UNIQUENESS OF TWO-PARA-METER DYADIC MARTINGALES AND WALSH-FOURIER SERIES

Ferenc Weisz

Department of Numerical Analysis, Eötvös L. University, H-1088 Budapest, Múzeum krt. 6-8, Hungary

Received: September 1997

MSC 1991: 42 C 25, 60 G 42; 42 C 10

Keywords: Quasi-measures, martingales, uniqueness theorems, Walsh system.

Abstract: We give the connection between quasi-measures, martingales and Walsh series and prove some uniqueness theorems for two-parameter dyadic martingales and Walsh series with respect to two types of almost everywhere convergence.

1. Introduction

It is well known that if a one-parameter Walsh series with coefficients tending to 0 converges to an integrable function, except possibly in a countable set, then that series is the Walsh-Fourier series of the limit function (see e.g. Crittenden, Shapiro [1]). The two-parameter analogue of this result can be found in Skvorcov [7] and Movsisjan [4].

Let **G** denote the dyadic group and S_{2^n} the 2^n th partial sum of a Walsh series S. Wade [8], [9] proved, that if

$$\lim_{n \to \infty} 2^{-n} S_{2^n}(x) = 0 \quad \text{for all} \quad x \in \mathbf{G},$$

This research was supported by Eötvös Scholarship, by the Hungarian Scientific Research Funds (OTKA) No F019633 and T020497.

$$\lim_{n\to\infty} S_{2^n}(x) = f \quad \text{in measure}$$

for some $f \in L_1$ and

$$\limsup_{n\to\infty}|S_{2^n}(x)|<\infty,$$

except possibly in a countable set, then S is the Walsh-Fourier series of f.

In this paper we generalize this result for multi-parameter dyadic martingales and Walsh series. We consider the convergence in measure or a.e. convergence in Prigsheim sense and a.e. convergence taken over a cone. We follow basically the one-parameter proof in Schipp, Wade, Simon, Pál [6], but using martingale techniques we can extend and simplify the proof. Furthermore, we give the connection between quasi-measures, martingales and Walsh series.

2. The dyadic group and martingales

Let \mathbb{Z}_2 be the discrete cyclic group of order 2, i.e., the set $\{0,1\}$ with the discrete topology and modulo 2 addition. Clearly, \mathbb{Z}_2 is a compact abelian group. The *dyadic group* \mathbb{G} is defined to be the compact abelian group formed by taking the cartesian product of countably many copies of \mathbb{Z}_2 , say

$$\mathbf{G} := \mathbf{Z}_2 \times \mathbf{Z}_2 \times \dots$$

Thus **G** consists of sequences $x = (x_n, n \in \mathbb{N})$ where $x_n = 0$ or 1. The zero element of **G** is the sequence $0 := (x_n := 0, n \in \mathbb{N})$ and the group operation is given by

$$x + y := (|x_n - y_n|, n \in \mathbb{N})$$

for any $x = (x_n, n \in \mathbb{N})$ and $y = (y_n, n \in \mathbb{N})$ in **G**.

Set $I_0(x) := \mathbf{G}$ for all $x \in \mathbf{G}$. For each $x \in \mathbf{G}$ and $n \in \mathbf{P} := \mathbb{N} \setminus \{0\}$ define

$$I_n(x) := \{ y \in \mathbf{G} : y_i = x_i \text{ for } 0 \le i < n \}.$$

We shall call these sets the dyadic intervals of G. the dyadic intervals are evidently both open and closed.

Define a measure on \mathbf{Z}_2 by assigning each singleton the By definition

$$\mu(I_n(x)) = 2^{-n} \qquad (x \in \mathbf{G}, n \in \mathbb{N}).$$

It is easy to see that μ is the Haar measure on G.

