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Abstract: Some theorems about separation of two real functions by the func-
tion which is convex or affine with respect to the weighted quasi—arithmetic
means are presented.

Introduction

It is shown in [2] that every real functions f and g, defined on an -

interval I C R and satisfying the inequality
flz+ (1 —-1t)y) <tg(z)+ (1 -1)g(y), ,

for all z, y € I, and ¢t € (0,1), can be separated by a convex function
(cf. Th. A). Applying a Helly’s theorem, the authors of [5] proved that
if, besides the above inequality, the functions f, g satisfy the reverse in-
equality with f and g interchanged, then there exists an affine function
which separates these functions (cf. Th. B).

In Section 1 we quote these results and we show that Th. B is a
consequence of Th. A. Moreover, we discuss the inequality
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fltz+ (1—1t)y) <tgi(z) + (1 —1t)g2(y)
with three functions defined again on a real interval I and we show
that, in general, there is no a separating convex function between f
and min(gl, gg).

The main results of this paper are given in Section 3 and 4 where
we transfer the Ths. A and B to the class Mg—convex and My —affine
functions (M, denotes the family of the weighted quasi-arithmetic
-means of the generator ¢).

1. Remarks on separation theorems for convex and
affine functions

We begin with recalling the following :
Theorem A ([2]). Real functions f and g, defined on a real interval
I, satisfy the inequality

fltz+ (1 —t)y) <tg(z) + (1-t)g(y),
forallz, y € I and t € (0,1) if, and only if, there ezists a convex
function h : I C R such that f < h < g.

As a simple consequence we obtain

Corollary 1. Let I C R be an interval. If f, g1, g2 : I C R satisfy the
inequality
(1) f(tm+(1~t)y) Stgl(m)+(1_t)g2(y)’ m,yEI, RS (Oa 1)a
then there exists a conver function h : I —— R such that f < h <
< max(g1, g2)-
Remark 1.If f, g1, g2 : I C R satisfy the inequality (1), then obviously
that f < min(gy, g2). In this connection a question arises whether there
exists a convex function h : I — R such that f < h < min(g1, g2)-
Taking I =R, g1, g2 : R— R, g1(2) = 2%, ga(z) = (z —1)%, z >0,
and f = min(gy, gs), it is easy to see that the answer is negative.

However, we can prove the following
Proposition. Let I C R be an interval, and suppose that the functions
fy 91, ,9n : I — R satisfy the inequality

n k3 n
S (Zh%) < Ztigi(xi)a th’ =1, >0, =z;e€l.
i=1 i=1 i=1

If g, < min(gy,...,gn_1), then there exists a convex function h :
: I — R such that f < h < min(gy,...,gn-1). If moreover, g, =
= min(gy,... ,gn—1) then the converse implication also holds true.
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Proof. Take arbitrary z,y € I, t € [0,1],and i =1,... ,n—1. Setting
ti=tt,=1—-¢t,and t; =0, j=1,...,n—1, j#14 =z =uz,
T, =Y, we get h
It follows that
Fltz + (1= t)y) <tg(z) + (1 - t)gn(y) < tg(z) + (1 - t)g(y),
where ¢ = min(g1,...gn—1).- Now Th. A completes the proof. ¢
Applying Helly’s theorem on the existence a straight line inter-
secting a family of parallel compact segment in R?, the authors of [5]
proved the following
Theorem B. Let I C R be an interval. The functions f, g: I — R
satisfy the system of inequalities

{f@w+tt—ﬂw <tg(z) + (1 —t)g(y)
gltz+ (1—t)y) >tf(z)+(1-1)f(y)
if, and only if, there exists an affine function h : I — R such that
f<h<yg.

It turns out that Th. B is a consequence of Th. A. In fact, applying
Th. A to the first of the inequalities we get a convex function hy : I —
— R such that f < h; < g. Writing the second inequality in the
equivalent form
(_g)(tm+(1—t)y) St(_f)($)+(1_t)(_f)(y)’ $7y€I7 te (01 1)7
and applying again Th. A we obtain a concave function hy : [ —3 R
such that f < hy < g.

Now there are three possible cases: either the graphs of h; and hy
have two different common points or they have only one common point
or there is no points of intersection of the graphs of h; and hs.

