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Abstract: Let A be a complex n X n matrix, and denote by N, the set
of normal n X n matrices. We conjecture a “strong” upper bound for the
distance ||A — Nyn||F in terms of the Schur form of A, a “weak” consequence
of which can be formulated by the eigenvalues {)\;} of A only:

n

n—1
|4 — Nall% < - (I!AHZF—ZI/M’I2 :

=1

Both the “strong” and the “weak” conjectures will be confirmed by some
relevant, interesting in themselves results.

1. Introduction and notations

The following notation will be used.
1. My x: the set of complex n x k matrices; I, is the identity of

M'n = Mn,n-

2. Np,Upn, Tn C My: normal, unitary and upper triangular matri-
ces. -

3. l14llr = (i 25y lai,jlz)l/zz the Frobenius norm of A €
€ M.

4. dep(A4) = (|l4]|% — ||A||%)*/?: the departure from normality by
Henrici with A = diag()\;) being the diagonal matrix of the
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eigenvalues of A € M,,.

5. If A= UTU* for some A, T € M,, U € U, (i.e. A is unitarily
equivalent to T, and T' € 7y, then T is said to be a Schur form
of A.

We guess the following.
Conjecture 1 (strong version). If A € M, and T is a Schur form of
A, then

n—1 ., n—i
1
(1) IA-NallZ <> 1 [t,i051°
i=1 j=1
By ;7 < "—n_i, 1<i<n-—1we get from this
Conjecture 2 (weak version). If A€ M,, then
n—1
) 14— Nally < " dep?(a)

In the next section we will give reason of why our conjectures can
be guessed. To this we will discuss the “dual” problem of maximizing
the main diagonal by using unitary equivalence. In Section 3 we prove
that the weak conjecture holds in an infinitesimal sense, i.e. when a
matrix is close enough to a normal one. In the last section we will derive
Conjecture 1 from the more plausible conjecture of L. Elsner, which
states that every upper triangular matrix can be completed (below the
diagonal) to a normal matrix. There we also list the promising results
related to this problem.

2. Motivation by the dual problem

Here we sketch the steps which prove the lower bound in [13]
and also enable us to guess the conjectures on the upper bound. The
treatment is similar for both cases, there is a difference only in Subsec-
tion 2.4.

2.1. Equivalence of two problems
As is known [3], for A € M,, both problems
(3) 8(A) = max{|| diagUAU*||r : U € Uy},
(4) v(4) = A = Np|lp =min{||A— N|r: N €Nn}

are equivalent; in particular the “Pythagorean theorem”
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8% (A) + v (A) = ||AlF
holds showing that any bound for (3) yields an opposite bound for the
dual problem (4), and vice versa. For instance, the lower bound [13]

(5) 14~ N3 > = dep?(4)

has been proved in such a way.

2.2. Decomposition into diagonals

We wish to represent the diagonal of UAU* as a matrix-vector
product. However, the usual Kronecker product [8] takes the columns
(or the rows [11]) of the matrix, while (1) is formulated in terms of the
diagonals, therefore we make use of the MATLAB-function diag.
Definition. For A € M, let diag(4) = (ai1,...,0nn)T, and more
generally,

diag(4,7) = (az,+5)721 € C*™, 0<i<n—1,
diag(4,1) = (aj_z-,j)?;rf eC™ 1-n<i<O.

Now diag(UAU™) can be written as a linear combination

n—1

diag(UAU*) = ) Q; diag(4,1)
t=1—n
of the diag(A4, 7)-s, where Q; € Moy m—jijy 1—=n <4 < n—1. For instance,
Qo = (|ui;|*) € M, is a square, doubly stochastic matrix (used also in
connection with majorization), while e.g. @,,_1 is a complex one-column
matrix.

Observe that the n x n? matrix (Q1—n, .., Qo,. - -, @n_1) consists
of full rows (with appropriately permuted columns) of the Kronecker
product U ® U (or U ® U, if one uses the formalism [11]), which is
known to be unitary, thus

n—1
(6) > Qi@ =1In.

i=1—n

2.3. Passing over to the Schur form

In this section we replace A by its Schur form T € 7,,. This is
possible by the Schur decomposition theorem and the unitarily invari-
ance of the Frobenius norm, giving ||A—MN,|| = ||T—N.||- However, for
T € T, diag(T,4) = 0, i < 0 holds, and the @;-s with negative indices
disappear:
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n—1
diag(UTU*) = ) Q; diag(T,1).
i=0
For brevity, let ¢; = diag(T,3), i = 0,...,n — 1, and write the above
sum as a matrix-vector product Q¢ with
(QO)'”)QTL—I)) = (tg’a"'?tz:—l)T‘

Then the equivalent dual form of Conjecture 1 is

n—1

SRS

1=0

< 63(T).