The functions

$$r_n(x) := (-1)^{x_n} \qquad (n \in \mathbb{N})$$

are called *Rademacher functions* and the product system generated by these functions is the *one-dimensional Walsh system*:

$$w_n(x) := \prod_{k=0}^{\infty} r_k(x)^{n_k}$$

where $n = \sum_{k=0}^{\infty} n_k 2^k$, $0 \le n_k < 2$, $n_k \in \mathbb{N}$ and $x = (x_n, n \in \mathbb{N}) \in \mathbf{G}$.

For a set $\mathbf{X} \neq \emptyset$ let \mathbf{X}^2 be its cartesian product $\mathbf{X} \times \mathbf{X}$ taken with itself. In this paper we investigate \mathbf{G}^2 and the product measure on it, which we denote again by μ . The cartesian product of two dyadic intervals is said to be a dyadic rectangle. For $n, m \in \mathbb{N}$ and $(x, y) \in \mathbf{G}^2$ set

$$I_{n,m}(x,y) := I_n(x) \times I_m(y).$$

The Kronecker product $(w_{n,m}; n, m \in \mathbb{N})$ of two Walsh systems is said to be the two-dimensional Walsh system. Thus

$$w_{n,m}(x,y):=w_n(x)w_m(y) \qquad ((x,y)\in {f G}^2).$$

The σ -algebra generated by the dyadic rectangles $\{I_{n,m}(x,y): (x,y) \in \mathbf{G}^2\}$ will be denoted by $\mathcal{F}_{n,m}$ $(n,m \in \mathbb{N})$. It is easy to see that the σ -algebras $(\mathcal{F}_{n,m})$ are non-decreasing with respect to the usual partial ordering of \mathbb{N}^2 . The conditional expectation operator relative to $\mathcal{F}_{n,m}$ $(n,m \in \mathbb{N})$ is denoted by $E_{n,m}$. We briefly write L_p instead of the real $L_p(\mathbf{G}^2,\mu)$ space while the norm (or quasinorm) of this space is defined by $||f||_p := (\int_{\mathbf{G}^2} |f|^p d\mu)^{1/p}$ (0 .

An integrable sequence $\mathbf{f} = (f_{n,m}; n, m \in \mathbb{N})$ is said to be a martingale if

- (i) it is adapted, i.e. $f_{n,m}$ is $\mathcal{F}_{n,m}$ measurable for all $n, m \in \mathbb{N}$,
- (ii) $E_{k,l}f_{n,m} = f_{k,l}$ for all $k \leq n$ and $l \leq m$.

The martingale $\mathbf{f}=(f_n;n,m\in\mathbb{N})$ is said to be L_p -bounded $(0<< p\leq \infty)$ if $f_{n,m}\in L_p$ $(n,m\in\mathbb{N})$ and

$$\|\mathbf{f}\|_p := \sup_{n,m \in \mathbb{N}} \|f_{n,m}\|_p < \infty.$$

If $f \in L_1$ then it is easy to show that the sequence $(E_{n,m}f; n, m \in \mathbb{N})$ obtained from f is a martingale. Moreover, if $1 \leq p < \infty$ and $f \in L_p$ then $(E_{n,m}f; n, m \in \mathbb{N})$ is L_p -bounded and

$$\lim_{n,m\to\infty} ||E_{n,m}f - f||_p = 0,$$

consequently,

$$||(E_{n,m}f; n, m \in \mathbb{N})||_p = ||f||_p$$

(see Neveu [5]). The converse of the last proposition holds also if $1 (see Neveu [5]): for an arbitrary martingale <math>\mathbf{f} = (f_{n,m}; n, m \in \mathbb{N})$ there exists a function $f \in L_p$ for which $f_{n,m} = E_{n,m}f$ if and only if \mathbf{f} is L_p -bounded. If p = 1 then there exists a function $f \in L_1$ of the

preceding type if and only if f is uniformly integrable (see Neveu [5]), namely, if

$$\lim_{c \to \infty} \sup_{n,m \in \mathbb{N}} \int_{\{|f_{n,m}| > c\}} |f_{n,m}| \, d\mu = 0.$$

Thus the map $f \mapsto (E_{n,m}f; n, m \in \mathbb{N}^2)$ is isometric from L_p onto the space of L_p -bounded martingales when $1 and from <math>L_1$ onto the space of uniformly integrable martingales. Every L_1 -bounded martingale $(f_{n,m}; n, m \in \mathbb{N})$ converges in measure as $n, m \to \infty$ and a.e. as $n, m \to \infty$, $|n - m| \le \alpha$ ($\alpha \ge 0$).

