the generating function

aniﬁz___ H <1+2;;;+2—)m+...>:§2(a5)G(8),
n=1 p prime

where G(s) has a Dirichlet series absolutely convergent for Re s > ==
By standard techniques Lemma 2 follows. ¢
Lemma 3. For 6 defined as in (1.11), and for any integer m, we have

2
Z T:Lf(s =K H <1—~) z8log z + O(z?%)

n<le QIm
(n,m)=1 g prime
where
def —1,b-1
(2.2) Tap(n) = E w0,
usyb=n

K = (abd)~! and the implied O-constant depends on a and b, but not
on m.
Proof. Write

Ta b(n) . 1
2.2 L =) th A(n) = —.
(2:2) L i am= P

Since the generating function
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T3 M@= g(as(s ~ ) + 1),

(n7"=t)1=l i=1d|m

[~]8
}-i

(a1 =a,a2="0), (Res>4)

has a pole of order 2 at s = §, the result follows by standard tech-
niques. ¢ »
Lemma 4. For )\( ) as above,

Z A(n — 2loglog z)? = O(z° log z log log ).

n<z

Proof. Let ¢ and r denote prime numbers. First we observe that

S Am) dw(n) = YA S 1= 3 ST Ag el =

n<e n<e ¢¢ln g*<z <5
PSP VR
g<z a>0 a+a
(k Q) 1
, L2
= Z Z )\(q“+°‘){K(1 - —) z°logz + O(a:)} =
¢°<z a>0 9

=2 Kz®log zloglog z + O(z° log ).
(Use Lemma 3 and ) 5, A(¢*F®) = % + O(q%))
In the same way we conclude that

Z)\ ynlw(n)w(n) = Z)\ 521:

n<z n<z q%,re|n

I NCLE

g*<zre<zn<lz

>+ 3

q%,re <z q®,re <z
g#Er q=r

Obviously,
Z Z AMn)n <« z°logzloglogz .

q%,r%<=z 77.5:1:
q=r

The main term is given by
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Z Z A kqa,,_a)quaJ ad __

q%,r%<z IC<T5

g#r 4T
_ Z Z Z )\(qa+a)q(a+a)5)\(,ra+,8),,,(a+ﬁ)6 Z )\(l)lé _
q“q;” <z a>04>0 lﬁzﬂm

(Ligry=1

= Z Z Z M)At K ((1 - ?i—) (1 - %))2935 loga:—l-.

4,78 <o a0 f20
+0(z%) =
2
=Kz log:c( Z Z A(q“+°‘)) + O(2®log zloglog z) =
¢°<z a>0
= 4 Kz’ log z(log log z)? + O(z’ log zloglog ) .

From these two formulas Lemma 4 follows. ¢
Lemma 5.

Z A(n) n® < 5t Slogz.

ngH (z)
n<e

Proof. This is an immediate consequence of Lemma 4. ¢
Lemma 6.

a, 2
ZTRSEZ) (1— g) 308" ®log z + O(z%).

n<z
Proof. We use
ZTab :—aslogm—l—O( )
n<lz

(see e.g. Kritzel [5], p. 211, Lemma 5.6) and partial summation. ¢
Lemma 7 (Dirichlet’s approximation principle). Let a=(a,... o) €
€R®, g € N, ty € R, then there erists t € R with ||ta|| < ¢ and
to <t <toq®, where ||.|| denotes the distance from the nearest integer.

3. Proof of the theorem

We start from formulas (47), (48) of Kratzel [6], with a slight
change of notation: For z > 0, we have
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(31)  An) ™ /1 ’ <Aa,b(t) _ %) dt = ;rl—z > T“;Zé”) F(na),

where
(3.2) F(w) = wpo(w) — / po(u) du = O(w'™?),
k
with
°° ¢
po(u) = / sin 27t1/? sin27r(£)1/“ d—,
0 t t

and
(3.3) po(u) = c1 sin (27rc2ua+rb 4 %) +0 (u—d—l) 7

the asymptotic expansion in (3.3) taken from Nowak [9], formula (2.18).
From (3.2), we see that the sum in (3.1) converges absolutely and uni-
formly on every compact set. By (3.2) and (3.3), F'(w) has the asymp-
totic expansion ,

(3.4) F'(w) = caw’ sin (27rcsz25 + g) +O(w™9),

where c3, cy are computable positive constants depending on a and b.
From (2.1) and (3.1) it is easy to see that

(3.5) - ;}2. i Ta,b(7) {F(naz)—

—2°F (%m) - 2°F (%m) + 2“+b+1F(—2fmw)}.

