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Abstract: We give the connection between quasi-measures, martingales and
‘Walsh series and prove some uniqueness theorems for two-parameter dyadic
martingales and Walsh series with respect to two types of almost everywhere

convergence.

1. Introduction

It is well known that if a one-parameter Walsh series with coeffi-
cients tending to 0 converges to an integrable function, except possibly
in a countable set, then that series is the Walsh-Fourier series of the
limit function (see e.g. Crittenden, Shapiro [1]). The two-parameter
analogue of this result can be found in Skvorcov [7] and Movsisjan [4].

Let G denote the dyadic group and S3» the 2"th partial sum of
a Walsh series S. Wade [8], [9] proved, that if

im 27"Son(z) =0 forall ze€ G,
n—od
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li_)m Son(z) = f in measure

for some f € Ly and
lim sup | Sz~ (z)] < o0,

n—oo0
except possibly in a countable set, then S is the Walsh-Fourier series

of f. ‘

In this paper we generalize this result for multi-parameter dyadic
martingales and Walsh series. We consider the convergence in measure
or a.e. convergence in Prigsheim sense and a.e. convergence taken over
a cone. We follow basically the one-parameter proof in Schipp, Wade,
Simon, P4l [6], but using martingale techniques we can extend and
simplify the proof. Furthermore, we give the connection between quasi-
measures, martingales and Walsh series.

2. The dyadic group and martingales

Let Zy be the discrete cyclic group of order 2, i.e., the set {0,1}
with the discrete topology and modulo 2 addition. Clearly, Zs is a
compact abelian group. The dyadic group G is defined to be the com-
pact abelian group formed by taking the cartesian product of countably
many copies of Zs, say

G::ZQXZQX....
Thus G consists of sequences z = (z,,n € N) where z, =0 or 1. The
zero element of G is the sequence 0 := (z,, := 0, n € N) and the group
operation is given by
z+Yy:=(zn —yn|,n €N)
for any z = (zn,n € N) and y = (yn,n € N) in G.

Set Ip(z) ;== Gforallz € G. Foreachz € G and n € P := N\ {0}

define

In(z) ={yeG:yi=2; for 0<i<n}
We shall call these sets the dyadic intervals of G. the dyadic intervals
are evidently both open and closed.

Define a measure on Zs by assigning each singleton the By defi-
nition

pIn(z)) =2""  (z€G,nEN).
It is easy to see that p is the Haar measure on G.
The functions
ra(z) = (=1)%" (n € N)
are called Rademacher functions and the product system generated by
these functions is the one-dimensional Walsh system:
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o0
wp(z) = H ()"
k=0

where n = > 12, 0 <ni, <2, ny € Nand z = (z,,n € N) € G.

For a set X # ( let X2 be its cartesian product X x X taken
with itself. In this paper we investigate G2 and the product measure
on it, which we denote again by p. The cartesian product of two dyadic
intervals is said to be a dyadic rectangle. For n,m € N and (z,y) € G?
set

Inm(z,y) = I,(z) x In,(y).

The Kronecker product (wp m;n, m € N) of two Walsh systems is

said to be the two-dimensional Walsh system. Thus
Wn,m(2,Y) = wn(T)wm(y)  ((z,y) € G?).

The o-algebra generated by the dyadic rectangles {I, m(z,y) :
: (z,y) € G?} will be denoted by F,,.m (n,m € N). It is easy to see
that the o-algebras (F, ) are non-decreasing with respect to the usual
partial ordering of N2, The conditional expectation operator relative
to Fnm (n,m € N) is denoted by Ey, ,,,. We briefly write L, instead of
the real L,(G?2, 1) space while the norm (or quasinorm) of this space is
defined by [|£ll, = (fqa |£1? di)"/% (0 < p < o0).

An integrable sequence f = (f,, ,;n,m € N) is said to be a mar-
tingale if

(i) it is adapted, i.e. fnm is Fp m measurable for all n,m € N,
(i) Exifnm = fey forall k <n and ! < m.

