TOLERANCES ON SEMILATTICES

Zuzana Heleyová

Technical University, College of Business and Management, Technická 2, 616 69 Brno, Czech Republic

Received: Mai 1997

MSC 1991: 06A12; 06D15

Keywords: (Relative) (L_n) -lattice, tolerance relation.

Abstract: The aim of this note is to prove that the tolerance lattice of semilattice is a p-algebra. An example shows that this p-algebra fails to be a relative p-algebra.

1. Preliminaries

A p-algebra (or pseudocomplemented lattice) is a universal algebra $(L; \vee, \wedge, *, 0, 1)$ of type (2, 2, 1, 0, 0) in which the deletion of the unary operation * yields a bounded lattice and * is the operation of pseudocomplementation that is

$$x \leq a^*$$
 if and only if $a \wedge x = 0$.

The class \mathcal{B}_{ω} of all distributive *p*-algebras is equational. K. B. Lee [4] has shown that the lattice of all equational subclasses of \mathcal{B}_{ω} forms a chain

$$\mathcal{B}_{-1} \subset \mathcal{B}_0 \subset \mathcal{B}_1 \subset \ldots \subset \mathcal{B}_n \subset \ldots \subset \mathcal{B}_{\omega}$$
,

of type $\omega + 1$ where \mathcal{B}_{-1} denotes the class of all trivial p-algebras, \mathcal{B}_0 is the class of all Boolean algebras and for $n \geq 1$ the class \mathcal{B}_n consists of all distributive p-algebras satisfying identity

 $(L_n)(x_1 \wedge x_2 \wedge \ldots \wedge x_n)^* \vee (x_1^* \wedge x_2 \wedge \ldots \wedge x_n)^* \vee \ldots \vee (x_1 \wedge x_2 \wedge \ldots \wedge x_n^*)^* = 1.$ We call the elements of \mathcal{B}_1 the Stone algebras. For $n \geq 2$ the elements of \mathcal{B}_n are called (L_n) -lattices. Distributive p-algebra in which for some $n \geq 1$ every subinterval is an (L_n) -lattice is called a relative (L_n) -lattice.

Proposition 1.1 ([1]; Th. 1). Let L be a distributive lattice with 1. The following conditions are equivalent:

- (i) L is a relative (L_n) -lattice,
- (ii) for every $a \in L$, [a, 1] is an (L_n) -lattice.

If we give up the distributivity we can study the following classes of p-algebras

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \ldots \subset \mathcal{P}_n \subset \ldots \subset \mathcal{P}_{\omega}$$

where \mathcal{P}_{ω} denotes the class of all *p*-algebras, $L \in \mathcal{P}_n$ if and only if L is a *p*-algebra satisfying the identity (L_n) for $1 \leq n < \omega$ and the elements of the class \mathcal{P}_0 are uniquely determined by the identity

$$(L_0) \qquad (x \wedge y)^* = x^* \vee y^*.$$

(For distributive p-algebras the identities (L_0) and (L_1) are equivalent.)

Let S be a \land -semilattice. A tolerance on a semilattice S is a reflexive and symmetric binary relation T on S which has the substitution property with respect to \land , i.e.

$$(a,b) \in T, (c,d) \in T \text{ implies } (a \land c, b \land d) \in T.$$

The set of all tolerances on S forms an algebraic lattice $\operatorname{Tol}(S)$ with respect to the set inclusion and with Δ, ∇ the least and greatest elements, respectively (see [2]). The meet in this lattice corresponds with the intersection, i.e.

$$A \wedge B = A \cap B$$

and

$$A \vee B = T(A \cup B),$$

for any tolerances A, B on S, where T(M) denotes the least tolerance containing the set $M \subseteq S \times S$. It is called the *tolerance generated by* M. If $M = \{(a,b)\}$ then we denote T(M) = T(a,b) and we call it a *principal* tolerance.