Let g € C'[a, b)]. ‘Multiply (3.5) by ¢'(¢), integrate term by term, (the
series being absolutely and uniformly convergent), integrate by parts

?acks term and use (3.5) again with z = a, resp. = = b. This yields,
3.6

/ ot (0eatt) — 7 ) at = 55 3 Tenl) / "o(6) [ P'(ne)-

n=1

- (Fe) - (o) + 2 (5e)}
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For large positive real z, we define

K@) = 5 (222)" and K@) = A K(hw),

g
2 5

with Ay = 2mcz?, § defined as in (1.11). Tt is well known (cf. e.g. [10,

p. 19]) that
© . 1-la]l, Ja|<1
YK (y)dy =
/;oo © (v) dy { 0, la] > 1.

By observing that K (u) = O(u™2) for u > 1, (uniformly for z), and
applying integration by parts, we conclude that

1 1—3+0(%), 0<a<),
/ gtau Km(u) du = 1)\:1: (a)
-1 O(=), else .

a

Then by a suitable choice of g(¢), a, b in (3.4), and the substitutions
t=u? and u — u + T, we get from (3.4) and (3.6)

a. TY/26 _ 1
—71'01/ K( bu+ ) 4du=

(ut T2

_n;an (1_%> sm(A T—|—4)+

V1Y o (1—-—) sin (4T + 7)—
n<2atbg Az

“gir 3 e (1752 ) (T4 §) -

n<2eg Az

55 X o (17 )sin (7 + §) +000)
n<2be ¥

where A, = 2mcan?’, p, = meyn?®, v, = 2172081y 28 = 912000, 26
and a, = Ta,b(n)n‘s‘1 for short, throughout the rest of the paper and §
defined as in (1.11).

We decompose this representation in order to apply Lemma, 7,

observing that 7, 5(n) = 0 for n not a-full, and estimate the other sums
trivially by —1 <sin(-) < 1, to get




100 M. Kiihleitner

J(T) = Y an <1— f\—"> sin (AnT—l— g)+

1

n€H(z)
Ln
+/2 Z (1——)\—;>sm<,unT+4)
neH(20+bz)
—2790 y° an( —”—”) —27% 3" a, (1——>
n<2%g n<2b
An lLl"n

— —— | = 1—-=—1.

Soa(-2)- X w(1-5)

ngH(x) n@gH(20Tbg)
n<e n<20+bs

The contribution from the last two sums is
1
<K 52% Slog z,

by Lemma 5 with B a parameter at our disposition, whereas the con-
tributions of the third and fourth sum can be estimated by Lemma, 6.

The key step is now the application of Dirichlet’s approximation
principle to the first and the second sum. We apply this principle to
those terms in the sums which yield the main contribution. To this
end let N; = #H(z), and Ny = #H(2°%z). For any Tp > 1, we
apply Lemma 7 to o = (A}, , My, 41, ,) € RN +Nz where
Ap = 2mcyn?® = 27X and p, = mean?® = 2wyl to find a T in the
interval
(3.7) To < T < Tp4da+Ne)

with sin (A, T+ 4) > ¢ >0 forall n € H(z) and sin (u,T + ) > ¢
for all n € H(2°Tz) (c=sin{Z(1— %)})
Therefore,

2 3
T > — |
J(T) > 3255 (3c 2 2):0 log z
ZCw‘Slog:z:

by a suitable choice of ¢ and B. By a short calculation we derive from
(3.7)

logT < log Ty + N1+ No
and by Lemma 2
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J(T) > (log T)*® (log log T') (2108 2-Dad+1 oy (—Blog2+/logloglogT).
Since K (u) is positive and

1
0< b S/ K,(u)du<1
with an absolute constant b, uniformly in z > 1, we may conclude that
there exists a value v with T — 1 < v < T + 1 for which
Oa,p(u +T)1/2 — 3
(u+T)2
> (log v)®° (log log v) (2108 2-1)ad+1 gy <—B log 24/logloglog v ) :

Since v > Ty — 1, and Ty can be chosen arbitrarily large, this completes
the proof of the theorem. ¢

>
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