The martingale f = (f,;n,m € N) is said to be L,-bounded (0 <
<p<oo)if fom € Ly, (n,meN) and
€]l == SuPN“fn,mnp < ©00.

n,me
If f € Ly then it is easy to show that the sequence (E, ,,f;n,m €
€ N) obtained from f is a martingale. Moreover, if 1 < p < oo and
f € Ly, then (E, n,f;n,m € N) is L,-bounded and
lim HEn,mf - f“p =0,

7,M~—+00
consequently, »
[(Bnmfin,m €N)|lp = [|fllp
(see Neveu [5]). The converse of the last proposition holds also if 1 <
< p < oo (see Neveu [5]): for an arbitrary martingale f = (f, m;n,m €
€ N) there exists a function f € L, for which f, m = Ep [ if and only
if £ is L,-bounded. If p = 1 then there exists a function f € L; of the
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preceding type if and only if f is uniformly integrable (see Neveu [5]),
namely, if

lim sup / | fr,m| dpe = 0.

€70 n,meN J{| fn,m|>c}
Thus the map f — (Epmfin,m € N?) is isometric from L, onto
the space of Ly-bounded martingales when 1 < p < oo and from L,
onto the space of uniformly integrable martingales. Every Li-bounded
martingale (fn m;n,m € N) converges in measure as n,m — oo and
a.e.as n,m — 00, In —m| < a (a>0).

3. Quasi-measures and martingales

By a quasi-measure on G? we mean a finitely additive real-valued
set function defined on the dyadic rectangles of G2. The collection
of quasi-measures on G2 will be denoted by QM(G?) = QM. The -
collection of finite Borel measures on G? will be denoted by M(G?) =
= M.

A quasi-measure v on G? is said to belong to M if rectangle is
both open and closed, v must be countably additive on the collection
of dyadic rectangles. Hence v can be extended to a Borel measure on
G2. In particular, if v € QM is non-negative then v belongs to M.

For each v € QM define the martingale f* := (f .;n,m € N) by
(1) nm (T, y) = 272"y (I m (2, y)) (n,meNz,ye€ Q).

It is easy to see that the map v — f¥ is a 1-1 linear map from QM
onto the collection of martingales. For a > 0 define the subset C,, of
N? by

Co:={(n,m)eN?:|jn—m| <o}
We will consider convergence over N2 and over C,. Now we give the

connection between quasi-measures and martingales.
Theorem 1. We have

(i) v € QM is of bounded variation <=> f¥ is Lq-bounded <>
< veM,
(i) v € M is absolute continuous with respect to p <= f* is
uniformly integrable, ’
(iii) v € M is singular with respect to y <= f* is L1-bounded and
limp, m—yc0 frrm = 0 in measure or Lmy, myo0,(n,m)eCa frm =0
a.e.
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Proof. If v € QM is of bounded variation then, by (1),
| mlds= ) (e Ny e @)
n,m ()Y

From this it follows that ||f”||; < |lv|]| where ||v|| denotes the total
variation of v.

For the converse suppose that Ry (k € N) are disjoint dyadic
rectangles. By the submartingale property of (|f¥ ,.|;n,m € N)

N N
>l < > /R ool <

where n and m are so big, such that Ry, is Fn,m measurable for each
k=0,...,N. Hence ||v| < [|f¥]];.

If v € M then it has bounded variation, thus f* is Li-bounded.
Conversely, if f¥ is Li-bounded, then it can be decomposed into the
difference of two non-negative martingales (see e.g. Long [2] p.15 for one
parameter, for two parameters the proof is similar). The corresponding
two quasi-measures are non-negative and so they are Borel measures.
Hence v is also a Borel measure.

If v € M is absolute continuous with Radon-Nikodym derivative
f € Ly then f . = E, nf (n,m € N). The converse is also clear.

If v € M is singular then v(I, m(z,y)/p(In m(z,y) converges to
0 a.e. as n,m — oo and (n,m) € C, and, consequently, it converges to
0 in measure as n, m — co. The proof of the theorem is complete. ¢

4. Uniqueness of martingales

A fundamental problem in the theory of martingales and Walsh
series is the problem of uniqueness. That is, when is a given martingale
or Walsh series the martingale obtained from an integrable function
or the Walsh-Fourier series of an integrable function? Of course, this
is true if the martingale or Walsh series converges in L; norm. We
consider here the convergence in measure and the a.e. convergence.
Lemma 1. Let f € L1, (no,mo) € N2, (z0,%) € G2 and M be a
positive number. Let f = (fp m;n,m € N) be a martingale, set g :=
= (gn,m;n, m € N) with