3. Quasi-measures and martingales

By a quasi-measure on G^2 we mean a finitely additive real-valued set function defined on the dyadic rectangles of G^2 . The collection of quasi-measures on G^2 will be denoted by $QM(G^2) = QM$. The collection of finite Borel measures on G^2 will be denoted by $M(G^2) = M$.

A quasi-measure ν on \mathbf{G}^2 is said to belong to \mathbf{M} if rectangle is both open and closed, ν must be countably additive on the collection of dyadic rectangles. Hence ν can be extended to a Borel measure on \mathbf{G}^2 . In particular, if $\nu \in \mathbf{QM}$ is non-negative then ν belongs to \mathbf{M} .

For each $\nu \in \mathbf{QM}$ define the martingale $\mathbf{f}^{\nu} := (f_{n,m}^{\nu}; n, m \in \mathbb{N})$ by

(1)
$$f_{n,m}^{\nu}(x,y) := 2^n 2^m \nu(I_{n,m}(x,y))$$
 $(n,m \in \mathbb{N}; x,y \in \mathbf{G}).$

It is easy to see that the map $\nu \mapsto \mathbf{f}^{\nu}$ is a 1-1 linear map from $\mathbf{Q}\mathbf{M}$ onto the collection of martingales. For $\alpha \geq 0$ define the subset C_{α} of \mathbb{N}^2 by

$$C_{\alpha} := \{ (n, m) \in \mathbb{N}^2 : |n - m| \le \alpha. \}$$

We will consider convergence over \mathbb{N}^2 and over C_{α} . Now we give the connection between quasi-measures and martingales.

Theorem 1. We have

- (i) $\nu \in \mathbf{QM}$ is of bounded variation \iff \mathbf{f}^{ν} is L_1 -bounded \iff $\nu \in \mathbf{M}$,
- (ii) $\nu \in \mathbf{M}$ is absolute continuous with respect to $\mu \iff \mathbf{f}^{\nu}$ is uniformly integrable,
- (iii) $\nu \in \mathbf{M}$ is singular with respect to $\mu \iff \mathbf{f}^{\nu}$ is L_1 -bounded and $\lim_{n,m\to\infty} f_{n,m}^{\nu} = 0$ in measure or $\lim_{n,m\to\infty,(n,m)\in C_{\alpha}} f_{n,m}^{\nu} = 0$ a.e.

Proof. If $\nu \in \mathbf{QM}$ is of bounded variation then, by (1),

$$\int_{I_{n,m}(x,y)} |f_{n,m}^{\nu}| d\mu = |\nu(I_{n,m}(x,y))| \qquad (n,m \in \mathbb{N}; x,y \in \mathbf{G}).$$

From this it follows that $\|\mathbf{f}^{\nu}\|_{1} \leq \|\nu\|$ where $\|\nu\|$ denotes the total variation of ν .

For the converse suppose that R_k $(k \in \mathbb{N})$ are disjoint dyadic rectangles. By the submartingale property of $(|f_{n,m}^{\nu}|; n, m \in \mathbb{N})$

$$\sum_{k=0}^{N} |\nu(R_k)| \le \sum_{k=0}^{N} \int_{R_k} |f_{n,m}^{\nu}| \, d\mu \le \|\mathbf{f}^{\nu}\|_1$$

where n and m are so big, such that R_k is $\mathcal{F}_{n,m}$ measurable for each $k = 0, \ldots, N$. Hence $\|\nu\| \leq \|\mathbf{f}^{\nu}\|_1$.