Taking in the first case the straight line through the both common
points; in the second case a straight line through the common point
which lies between the graphs of h; and hy, and, in the third case, any
straight line between the graphs of h; and hg, we get the desired affine
function h.

z,yel, te(0,1),

2. Definitions and some properties of My -convex
functions

Let I C R be an interval. For a fixed continuous and strictly
monotonic function ¢ : I — R and for any fixed ¢ € (0,1), we define
Mgy : I? — I by the formula
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(2) Myi(z,y) = 67 (tp(z) + (1 - t)(y)), =z, yeT.
The function My ; is a mean in I ie., for all z, y € I,
min(z,y) < My (2, y) < max(z,y),
and it is called a weighted quasi-arithmetic mean (cf. [1], p. 287 and [3],
p. 189). Note that, for any interval J C I,
My (I xJycd, t€(0,1).
This property allows us to introduce the following
Definition 1. Let a subinterval J of I and ¢ € (0,1) be fixed. A
function w : J —— I is said to be ,
(i) My i—convez if w(My4(z,y)) < My s(w(z), w(y)), =, y € J;
(ii) My —concave if w(Myi(z,y)) > My i(w(z), w(y)), =, y € J;
(i) My —affine if w(Myi(z,y)) = My (w(z), w(y)), z, y € J.
Definition 2. A function w : J — I is called Mg—convez if for every
t € (0,1) it is My -convex. Analogously we define My-concave and
M- affine functions.
Remark 2. Let I =R and let ¢ : I — R be given by
d(u) =au+b, vel,
where a, b € R, a # 0, are fixed. It is easy to see that M¢’%—convexity
of a function w is equivalent to the Jensen convexity of w, and, for
every fixed ¢ € (0,1), the My ;-convexity of w reduces to its t-convexity
(cf. [4]). Moreover, My-convexity of a function coincides with its clas-
sical convexity. Thus the notion of the My-convexity generalizes the
classical convexity.
In the sequel the following criterion of the My-convexity will be
useful.
Lemma 1. Let ¢ : J — R be continuous and strictly decreasing.
Then u : ¢(J) — J is concave if, and only if, the function ¢t ouo ¢
15 My-convez on J.
Proof. By the concavity of u we have
u(tr + (1 —t)s) > tu(r) + (1 —t)u(s), r seo(l), te(0,1).
Setting here r = ¢(z), s = ¢(y), for z, y € J, and applying the
decreasing monotonicity of ¢, we get
w (97" (td(z) + (1 —t)8(y))) < o7 (¢ (w(z)) + (1 — )b (w(y))),
for all z, y € J, and t € (0,1), where w := ¢~ ! ouo ¢. This shows that
w is My-convex on J. The converse implication is obvious. 0
Similarly we prove the following
Lemma 2. Let ¢ : J — R be continuous and stmctly InCreasing.
Then u : ¢(J) — J is convez if, and only if, the function ¢l owuo ¢
18 My-convez on J.
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3. Separation theorem for M,-convex functions

The main result of this section reads as follows:
Theorem 1. Let I and J be intervals such that J C I and suppose that
¢ : J —> R is continuous and strictly monotonic. Then f, g:J—1
satisfy the inequality
(3) f (Mfﬁ,t(a:ay)) < M¢,t (g(m)vg(y))v T,y € J’ te (O’ 1)1
if, and only if, there exists an My-convez function h : J —— I such that
(4) _ f(z) <h(z) <g(z), zel.

Proof. Assume that (3) holds true. First consider the case when ¢ is
strictly decreasing. From (2) and (3), for all z, y € J, and ¢ € (0,1),
we obtain

F (87 () + 1 - 1)9(y))) < 87 (t(g(2)) + (1~ t)p(9(v))) -
Choose arbitrary r, s € ¢(J). Substituting here z = ¢~(r) and y =
= ¢~1(s) and making use of the decreasing monotonicity of ¢ we get
(5) (pofod™ ) (tr+(1—1)s) > t(pogod™ ) (r)+(1—t)(¢pogod™)(s)
for all v, s € ¢(J) and ¢ € (0,1). Define f, §: ¢(J) — J by
(6) f=¢ofop™", g=dogogt.