2.4. Matrix inequalities via scaling

Let s = {s;}77, be a sequence of positive numbers, and use them
to scale down the matrices {Q;} and the vectors {¢;} as follows:

Qs - (30Q07 vy sn—-lQn—l)y ts = (Saltg, .. )Snlltg 1)T-
Then diag(UTU*) = Q,t, holds, independently on s.

In [12] we proved that the choice s; = (%H=1)1/2 0 <i<n -1
yields Q;Q% < I, with < denoting the positive semidefinite ordering,
which implies

n—1
(8) | diag(UTU)*|| < ||QalBl1te)2 = Y ———— o1l ill%,

1=0
|Qsl|2 being the operator norm (or spectral norm) of Q,. Taking the
maximum for U € U, yields an upper bound for §2(7). Then reformu-
lating it by using the equivalence of problems (3), (4), one obtains the
attainable lower bound [13] for v2(T'), see (5) as a special case.

As regards the Conjecture below We prove that if s =
=({i+1)Y2,0<i<n-1,and s = {5 1ot then QuQy ™ > I, holds,
giving a chance to show (1). Unfortunately, while formerly Q,Q* < I,
was enough to prove §2(T) < ||¢,]|?, now — although the nonzero singu-
lar values of Q}, Qs are the same as those of Q4 Q% —, the inequality
Qs Q% > I, does not imply 62(T) > ||t«]|?, i-e. (7). Nevertheless, the
guess (7) still seems to be well-founded, since it must hold only for the
maximizer in (3), contrary to (8), which holds for all U € U,.

2.5. Two lemmas on unitaries

Lemma 1. IfU € U,, then for the Q;-s defined above we have
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n—1
> (k+1) QuQ; > I.

k=0
Proof. We use the identities

n—1 n—1 .
In—QuQ; =2) R(@QxQ}), Dk S(QuQ}) =0,
k=1 k=1

and the notations
Fr = R(QrQ%), Ge=%(Q:Q%), 0<k<n-1.
from [12]. The statement to be proved is then equivalent to the relation

n—1 n—1
> (k+1)(Fe+iGy) > 2> Fy, or
k=1 k=1

n—1 n—1
Y (k—1)Fc+iY (k+1)Gy >0,
k=1 k=1

i =+/—1. By ZZ;%(k +1)Gg = — Zz;ll(k — 1)Gy, it remains to show
that

n—1 n—1

D (k= 1)(Fe—iGx) = > (k—1) QxQF > 0,

k=1 k=1
which is true, since the matrix at issue is a nonnegative linear combi-
nation of positive semidefinite matrices. ¢

The other Lemma is not used here, but is interesting, because it

extends Q;Q; < I, to an equality, by involving the negative diagonals.
(See (6) for the “original” unscaled equality.) Since it can be proved by
the similar technique, we state it without proof.
Lemma 2. For the coefficient matrices {Q; ?gll_n.genemted by U €
€ U, it holds that

n—1

n+i1—1 .
> Q= I,
. n—1

1=1—n

3. Near the closest normal matrix

Let A € M, and N € N, be its closest normal matrix. As a
necessary condition, we have then A= N+ NH — HN with H € H,,.
Moreover, A becomes in the coordinates of the eigenvectors of N a
so-called AH matrix:
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(9) B=D+DG-GD, D: diagonal, G : Hermitian,
where N = UDU*, U € U, is the spectral decomposition of N, B =
= U*AU and G = U*HU. In addition,
(10) |B = D|lr = ||B—Nallr
also holds, due to the unitarily invariance of the Frobenius norm. Thus
it can be assumed without loss of generality that B is a AH matrix
with his diagonal as closest normal matrix.
Theorem. Let B € M, be a AH matriz (9) with the best approz-
imation property (10). Suppose that the diagonal elements of B are
distinct, and introduce the family B(e) = D+¢e(B— D), 0 <e < 1.
Then we have
(a) |1B(e) — Dllr = 1B(e) = Nullr, 0<e<1,
(b) 1B(e) — D% < 27 dep®(B(e)) + O(e®), € —0,
(¢) limeso |B(e) — DI|%/ dep™(B(e)) = 3-
Proof. (a) This follows from the geometry of the Euclidean space M,
provided by the inner product (X,Y) = R(trace(Y*X)), X,Y € M,,.
(b) Denote by {A;(e)}?2; the eigenvalues of B(e). Consider the
formulas (5.5), (9.4) and (11.3) from [15], giving the eigenvalue expan-
sion, the first and the second order terms for A;(e):
n
)\1(E)=A1+k16+k252+ ]ﬁ:—l‘E kzziZM—
! S1 ! S1 i—2 Si()\l - )\1)
Since B(g) is a nondiagonal perturbation of the diagonal matrix D, we
have k; = 0 and s; = 1 for all 4, giving
/\i(E)Zbi,i—FZBMJE’?—‘—FO(ES), 1 <i<n.
i Vbt T Ud
Using the AH structure of B(e), A;(¢) assumes
Mife) =dis — > lgii1*(dii — djy) + O(€%), 1<i<nm,
J#i
whence
(11) 1A |7 = IDI|F — e*|B = D||% + O(e”)
can be derived. This implies
|1B(e) = DIlF = *l|B — D||% = [|ID||F — [|A(E)|I7 + O (%),
therefore (b) is equivalent with