If $\nu \in \mathbf{M}$ then it has bounded variation, thus \mathbf{f}^{ν} is L_1 -bounded. Conversely, if \mathbf{f}^{ν} is L_1 -bounded, then it can be decomposed into the difference of two non-negative martingales (see e.g. Long [2] p.15 for one parameter, for two parameters the proof is similar). The corresponding two quasi-measures are non-negative and so they are Borel measures. Hence ν is also a Borel measure.

If $\nu \in \mathbf{M}$ is absolute continuous with Radon-Nikodym derivative $f \in L_1$ then $f_{n,m}^{\nu} = E_{n,m} f$ $(n, m \in \mathbb{N})$. The converse is also clear.

If $\nu \in \mathbf{M}$ is singular then $\nu(I_{n,m}(x,y)/\mu(I_{n,m}(x,y))$ converges to 0 a.e. as $n,m\to\infty$ and $(n,m)\in C_\alpha$ and, consequently, it converges to 0 in measure as $n,m\to\infty$. The proof of the theorem is complete. \Diamond

4. Uniqueness of martingales

A fundamental problem in the theory of martingales and Walsh series is the problem of uniqueness. That is, when is a given martingale or Walsh series the martingale obtained from an integrable function or the Walsh-Fourier series of an integrable function? Of course, this is true if the martingale or Walsh series converges in L_1 norm. We consider here the convergence in measure and the a.e. convergence.

Lemma 1. Let $f \in L_1$, $(n_0, m_0) \in \mathbb{N}^2$, $(x_0, y_0) \in \mathbf{G}^2$ and M be a positive number. Let $\mathbf{f} = (f_{n,m}; n, m \in \mathbb{N})$ be a martingale, set $\mathbf{g} := (g_{n,m}; n, m \in \mathbb{N})$ with

$$g_{n,m}:=f_{n,m}-E_{n,m}f \quad ((n,m)\in \mathbb{N}^2), \ and \ suppose \ g_{n_0,m_0}
eq 0 \ on \ I_{n_0,m_0}(x_0,y_0). \ \ If \ f_{n,m}
ightarrow f \ \ in \ mea-$$

sure as $n, m \to \infty$, then there exists a dyadic rectangle $I_{n,m}(x,y) \subset \subset I_{n_0,m_0}(x_0,y_0)$ such that $g_{n,m} \neq 0$ on $I_{n,m}(x,y)$ and $|f_{n,m}| > M$ on $I_{n,m}(x,y)$.

Proof. This is immediate if there is at least one point (u, v) in some $I_{n,m}(x,y) \subset I_{n_0,m_0}(x_0,y_0)$ such that $|f_{n,m}(u,v)| > M + |E_{n,m}f(u,v)|$.

Suppose to the contrary that

$$|f_{n,m}(u,v)| \le M + |E_{n,m}f(u,v)|$$

for all $(u, v) \in I_{n_0, m_0}(x_0, y_0)$ and $n \ge n_0$, $m \ge m_0$. From this it follows that **f** and **g** are uniformly integrable. The martingale $(E_{n,m}f; n, m \in \mathbb{N})$ converges to f in measure and so $g_{n,m} \to 0$ in measure as $n, m \to \infty$. Since **g** is also convergent in L_1 norm, the limit must be 0 which means that

$$\lim_{n,m\to\infty} \int_{I_{n_0,m_0}(x_0,y_0)} g_{n,m} \, d\mu = 0.$$

However, since g_{n_0,m_0} is constant on $I_{n_0,m_0}(x_0,y_0)$, we have

$$\int_{I_{n_0,m_0}(x_0,y_0)} g_{n,m} d\mu = \int_{I_{n_0,m_0}(x_0,y_0)} g_{n_0,m_0} d\mu = 2^{-n_0-m_0} g_{n_0,m_0}(x_0,y_0) \neq 0$$

for all $n \geq n_0$ and $m \geq m_0$, which is a contradiction. \Diamond

Lemma 2. The same statement is true if we suppose that (n_0, m_0) , $(n, m) \in C_{\alpha}$ and $f_{n,m} \to f$ a.e. as $n, m \to \infty$ instead of the convergence in measure.