In view of (5) we have

flitr+ 1 —t)s) > tg(r) + (1 —t)g(s), rsead(J), te(0,1).
Now, applying Th. A, we infer that there exists a concave function
h: ¢(J) — J such that

F(r) =z h(r) 2 g(r), res(J).
Putting here r = ¢(z), = € J, and making use of the decreasing mono-
tonicity of ¢, we get
f(z) < (¢ ohog) (z) <g(z), zelJ.
In view of Lemma, 1, the function h : J —— I defined by
h=¢"oRog

is the desired My-convex function.

Now consider the remaining case when ¢ is strictly increasing.
A similar reasoning as in the previous part of the proof shows that

(pofog ™ )(tr+(1—1t)s) <t(dpogod ™ )(r)+ (1 —t)(pogod™")(s)
for all 7, s € ¢(J), and t € (0,1), which means that

fltr + (1 —t)s) < tg(r)+ (1 —1)g(s), r, s € ¢(J), te(0,1),
where f, §: ¢(J) — J are defined by (6). Applying again the Th. A
gives the existence of convex function h : ¢(J) — J such that
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F(r) <h(r) <3(r), e ).

Putting here r = ¢(z), z € J, and making use of the increasing mono-
tonicity of ¢ we obtain (4) with h : J — I defined by formula h =
= ¢ 'oho¢. By Lemma 2, h is the desired M g-convex function.

The converse implication is an easy consequence of the fact that
the weighted quasi-arithmetic mean is strictly monotonic with respect
to each variable.
Remark 3. Applying Th. 1 with ¢ : J — R defined by ¢(u) = au+5b,
u € J, where a, b € R, a # 0, are fixed, we get the result obtained
in [2].

Recall that a function h : J — (0, 00) is geometrically convez if

h(z'y' %) < (h(2)" (@)™, @, yed, te(0,1).

Taking I = (0,00), and ¢(¢) =logt (¢ > 0) in Th. 1 we obtain
the following
Corollary 2. Let J C (0,00) be an interval and suppose that f, g :
:J — (0,00). Then

FEy ) < (9@) (ew)'™, @yed, te(0,1),
if, and only if, there exists a geometrically conver function h : J ——
— (0, 00) such that '
f(z) <h(z) <g(z), zelJ.

4. Separation theorem for M -affine functions

In this section we prove the following
Theorem 2. Let I, J be intervals such that J C I. Suppose that
¢ :J —> R is a continuous and strictly monotonic, and f, g: J — I.
Then the following conditions are equivalent:

(i) there exists an Mg—affine function h: J — I such that
f(z) <h(z) <g(z), z€J;
(ii) there exist an My-conver function hy : J — I and an My-
concave function hg : J — I such that ,
fl@) <h(z)<g(z), z€J, flz)<hz)<g(z), z€J;
(i) the functions f and g satisfy the system of inequalities:
{ F(Mye(z,y)) < Mpi(g(z),9(v))

9(My i(z,y)) > My (f(z), f(y))

Proof. Implication (i) == (ii) is a consequence of the fact that every
affine function is both convex and concave.

z,yel, te(0,1).
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The increasing monotonicity of the weighted quasi-arithmetic
mean My ; with respect to each variable yields the implication (ii) —
= (iii).

To show the implication (iii) == (i) first assume that ¢ is strictly
decreasing. Taking f, §: ¢(J) — J defined by (6) we can write the
system (iii) in the form

flar+(1—t)s) >1g(r)+ (1—t)g(s) -
{ G+ (1—1)s) <tfr)+1—-fe) I te0l)
Applying Th. B we infer that there exists an affine function k : ¢(J) —

—+ J such that _ _
§(r) <h(r) < F(r), re o).
Putting here r = ¢(z), = € J, and making use of the decreasing mono-
tonicity of ¢ we get
f(@) < he) <g(), zeJ,
where h : J +—— I is given by the formula h = ¢~ o ho ¢. Clearly, A is
the desired My—affine function.

Assume now that ¢ is strictly increasing. Similarly as in the pre-
vious case, the function f, g : ¢(J) — J defined by (6) satisfy the
system of inequalities

{ flir+ (1 —t)s) <tg(r)+(1-1)g(s)
glir+ (1 —1t)s) >tf(r)+ (1 —1t)f(s)
The existence of the affine function A : ¢(J) — J such that
Fr)<h(r)<g(r), re¢().
is again a consequence of theorem B. Now it is easy to check that A :
: J— I given by h = ¢~ o ho ¢ satisfies the condition (i). ¢

r, s € ¢(J), te(0,1).
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