IDI2 — JA@)% < =

i.e. with

(IB@E)F — IAE)lIF) + O=),
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1
~(I1B@E)lIF - 1AE)IF) < I1B(e) - DII% + O(e?),
which is a consequence of (5).
(c) To this rewrite (11) into

IBEIE ~ 1AE)1% = 21D[F - |1AE)[F) + O(),

|B(e) = DliF _ _ IIDIF — 1A% + O(®)
1BENE = IAEGIE — 2(IDIE - AE)F +O(?)

and use

Q

4. Conjecture by conjecture

Here we show that the following conjecture by L. Elsner implies

Conjecture 1.
Conjecture (on normal completion [4]). Any upper triangular matrix
can be completed to a normal matrix by specifying appropriately the
entries under the diagonal. In short: any T' € 7,, has the property of
normal completion.

For B € M, let b; = diag(B, i) be the column vector formed from
the elements of the i-th diagonal of B, 1 —n < i < n —1, as introduced
in 2.2. We write B = {b;}?~! for B € M,, arbitrary, and T = {t;}01
for T e T,.

Lemma 3. Given an upper triangular T = {t;}7™' € T,,, create the
scaled matriz Ty, = {t;/(i + 1)}2™' € T,,. If T, has the property of
normal completion, then T (and any A € M, unitarily equivalent to
T) satisfies (1).

Proof. By definition, b; = ¢; / (i+1), i > 0, therefore we have

IT-BE= 3 In |12+Z( SR

i=1l—n

This is less than or equal to the r1ght hand side of (1) if and only if

S Il < Z(Hl)gn i

i=1—mn

holds. However, Lemma 1 [13] implies

-1 -1 n—1
DoolelP< DT fal bl = dljnal?,
i=l—n i=1l—mn i=1

hence, using again b; =¢;/(i + 1), i > 0 completes the proof. ¢
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Remark. In order to prove the analogous implication (cf. [4]) for the
weak version (2), it suffices to require that the matrix Tp + Ty /n has
the property on normal completion, where Tp is the main diagonal of
TeT,,and Ty =T —Tp.

Remark. Note that in case of n = 2 inequalities (1) and (2) coincide
and are true [3], [7]. Further, since the conjecture on normal completion
is true for n = 3 [9], [10], Conjecture 1 also holds in this case. For this
reason we display the known bounds for n = 3 in detail. For T € T3
vlve have . . 5 .
3 (12l +lt2,8°) + Sltrs* <IT=NallF < 5 (b2l +Ita,8") + S sl
The right hand side is the result obtained from [9], [10] by Lemma 3,
while the left hand inequality is known [13].

Remark. Recently considerable steps have been taken in proving Con-
jecture 2. A. Barrlund [1] proved an inequality with (n—1/2)/n instead
of (n — 1)/n. He used an appropriate permutation of the upper trian-
gular T' followed by normal approximations of the 2 x 2 blocks along
the diagonal. L. Elsner and Kh. D. Ikramov [6] obtained a further
refinement by help of 3 x 3 normal matrices.

Finally, A. Barrlund [2] proved that (2) is correct for all even n
and for n = 3,5, 7. He also obtained a bound for odd n which converges
to the bound given in the weak conjecture, when n tends to infinity.
Moreover, he derived sharper bounds for n = 3,5,6,7 by help of an
interesting LP technique.

Acknowledgement. I am grateful to Prof. Anders Barrlund and
Prof. Ludwig Elsner for sending me all informations about the recent
development of the subject.
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