We say that a martingale f satisfies the C-S condition if

$$\lim_{n,m\to\infty} 2^{-n-m} f_{n,m}(x,y) = 0$$

for all $(x, y) \in \mathbf{G}^2$.

Lemma 3. Let $(x_0, y_0) \in \mathbf{G}^2$, $(n_0, m_0) \in \mathbb{N}^2$ and \mathbf{f} be a martingale which satisfies the C-S condition. If $f_{n_0,m_0} \neq 0$ on $I_{n_0,m_0}(x_0, y_0)$, then there exists a dyadic rectangle $I_{n,m}(x,y) \subset I_{n_0,m_0}(x_0,y_0)$ such that $(x_0, y_0) \notin I_{n,m}(x,y)$ and $f_{n,m} \neq 0$ on $I_{n,m}(x,y)$.

Proof. Suppose the lemma is false. For each $k \in \mathbb{N}$ set

$$I_k := I_{n_0+k,m_0+k}(x_0,y_0)$$

and $J_k := I_{k-1} \setminus I_k$. Since $(x_0, y_0) \notin J_k$, $f_{n_0+k, m_0+k} = 0$ on J_k $(k \in \mathbf{P})$. We show that

(2)
$$f_{n_0+k,m_0+k} = 2^{2k}\beta \quad on \quad I_k \qquad (k \in \mathbb{N})$$

where $\beta := f_{n_0,m_0}(x_0,y_0)$. This is clear for k=0. Suppose it is true for k-1. Then $f_{n_0+k-1,m_0+k-1}=2^{2k-2}\beta$ on I_k and J_k . Thus

$$f_{n_0+k,m_0+k} - f_{n_0+k-1,m_0+k-1} = -2^{2k-2}\beta$$
 on J_k .

Since

$$E_{n_0+k-1,m_0+k-1}(f_{n_0+k,m_0+k}-f_{n_0+k-1,m_0+k-1})=0,$$
 we conclude that

we conclude that

 $f_{n_0+k,m_0+k} - f_{n_0+k-1,m_0+k-1} = 3 \cdot 2^{2k-2}\beta$ on I_k , which proves (2). In particular,

$$2^{-n-m}f_{n,m}(x_0,y_0)=2^{-n_0-m_0}\beta$$

for all $n = n_0 + k$ and $m = m_0 + k$ $(k \in \mathbb{N})$. In other words \mathbf{f} does not satisfy the C-S condition. This contradiction finishes the proof of the $lemma. \diamondsuit$

Lemma 4. The same lemma holds if we take the limit over C_{α} in the definition of the C-S condition and if we suppose that $(n_0, m_0), (n, m) \in$ $\in C_{\alpha}$.

Now we can state our main result.

Theorem 2. Suppose E is a countable subset of G^2 and f is a martingale satisfying the C-S condition such that

(3)
$$\lim_{n,m\to\infty} |f_{n,m}(x,y)| < \infty$$

for all $(x,y) \in \mathbf{G}^2 \setminus E$. If

(4)
$$\lim_{n,m\to\infty} f_{n,m} = f \quad in \ measure$$

for some function $f \in L_1$, then f is the martingale obtained from f. **Proof.** Suppose the theorem is false. Then there exist $(x_0, y_0) \in \mathbf{G}^2$ and $(n_0, m_0) \in \mathbb{N}^2$ such that $f_{n_0, m_0} \neq E_{n_0, m_0} f$ on $I_{n_0, m_0}(x_0, y_0)$.

