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Abstract: We present necessary and sufficient conditions under which a
differentiable set-valued function is convex.

1. Let L be a normed linear space and let C be a convex and
open subset of L. We define f : C — R to be convez on C if

F(A=Nz+Ay) < (1-A)f(z) +Af(y)
for A € (0,1) and z,y € C. Our main goal is to give a generalization of
the following well-known theorem: »
Theorem. (cf, e.g., [5], p: 98) Suppose that f: C — R is conver on
C and differentiable at zo (i.e. f has a Fréchet derivative at ). Then
forxeC

(1) f(@) = f(zo) > f'(z0)(z — z0).
If f is differentiable throughout C, then f is convez if and only if (1)
holds for all z,zq € C.

First the above theorem will be extended to convex functions f :
: C — M, where M is an ordered normed space. Further we shall
transfer the above theorem to set-valued convex functions with suitable
adapted definition of differentiability.
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2. Let L and M be normed linear spaces and let C be an open
set in L. A transformation T : L — M is said to be homogeneous if
T(th) = tT(h) for all h € L and t € R. Assume that a function f is
defined on C and takes values in M.

Definition 1. A function f : C — M is said to be differentiable at
zg € C if there is a homogeneous transformation T : L — M such that

(2) _S‘D_l%% —0 as h—0,

where @(h) := f(zo + h) — f(zo) — T(h) for each h € L such that zo +
+ h € C. The homogeneous transformation T is called the derivative
and it is denoted by f'(zo).

We do not assume that T is additive or continuous. So our defini-
tion is essentially weaker than the Fréchet differentiability. For example,
the function f : R = R, f(z) = f(z1,z2) = {/z3 + =3 is differentiable
at (0,0) with respect to Def. 1, whereas it is not Fréchet differentiable
in this point.

It is easy to see that above definition of differentiability is correct.
Indeed, if T and S are homogeneous transformations from L to M such
that (3) holds, then T' = S.

It is evident that every function f : (a,b) — M, where (a,b) is an
interval of R and differentiable at zo € (a,b) with respect to Def. 1 has
to have the ordinary derivative, i.e., there exists

L Fo k)~ f(z)

h—0 h .
and it is equal to T'(1). Conversely, if f : (a,b) — M has the ordinary
derivative f'(zo) at zo € (a,b), then it is differentiable in this point
with respect to our definition and T'(h) = hf'(zo),h € R.
Theorem 1. Let f : C — M be differentiable at zo. Then f is
continuous at zo if and only if f'(zg) is continuous at zero.
Proof. Let f'(zo) be continuous at zero. The differentiability of f and
the inequality
[F(z0+h) — Fleo)ll < 1£(z0 + k) — f(z0) = #/ @) + 7' o) (B
yield the continuity of f at zp. Conversely, if f is continuous at zo,
then the continuity of f'(zp) at zero follows from the inequality

1 (o) (Bl < 11£" (o) (B) + £ (o) = f (wo+ A | +[1f (@0 +R) = (o). ©

‘Denote by S(§) the open ball in L centered in zero and with the
radius 4.
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Theorem 2. Let C be an open and connected subset of L. Then f :
: C — M is constant if and only if it is differentiable on C and f'(z) =0
forxz e C.

" Proof. The necessity is obvious. To prove sufficiency we take an € > 0.
For each z € C there is a 6 > 0 such that

3)  Nf@+h) —f@)=1f(z+h) - fz) - F @R <elhl

for h € S(6). Fix an z; € C and consider the function v, %(z) :=
=||f(z) — f(z1)| for z € C. Of course

[Y(z+h) — (@) = [If (@ +h) = @)l = (£ (2) — fla)ll] <
<|f(z+h) - f(z)ll

for all z € C and all h € L such that z+h € C. Hence and in virtue (3)
the Fréchet derivative ¢'(z) of ¢ is equal to zero for all z € C. Therefore
1 is constant since C' is connected. It follows from the definition of ¥
that ¥(z) = 0 on C and clearly f(z) = f(z1) forallz € C. {

Simple proof of the following theorem is omitted.

Theorem 3. If f,g: C — M are differentiable at xqg € C and A\ € R,
then f + g and Af are differentiable at ¢ and

(ffrg)'(i’«“O) = f'(zo) + g'(z0), (Af) (ma) = Af'(z0).

3. Let (M, <) be a normed linear space partially ordered by <.
It means that the binary relation < is reflexive, i.e., z < z for all z,
antisymmetric, i.e., if z <y and y < z, then 2 = y and transitive, i.e.,
fz<yandy<zthenz <z forall z,y,2€ M.
Definition 2. Let (M, <) be normed linear space partially ordered
by <. If

e u < v implies u +w < v+ w for all u,v,w € M,
e u < v implies Au < Av for all u,v € M and A > 0,
o the positive cone K := {u € M : u > 0} is a closed subset of M,

then M is said to be an ordered normed space (cf. [6]).