The following properties are easy to verify:

- (1) Let $M \subseteq S \times S$ be arbitrary set. Then $(x, y) \in T(M)$ if and only if $x = x_1 \wedge x_2 \wedge \ldots \wedge x_r$, $y = y_1 \wedge y_2 \wedge \ldots \wedge y_r$ and $(x_i, y_i) \in M$ or $(y_i, x_i) \in M$ or $x_i = y_i$, for $i = 1, 2, \ldots, r$.
- (2) $(x,y) \in T(a,b)$ if and only if x = y or $x = a \land r$, $= y = b \land r$ or $x = b \land r$, $y = a \land r$ for some $r \in S$.
- (3) $A \lor B = A \cup B \cup \{(x_1 \land x_2, y_1 \land y_2) : (x_1, y_1) \in A, (x_2, y_2) \in B\},$ for any $A, B \in \text{Tol}(S)$.

From these properties we immediately obtain next simple statement.

Lemma 1.2. Let S be a \wedge -semilattice, $a, b \in S$, $a \neq b$ and $T \in \text{Tol} = (S)$. Then $T \wedge T(a, b) = \Delta$ if and only if $a \wedge r = c$, $b \wedge r = d$ implies $a \wedge r = b \wedge r$, for any $r \in S$ and $(c, d) \in T$.

In particularly if $a \neq b$, $c \neq d$ then $T(a,b) \wedge T(c,d) = \Delta$ if and only if $a \wedge r = c \wedge s$, $b \wedge r = d \wedge s$ or $b \wedge r = c \wedge s$, $a \wedge r = d \wedge s$ implies $a \wedge r = b \wedge r$, for any $r, s \in S$.

2. Tolerance distributive semilattices

The following theorem is a connection of [6; Cor. 1.1] and [3; Th. 7].

Theorem 2.1. Let S be a \land -semilattice. The following conditions are equivalent:

- (a) Tol(S) is modular,
- (b) Tol(S) is distributive,
- (c) S is a chain or S contains a maximal chain S_0 and an element $z \in S_0$ such that each element of $S \setminus S_0$ covers z.

Since $\operatorname{Tol}(S)$ is an algebraic lattice the condition (c) characterizes all \wedge -semilattices whose tolerance lattices are distributive relative p-algebras. From [7] follows that $\operatorname{Tol}(S) \in \mathcal{B}_0$ if and only if S is a trivial semilattice or a two-element chain. In this section we will prove that for tolerance-distributive semilattice S the tolerance lattice $\operatorname{Tol}(S)$ is a relative (L_2) -lattice.

Let S be a tolerance distributive semilattice and $T, U \in \text{Tol}(S)$, $T \leq U$. We denote U * T the relative pseudocomplement of U in $[T, \nabla]$. It is easy computation to verify that

$$U*T = T \vee \bigvee \{T(a,b): (T(a,b) \vee T) \wedge U = T\}.$$

Lemma 2.2. Let S be a \land -semilattice. If S is a chain then Tol(S) is a relative Stone algebra.

Proof. Take arbitrary $T,U\in \operatorname{Tol}(S),\ T\leq U.$ We will prove that $U*T\cup (U*T)*T=\nabla.$ On the contrary suppose that $(a,b)\notin U**T\cup (U*T)*T$ for some $a,b\in S,\ a< b.$ It follows that $(a,c)\in U,\ (a,c)\notin T$ and $(a,d)\in U*T,\ (a,d)\notin T$ for some $c,d\in S,\ a< c,d\leq S$. Hence $(a,c\wedge d)\in U\wedge U*T=T$ which is a cotradiction with $(a,c),(a,d)\notin T.$ Therefore $U*T\vee (U*T)*T\supseteq U*T\cup (U*T)*T=S\times S=\nabla$ and $[T,\nabla]\in \mathcal{B}_1.$ From Prop. 1.1 we obtain that $\operatorname{Tol}(S)$ is a relative Stone algebra. \Diamond

Lemma 2.3. Let S be a tolerance-distributive \land -semilattice and S is not a chain. Then Tol(S) is a relative (L_2) -lattice but it is not a Stone algebra.

Proof. Let us denote S_0 the maximal chain in S and $z \in S_0$ the element which is covered with every element from $S \setminus S_0$. Firstly we will show that Tol(S) is not a Stone algebra.