Set $E = \{(x_1, y_1), (x_2, y_2), \dots\}$ and $\mathbf{g} := \mathbf{f} - (E_{n,m}f; n, m \in \mathbb{N}).$ By (1) and Th. 1(ii) the martingales $(E_{n,m}f; n, m \in \mathbb{N})$ and, consequently, g satisfy the C-S condition. It is easy to see there is a dyadic rectangle $J \in \mathcal{F}_{n',m'}, \ J \subset I_{n_0,m_0}(x_0,y_0)$ such that $(x_1,y_1) \notin J$ and $g_{n',m'}$ is non-zero on J. This is obvious if $(x_1,y_1) \not\in I_{n_0,m_0}(x_0,y_0)$. If $(x_1,y_1) \in I_{n_0,m_0}(x_0,y_0)$ then use Lemma 3. Using Lemma 1 we choose a dyadic rectangle $I_1 \in \mathcal{F}_{n_1,m_1}, I_1 \subset J$ such that

$$|f_{n_1,m_1}| > 1$$
 on I_1 .

Applying Lemma 3 and Lemma 1 we can get dyadic rectangles $I_1 \supset$ $\supset I_2 \supset \ldots$ such that $(x_k, y_k) \notin I_k$ and pairs $(n_1, m_1), (n_2, m_2), \ldots$ such that

(5)
$$|f_{n_k,m_k}| > k \quad \text{on} \quad I_k \qquad (k \in \mathbf{P}).$$

Since the dyadic rectangles are compact sets, there exists $(x,y) \in$ $\bigcap_{k=1}^{\infty} I_k$. By construction, $(x,y) \notin E$. Hence by hypothesis,

$$\limsup_{n,m\to\infty} |f_{n,m}(x,y)| < \infty$$

which contradicts to (5). Therefore, f must be the martingale obtained from f. \Diamond

We formulate another version of this result.

Theorem 3. If we change (3) and (4) to

$$\lim_{n,m\to\infty,(n,m)\in C_{\alpha}} |f_{n,m}(x,y)| < \infty$$

and

$$\lim_{n,m\to\infty,(n,m)\in C_\alpha}f_{n,m}=f\quad a.e.,$$

respectively, then the statement of Th. 2 holds again.

5. Uniqueness of Walsh series

Denote the (n, m)th partial sum of the formal two-parameter Walsh series

$$S := \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} c_{k,l} w_{k,l}$$

by

$$S_{n,m} := \sum_{k=0}^{n-1} \sum_{l=0}^{m-1} c_{k,l} w_{k,l} \quad (n, m \in \mathbf{P}).$$

The Walsh-Fourier coefficients and the Walsh-Fourier series of an integrable function f are given by

$$\hat{f}(k,l) := \int_{\mathbf{G}^2} fw_{k,l} \, d\mu, \qquad Sf := \sum_{k=0}^\infty \sum_{l=0}^\infty \hat{f}(k,l) w_{k,l},$$

respectively. We extend these definitions to quasi-measures as follows. For $\nu \in \mathbf{QM}$ define the Walsh-Fourier-Stieltjes coefficients and the Walsh-Fourier-Stieltjes series of ν by

$$\hat{\nu}(k,l) := \int_{\mathbf{G}^2} w_{k,l} \, d\nu, \qquad S\nu := \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \hat{\nu}(k,l) w_{k,l},$$

respectively. It is easy to see that if ν is absolute continuous with Radon-Nikodym derivative f, then $\hat{\nu}(k,l) = \hat{f}(k,l)$ $(k,l \in \mathbb{N})$.

We can also introduce the Walsh-Fourier-Stieltjes series of martingales. If $\mathbf{f} = (f_{n,m}; n, m \in \mathbb{N})$ is a martingale then let

$$\hat{\mathbf{f}}(k,l) := \lim_{n,m o \infty} \int_{\mathbf{G}^2} f_{n,m} w_{k,l} \, d\mu, \qquad S\mathbf{f} := \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \hat{\mathbf{f}}(k,l) w_{k,l}.$$