: gnm ‘= f'n.,m - En,mf ((n, m) € NZ),
and Suppose gngme 7# 0 07 Ingmo(z0,Y0)- If fam — f in mea-
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sure as n,m — oo, then there exists a dyadic rectangle I, m(z,y) C
C Ingmo (To, Yo) such that gnm # 0 on Inm(z,y) and |fr,m| > M on
Inm(z,y)-
Proof. This is immediate if there is at least one point (u,v) in some
Lnm(2,9) C Ingmo (20, Yo) such that | fnm(u,v)| > M + |Ep m f(u, v)].
Suppose to the contrary that

| frm(u,v)| < M + |Epm f(u, v))|
for all (u,v) € Iy, mo (%0, Y0) and n > ng, m > mg. From this it follows
that f and g are uniformly integrable. The martingale (En mf;n,m €
€ N) converges to f in measure and so gn,, — 0 in measure as n, m —
— 00. Since g is also convergent in L1 norm, the limit must be 0 which
means that

lim 9n,m dp = 0.
7,M—00 Ino,mo(wo,yo)

However, since gng,m, 1S constant on Ing me (2o, y0), we have

/ Gn,m Al =
Tng,mg (za,y0)
= / Groymo At = 2777 gy mo (%o, Yo) # 0
Ino mq (m(hy()

for all n > ng and m > mg, which is a contradiction. ¢
Lemma 2. The same statement is true if we suppose that (ng, mg),
(n,m) € Cq and fnm — f a.e. as n,m — oo instead of the convergence
in measure.
We say that a martingale f satisfies the C-S condition if
Iim 27" "f, m(z,y)=0

n,M—00
for all (z,y) € G2.
Lemma 3. Let (zo,y0) € G2, (ng,mo) € N* and f be a martingale
which satisfies the C-S condition. If frngmg # 0 0n Ing me (%o, Y0), then
there exists a dyadic rectangle I m(2,y) C Ingmo(Zo,Y0) such that
(1130, yO) &l In,m(zv y) and fn,m ?é 0 on In,m(w, y)'
Proof. Suppose the lemma is false. For each k € N set

I := Ingk,mo+k (%0, Yo)

and Ji = I} 1\Ik Since (xo,yo) ¢ Ji, fn0+k mo+k — 0 on Ji (k S P)
‘We show that
(2) frothmotk =278 on Iy (k€N
where 8 := fng,mo(Z0,y0). This is clear for k = 0. Suppose it is true
for k — 1. Then fpi4k—1,mo+k—1 = 22623 on I and Ji. Thus
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Frotkmotk — Froth—1,moth—1 = —22%728 on Jy.
Since

Eno—{-k—l,'mo—}—k—-l(fno+lc,mo+k - fn0+k—1,mo+k:—1) = 07
we conclude that

Frotkmotk — Frotk—1,motk—1 = 3-22*728 on Iy,
which proves (2). In particular,

2*n_mfn,m(m0a yO) = 2—n0—m018

for all n = ng + k and m = mg + &k (k € N). In other words f does not
satisfy the C-S condition. This contradiction finishes the proof of the
lemma. ¢
Lemma 4. The same lemma holds if we take the limit over C,, in the
definition of the C-S condition and if we suppose that (ng, mg), (n,m) €
€ C,.

Now we can state our main result. ,
Theorem 2. Suppose E is a countable subset of G2 and £ is a mar-
tingale satisfying the C-S condition such that

(3) i sup | fm (2, 9)| < 00
7,7 —+00
for all (z,y) € G2\ E. If
(4) lim f,,n,=/f in measure
7, —$00

for some function f € Ly, then f is the martingale obtained from f.
Proof. Suppose the theorem is false. Then there exist (zo,70) € G?
and (ng, mo) € N? such that fro,mo 7 Eng,mo f 01 Ly, mo (%0, Yo).