Let $x, y \in S$ and x||y. Then $x \wedge y = z$ and we can assume that $y \in S \setminus S_0$. Let T = T(x, z). Clearly $T(y, z) = \{(y, z), (z, y)\} \cup \Delta$ and $T \wedge T(y, z) = \Delta$. Obviously $(y, z) \in T(y, z) \subseteq T^*$ and $(x, z) \in T^{**}$. Hence $(x, y) \notin T^* \cup T^{**}$. Since x, y are both \wedge -irreducible elements $(x, y) \notin T^* \vee T^{**}$ and $Tol(S) \notin \mathcal{B}_1$. It remains to prove that $[T, \nabla] \in \mathcal{B}_2$ for arbitrary $T \in Tol(S)$.

Let $U, V \in [T, \nabla]$. We denote $T_1 = U \wedge V, T_2 = U * T \wedge V, T_3 = U \wedge V * T$. Clearly $T_i \wedge T_j = T$ for $i, j \in \{1, 2, 3\}, i \neq j$.

Let $(x,y) \in S \times S$, $(x,y) \notin T$. Three possibilities can occure.

- (a) $x, y \in S_0, \ x < y$. Then $T(x, y) = \{(x, t), (t, x) : x < t \le y\} \cup \Delta$. Since $T_i \wedge T_j = T$ for $i \ne j$ there exists $j \in \{1, 2, 3\}$ such that T_j contains no element (x, u) such that x < u and $(x, u) \notin T$. Therefore $(T \vee T(x, y)) \wedge T_j = (T \wedge T_j) \vee (T(x, y) \wedge T_j) = T$ and $(x, y) \in T_j * T$.
- (b) $x, y \in S \setminus S_0$. Then $T(x, y) = \{(x, y), (y, x), (x, z), (z, x), (y, z), (z, y)\} \cup \Delta$. Since $T_i \wedge T_j = T$ for $i \neq j$ we can find again $j \in \{1, 2, 3\}$ such that T_j does not contain neither (x, z) neither (y, z) if $(x, z), (y, z) \notin T$. Again $(T \vee T(x, y)) \wedge T_j = T$ and $(x, y) \in T_j * T$.

We can conclude that $T_1 * T \lor T_2 * T \lor T_3 * T \supseteq T_1 * T \cup T_2 * * T \cup T_3 * T = S \times S = \nabla$. It means that $[T, \nabla] \in \mathcal{B}_2$ and Tol(S) is a relative (L_2) -lattice. \Diamond

3. Non-distributive case

Our aim in this section is to prove that Tol(S) is a p-algebra even for tolerance non-distributive semilattices. The following lemma plays the key role in our next considerations.

Lemma 3.1. Let S be a \land -semilattice, $a, b, c_i, d_i \in S$, $a \neq b, c_i \neq d_i$, i = 1, 2. If $T(c_i, d_i) \land T(a, b) = \Delta$, i = 1, 2 then $(T(c_1, d_1) \lor T(c_2, d_2)) \land \land T(a, b) = \Delta$.

Proof. Let $T = T(c_1, d_1) \vee T(c_2, d_2)$. From (3) we obtain $T = T(c_1, d_1) \cup T(c_2, d_2) \cup \{(c_1 \wedge c_2 \wedge r, d_1 \wedge d_2 \wedge r), (d_1 \wedge d_2 \wedge r, c_1 \wedge c_2 \wedge r), (c_1 \wedge d_2 \wedge r, d_1 \wedge c_2 \wedge r), (d_1 \wedge c_2 \wedge r, c_1 \wedge d_2 \wedge r) : r \in S\}.$

Assume that $T \wedge T(a,b) \neq \Delta$, i.e. $c_1 \wedge c_2 \wedge r = a \wedge s$ and $d_1 \wedge d_2 \wedge r = b \wedge s$ for some $r,s \in S$ and $a \wedge s \neq b \wedge s$. (Next three possibilities can be solved the same way only interchanging the letters c_i,d_j .) Then $(a \wedge s,b \wedge s) \wedge (c_1 \wedge c_2 \wedge d_2) = (c_1 \wedge c_2 \wedge r,d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge d_2) \wedge (c_1 \wedge c_2 \wedge d_2) \wedge (c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge d_2) \wedge (c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_2 \wedge d_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_1 \wedge c_2 \wedge d_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_1 \wedge c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_2 \wedge c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_2 \wedge c_1 \wedge c_2 \wedge d_1 \wedge r) \wedge (c_1 \wedge c_2) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge d_1 \wedge d_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge r, c_1 \wedge c_2 \wedge r) \wedge (c_1 \wedge c_2 \wedge r, c_1 \wedge r, c_2 \wedge r, c_1 \wedge r,$

The property (1) enables us to generalize the previous statement for arbitrary set of principal tolerances disjoint with T(a, b).