Since $w_{k,l}$ is $\mathcal{F}_{n,m}$ measurable for large enough n and $m \in \mathbb{N}$, it can immediately be seen that this limit does exist. Note that if $f \in L_1$ then $E_{n,m}f \to f$ in L_1 norm as $n, m \to \infty$, hence

$$\hat{f}(k,l) = \lim_{n,m o\infty} \int_{\mathbf{G}^2} (E_{n,m}f) w_{k,l}\,d\mu \qquad (k,l\in\mathbb{N}).$$

Thus the Walsh-Fourier-Stieltjes coefficients of $f \in L_1$ are the same as the ones of the martingale $(E_{n,m}f)$ obtained from f. It is easy to prove that

$$S_{2^n,2^m}\mathbf{f} = f_{n,m} \qquad (n, m \in \mathbb{N})$$

for all martingales f. Moreover, for $\nu \in \mathbf{QM}$ we have $\hat{\nu}(k,l) = \widehat{\mathbf{f}^{\nu}}(k,l)$ $(k,l \in \mathbb{N})$.

It follows from (1) and Th. 1 that the maps $\nu \mapsto S\nu$ and $f \mapsto Sf$ are 1-1 linear maps from **QM** and from the set of martingales onto the collection of all Walsh series. We say that the Walsh series S satisfies the C-S condition if the martingale $(S_{2^n,2^m}; n, m \in \mathbb{N})$ satisfies it.

Now we can formulate Ths 2 and 3 for two-parameter Walsh series. **Theorem 4.** Suppose E is a countable subset of \mathbf{G}^2 and S is a Walsh series satisfying the C-S condition such that

(6)
$$\lim_{n,m\to\infty} |S_{2^n,2^m}(x,y)| < \infty$$

for all
$$(x,y) \in \mathbf{G}^2 \setminus E$$
. If

(7)
$$\lim_{n,m\to\infty} S_{2^n,2^m} = f \quad in \ measure$$

for some function $f \in L_1$, then S is the Walsh-Fourier series of f.

Theorem 5. If we change (6) and (7) to

$$\lim_{n,m\to\infty,(n,m)\in C_{\alpha}}|S_{2^{n},2^{m}}(x,y)|<\infty$$

and

$$\lim_{n,m\to\infty,(n,m)\in C_{\alpha}} S_{2^n,2^m} = f \quad a.e.,$$

respectively, then the statement of Th. 4 holds again.

Remark. All the results can similarly be proved in the multi-parameter setting and for Vilenkin martingales and Vilenkin series.

References

[1] CRITTENDEN, R.B. and SHAPIRO, V.L.: Sets of uniqueness on the group 2^{ω} , Ann. of Math. 81 (1965), 550-564.

- [2] LONG, R.: Martingale spaces and inequalities, Peking University Press, Vieweg Publishing, Beijing, Braunschweig, 1994
- [3] LUKOMSKI, S.F.: On *U*-set for multiple Walsh series, *Anal. Math.* **18** (1992) 127-138.
- [4] MOVSISYAN, О.: О единственности двойных рядов по системам Хаара и Уолша, Изв. АН АрмССР, 9 (1974), 40-61.
- [5] NEVEU, J.: Discrete-parameter martingales, North-Holland, 1971
- [6] SCHIPP, F., WADE, W.R., SIMON, P. and PÁL, J.: Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger, Bristol-New York, 1990
- [7] SKVORCOV, V.A.: О коэффициентах сходящихся кратных рядов Хаара и Уолша, Matem. sb. Вестник МГУ, матем. и мех. 6 (1973), 77-79.
- [8] WADE, W.R.: A uniqueness theorem for Haar and Walsh series, *Trans. Amer. Math. Soc.* **141** (1969) 187-194.
- [9] WADE, W.R.: A unified approach to uniqueness of Walsh series and Haar series, *Proc. Amer. Math. Soc.* **99** (1987) 61-65.
- [10] WEISZ, F.: Martingale Hardy spaces and their applications in Fourier-analysis, Lecture Notes in Math. vol. 1568, Berlin, Heidelberg, New York, Springer, 1994.