Set £ = {(z1,v1), (z2,2),...} and g := f — (Enmf;n,m e N).
By (1) and Th. 1(ii) the martingales (Ey mf;n,m € N) and, conse-
quently, g satisfy the C-S condition. It is easy to see there is a dyadic
rectangle J € Fpimi, J C Ing me (%o, yo) such that (z1,31) ¢ J and
gn',m' is non-zero on J. This is obvious if (z1,y;) & Ing,mo (%o, Yo). If
(£1,91) € Ing,mo (0, Yo) then use Lemma 3. Using Lemma 1 we choose
a dyadic rectangle I; € Fy,, m,, It C J such that

|.fn1,mll >1 on I.

Applying Lemma 3 and Lemma 1 we can get dyadic rectangles 11y D
DIy > ... such that (zx,yx) ¢ Ir and pairs (ny, m;), (n2, m3), ... such
that
(5) |fre,mel >k on I (k e P).
Since the dyadic rectangles are compact sets, there exists (z,y) €
Mk=1{x- By construction, (z,y) ¢ E. Hence by hypothesis,
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lim sup |fn,m(3:3 y)| < oo

7n,Mm—00
which contradicts to (5). Therefore, f must be the martingale obtained
from f. ¢
We formulate another version of this result.
Theorem 3. If we change (3) and (4) to
lim sup |fn,m(may)| <00

n,m—00,{n,m)€C,

and
lim fam=1Ff ae,

n,m—o00,{n,m)eC,

respectively, then the statement of Th. 2 holds again.

5. Uniqueness of Walsh series

Denote the (n,m)th partial sum of the formal two-parameter

Walsh series
o0 o0
§=) ) critwk,

k=0 1=0
by
n—1lm-—1
Sn,m = Z Z Ci, Wk, (n,m c P)
k=0 =0

- The Walsh-Fourier coefficients and the Walsh-Fourier series of an inte-
grable function f are given by

oo o0
f) = [ funeds,  SFi= 303 Fln D
G? k=0 I=0
respectively. We extend these definitions to quasi-measures as follows.
For v € QM define the Walsh-Fourier-Stieltjes coefficients and the

Walsh-Fourier-Stieltjes series of v by

ﬁ(k,l) = / We,1 dl/, Sv .= Zzﬁ(k’l)wk’l’
G2

k=0 =0
respectively. It is easy to see that if v is absolute continuous with
Radon-Nikodym derivative f, then D(k,1) = f(k,1) (k,] € N).
We can also introduce the Walsh-Fourier-Stieltjes series of mar-
tingales. If f = (fn,m;n,m € N) is a martingale then let
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f(k,1) ;= lim /G  Frmwndp, Sfi=Y > f(k, wg,.

7,00
k=0 =0

Since wyg,; is Fn m measurable for large enough n and m € N, it can
immediately be seen that this limit does exist. Note that if f € L, then
Enmf — fin Ly norm as n,m — oo, hence
f(k, 1) = Lm (En,mf)wk:,l du (k,l € N).

n,M—00 J2
Thus the Walsh-Fourier-Stieltjes coefficients of f € L; are the same as
the ones of the martingale (E, ., f) obtained from f. It is easy to prove
that

SZ",me = fn,m (n) m & N)
for all martingales f. Moreover, for v € QM we have (k,[) = £*(k, 1)
(k,l € N).

It follows from (1) and Th. 1 that the maps v — Sv and f — Sf
are 1-1 linear maps from QM and from the set of martingales onto the
collection of all Walsh series. We say that the Walsh series S satisfies
the C-S condition if the martingale (Sgn om;n, m € N) satisfies it.

Now we can formulate Ths 2 and 3 for two-parameter Walsh series.
Theorem 4. Suppose E is a countable subset of G? and S is a Walsh
series satisfying the C-S condition such that

(6) lim sup | Sz om (2, y)| < 0o
7,M—00

for all (z,y) € G2\ E. If

(7) lir_g Son gm = f in measure

for some function f € Ly, then S is the Walsh-Fourier series of f.

Theorem 5. If we change (6) and (7) to

: lim sup |Son am (2, y)| < 00
n,m—+00,(n,m)€Cy

and
]j.m ‘5’2"‘,2"” - f a.e.,

n,m—00,(n,m)eCqy
respectively, then the statement of Th. 4 holds again.
Remark.All the results can similarly be proved in the multi-parameter
setting and for Vilenkin martingales and Vilenkin series.
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