Lemma 3.2. Let S be a \land -semilattice, $a, b, c_i, d_i \in S$ for $i \in I$ and $a \neq b$. Let $T(c_i, d_i) \land T(a, b) = \Delta$ for $i \in I$. Then

$$\bigvee_{i \in I} (T(c_i, d_i)) \wedge T(a, b) = \Delta.$$

Proof. Let $(e, f) \in \bigvee_{i \in I} (T(c_i, d_i)) \wedge T(a, b)$. From (1) follows that $(e, f) \in \bigvee_{i \in J} (T(c_i, d_i)) \wedge T(a, b)$, for some finite $J \subseteq I$. So it is enough to prove our statement only for finite index set I.

Let
$$T(c_i, d_i) \land T(a, b) = \Delta$$
 for $i=1, 2, \ldots n$ and $(e, f) \in \bigvee_{i=1}^{n} (T(c_i, d_i)) \land$

 $\wedge T(a,b)$. The previous lemma implies that e=f for n=2. Assume that our statement is true for arbitrary $n \leq k$ and that $(e,f) \in \bigvee_{i=1}^{k+1} (T(c_i,d_i)) \wedge T(a,b)$. From (1) we obtain that

 $e = x_1 \wedge x_2 \wedge \ldots \wedge x_m \wedge r, \ f = y_1 \wedge y_2 \wedge \ldots \wedge y_m \wedge r,$ for $r \in S$ and $x_i = c_{j_i}$, $y_i = d_{j_i}$ or $x_i = d_{j_i}$, $y_i = c_{j_i}$ for $i = 1, 2, \ldots, m$. If $j_i \leq k$ for all $i = 1, 2, \ldots m$ then $(e, f) \in \bigvee_{i=1}^k (T(c_i, d_i)) \wedge T(a, b)$ and e = f. Assume that

 $e = x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1} \wedge c_{k+1} \wedge r$

and

$$f = y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1} \wedge d_{k+1} \wedge r.$$

Then $(e,f) \in T(x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1}, y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1}) \vee VT(c_{k+1}, d_{k+1})$ and $(e,f) \in T(a,b)$. But $T(x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1}, y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1}) \subseteq \bigvee_{i=1}^k (T(c_i,d_i))$ and $\bigvee_{i=1}^k (T(c_i,d_i)) \wedge T(a,b) = T(c_{k+1},d_{k+1}) \wedge VT(a,b) = \Delta$. Using Lemma 2.1 we obtain that $\bigvee_{i=1}^n (T(c_i,d_i)) \wedge T(a,b) = \Delta$. \Diamond

Lemma 3.3. Let S be a \land -semilattice. Let $a, b \in S$ and $a \neq b$. Then $T^*(a, b) = \bigvee (T(c, d) : T(c, d) \land T(a, b) = \Delta)$.

Proof. Let us denote the righ-hand tolerance T, i.e. $T = \bigvee (T(c,d): T(c,d) \wedge T(a,b) = \Delta)$. We have already proved that $T \wedge T(a,b) = \Delta$. Let $U \in \text{Tol}(S)$ and $U \wedge T(a,b) = \Delta$. Clearly $T(e,f) \subseteq U$ and $T(e,f) \wedge T(a,b) = \Delta$ for every $(e,f) \in U$. Therefore $U = \bigvee (T(e,f): (e,f) \in U) \subseteq \bigvee (T(c,d): T(c,d) \wedge T(a,b) = \Delta) = T$ and $T^*(a,b) = T$. \Diamond **Theorem 3.4.** Let S be a \land -semilattice. The lattice Tol(S) of tolerances on S is a p-algebra. More precisely

$$T^* = \bigwedge (T^*(c,d): (c,d) \in T)$$

for arbitrary tolerance $T \in \text{Tol}(S)$.

Proof. First we will prove that $T \wedge \bigwedge (T^*(c,d) : (c,d) \in T) = \Delta$. Let $(e,f) \in T \wedge \bigwedge (T^*(c,d) : (c,d) \in T)$. Then $T(e,f) \subseteq T$ and $(e,f) \in T(e,f) \wedge \bigwedge (T^*(c,d) : (c,d) \in T) \subseteq T(e,f) \wedge T^*(e,f) = \Delta$. Suppose that $U \in \operatorname{Tol}(S)$ and $T \wedge U = \Delta$. Let $(c,d) \in T$. Then $U \wedge T(c,d) \subseteq U \wedge T = \Delta$, i.e. $U \subseteq T^*(c,d)$ for any $(c,d) \in T$. Since $\operatorname{Tol}(S)$ is an algebraic lattice $U \subseteq \bigwedge (T^*(c,d) : (c,d) \in T)$ and $\bigwedge (T^*(c,d) : (c,d) \in T) = T^*$. \Diamond

The previous result reminds of results of Dona Papert. She proved [5] that congruences on semilattice form a p-algebra. Moreover she showed that for any two comparable congruences θ, φ on S such that $\theta \leq \varphi$ we can define a congruence $\varphi * \theta$ for which $\varphi \wedge (\varphi * \theta) = \theta$ and which is the greatest congruence satisfying this equation.

Since tolerance is a generalization of congruence a natural question arises whether we can analogously define a tolerance U*T for any two comparable tolerances $T \leq U$. The following example shows that this is not possible in general.

Example 1. Let S be a semilattice shown in Fig.1.

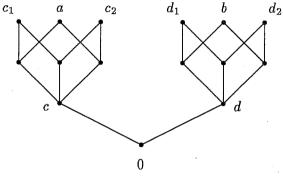


Fig. 1

Let T=T(a,b) and $U=T(\{(a,b),(c,d)\})$. Clearly $T\subseteq U$. We will show that tolerance U*T does not exist in $\mathrm{Tol}(S)$. On the contrary suppose that U*T exists. Then undoubtly $U*T\supseteq\bigvee(T(c,d): (T(c,d)\vee T)\wedge U=T)\vee T$. It does not take a long time to verify that $T(c_i,d_i)=\{(c_i,d_i),(d_i,c_i),(c_i\wedge a,0),(0,c_i\wedge a),(d_i\wedge b,0),(0,d_i\wedge b),(c_1\wedge a,0),(0,c_1\wedge c,0),(0,c_1\wedge c,0),(0,c_$

Therefore $(T \vee T(c_i, d_i)) \wedge U = T$, for i = 1, 2. But $T \vee T(c_1, d_1) \vee T(c_2, d_2) \supseteq T \cup T(c_1, d_1) \cup T(c_2, d_2) \cup \{(a \wedge c_1 \wedge c_2, b \wedge d_1 \wedge d_2), (b \wedge d_1 \wedge d_2, a \wedge c_1 \wedge c_2)\} = T \cup T(c_1, d_1) \cup T(c_2, d_2) \cup \{(c, d), (d, c)\}$ and so $(T \vee T(c_1, d_1) \vee T(c_2, d_2)) \wedge U = U \supsetneq T$ which is a contradiction. So we can conclude that U * T does not exist.

In Section 2. we proved that the identity (L_2) is satisfied in Tol(S) for every tolerance distributive semilattice. Asking which is the smallest n for which the identity (L_n) is satisfied in a tolerance non-distributive semilattice we obtain a much more motley answer.

Lemma 3.5. For arbitrary $n=1,2,3,\ldots$ there exists a finite \land -semilattice S_n such that $\operatorname{Tol}(S_n) \in \mathcal{P}_{n+1} \setminus \mathcal{P}_n$. **Proof.** Let S_1 denotes the \land -semilattice from Fig.2.

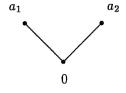


Fig. 2.

Then $Tol(S_1)$ is a five-element lattice depicted in Fig.3. and obviously $Tol(S_1) \in \mathcal{P}_2 \setminus \mathcal{P}_1$.

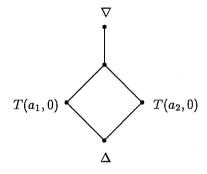


Fig.3.

For $n \geq 2$ we denote S_n the \land -semilattice from Fig.4.

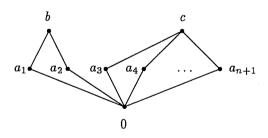


Fig. 4

Let T_j be a tolerance generated by the set $\{(a_i,0): i \neq j\}$, i.e. $T_j = \{(a_i,0),(0,a_i): i \neq j\} \cup \Delta, \ j=1,2,\ldots,n$. Hence $T_j^* \supseteq T(a_j,0), \ j=1,2,\ldots,n$ and

$$T_1 \wedge T_2 \wedge \ldots \wedge T_n = T(a_{n+1}, 0),$$

 $T_1^* \wedge T_2 \wedge \ldots \wedge T_n = T(a_1, 0),$

$$T_1 \wedge T_2 \wedge \ldots \wedge T_n^* = T(a_n, 0).$$

It yields that $(b, c) \notin T^*(a_i, 0)$ for i = 1, 2, ..., n + 1 and since b, c are both maximal elements, $(b, c) \notin T^*(a_1, 0) \vee T^*(a_2, 0) \vee ... \vee T^*(a_{n+1}, 0)$. Therefore

 $(T_1 \wedge T_2 \wedge \ldots \wedge T_n)^* \vee (T_1^* \wedge T_2 \wedge \ldots \wedge T_n)^* \vee \ldots \vee (T_1 \wedge T_2 \wedge \ldots \wedge T_n^*)^* \neq \nabla$ and $\text{Tol}(S_n) \notin \mathcal{P}_n$.

Now we wish to prove that $\operatorname{Tol}(S_n) \in \mathcal{P}_{n+1}$. Let $T_1, T_2 \dots T_{n+1}$ be arbitrary tolerances on S_n and $U_1 = T_1 \wedge T_2 \wedge \dots \wedge T_{n+1}$, $U_2 = T_1^* \wedge T_2 \wedge \dots \wedge T_{n+1}$, $U_{n+2} = T_1 \wedge T_2 \wedge \dots \wedge T_{n+1}^*$. Since $U_1, U_2 \dots U_{n+2}$ are n+2 pairwise disjoint tolerances there exists $j \in \{1, 2 \dots n+2\}$ such that $(a_i, 0) \notin U_j$ for $i = 1, 2 \dots n+1$. Two possibilities can occure:

- (i) If n > 2 then $U_j = \Delta$ and trivially $U_1^* \vee U_2^* \vee \ldots \vee U_{n+2}^* = \nabla$.
- (ii) If n=2 then $U_j=\Delta$ or $U_j=T(a_3,c)$.

In the second case $U_j^* = (S \times S) \setminus \{(a_3, c), (c, a_3)\}$. Since for any tolerance U such that $(a_3, c) \notin U$ is $(a_3, c) \in U^*$ we obtain $U_1^* \vee U_2^* \vee V \cup U_3^* \supseteq U_1^* \cup U_2^* \cup U_3^* = S \times S = \nabla$. \Diamond

References

- [1] M. HAVIAR, M. and KATRIŇÁK, T.: Semi-discrete lattices with (L_n) -congruence lattices, Contributions to General Algebra 7 (1991), Verlag Holder-Pichler-Tempsky, Wien 189–195.
- [2] CHAJDA, I. and ZELINKA, B.: Lattices of tolerances, Čas. pěst. mat. 102 (1977) 10–24.
- [3] CHAJDA, I. and ZELINKA, B.: A characterization of tolerance-distributive tree semilattices, Čas. pěst. mat. 37 (1987) 175–180.
- [4] LEE, K.B.: Equational classes of distributive pseudo-complemented lattices, Can. J. Math. 22 (1970) 881-891.
- [5] PAPERT, D.: Congruence relations in semi-lattices, Journal London Math. Soc. 39 (1964) 723-729.
- [6] PONDĚLÍČEK, B.: Modularity and distributivity of tolerance lattices of commutative inverse semigroups, Czech. Math. J. 35 (1985) 146-157.
- [7] PONDĚLÍČEK, B.: Commutative semigroups whose lattice of tolerances is boolean, *Czech. Math. J.* **38** (1988) 226–230.