In the sequel of this part we shall assume that M is an ordered
normed space and L is a normed space whereas C is an open convex
subset of L.

Definition 3. A function f: C — M is said to be convez (concave) if
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F((L=Xz+Ay) < (1= N)f(z)+Af(y)

(1= NF) + @) < (1 Na+ M)

for all z,y € C and A € (0, 1).
Theorem 4. If f : C — M is convez and differentiable at zo € C,
then there exists a 6 > 0 such that @(h) > 0 for h € S(6), where ¢ is
given by Def. 1.
Proof. There exists a § > 0 such that o + S(§) C C. Take h €
€ S(6),h # 0 and X € (0,1). By the convexity of f we have
£(mo + M) = £((1— N)zo + Alzo + h)) < (1~ \) (o) + Af(zo + B).
The differentiability of f yields '
F (w0 + M) = f(z0) + XT(h) + p(Ah).
Consequently
f(@o) + AT (R) + p(AR) < (1= A)f(zo) + Af (m0) + AT () + Ap(h),
whence
@(AR) < Ap(h).

on) - M 5 o

Thus

On the other hand
w(h) — @ — o(h), as A —0.
In virtue of the closedness of the positive cone K we obtain (k) >0.
Of course, ¢(0) =0. ¢
The main property of convex differentiable functions is contained
in the following
Theorem 5. If f : C — M is conver and differentiable at oy € C,
then
(4) f(zo+h) = f(zo) + f'(zo)h
for all h € L such that g+ h € C.
Proof. Take h € L such that o+ h € C. With respect to the differen-
tiability of f at zo we may find a Ag € (0,1) such that

f(@o + AR) = f(z0) + f'(z0) (AR) + ©(AR)
for 0 < A < Ap. Th. 4 states that A can be chosen small enough to have
also ¢(Ah) > 0. Thus

f(zo+ AR) > f(zo) + f'(zo) (Ah).
Since f is convex we have
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f(zo) + Af'(o)(h) < (1= X)f(zo) + Af(zo + h),

whence
f(zo) + f'(xo)(h) < f(zo+h). O

Our definition of differentiability (Def. 1) does not contain the re-
quirement that the derivative f'(zg) of f is an additive transformation.
However, if f is convex, then we can show that f'(zo) is convex.
Theorem 6. If f : C — M is conver and differentiable at zo € C,
then

(5) T((1 = Ah+Xk) < (1= XT(h) + MT(k)
for all h,k € L and X € (0,1), where T = f'(zg).
Proof. Take arbitrary h,k € L, A € (0,1) and 6§ > 0 small enough to
have ¢(h) > 0 for all h € S(§). We can find a 5 > 0 such that th and
tk belong to S(§) for 0 <t < n. Thus
(6) F(zo +th) = f(mo) + T(th) + (th),
(7) f(zo +tk) = f(zo) + T(tk) + (tk)
for 0 <t < 7. We have also
‘ f(zo+ (1 = N)th + Atk) =
(®) = f(zo) + T((1 — A)th + Atk) + @((1 — M)th+ Atk)
for the same t. Multiplying equality (6) by 1 — X and (7) by A and
adding them together we obtain
(1= A)f(zo + th) + Af(zo + tk) =

= f(zo) + (1 = AptT(h) + XT (k) + (1 — A)o(th) + Ap(tk).

Hence by the convexity of f and by (8)
Fzo) + tT((1 — N+ Mk) + o((1 — A)th + Atk) <

< flzo) + (1 = MET(R) + AT (k) + (1 — A)p(th) + Ap(tk).
Consequently
((1 — A)th + Atk) <

. =

<(1- /\)T(h)v+ AT (k) + (1 — /\)so(:h) P

for 0 <t < n. Letting ¢ — 0+ we obtain hence (5). ¢

To receive an inverse result to Th. 5 we assume additionally that
the derivative f’(z) is convex.
Theorem 7. Assume that f : C — M is differentiable throughout C
and

T((1— A)h+ Ak) + &2

th)
t




158 W. Smajdor

(9) f(z+h) > f(z)+ f'(z)(h)
for eachz € C and h € L such that z+h € C. If f'(z) is convez on L
for all x € C, then f is convex. .

Proof. Fix arbitrarily y, z € C and X € (0,1) and write z := (1-A)y+
+ Az. By (9) .
f@) > (@) + @)y —2), f(2)2f(2)+F(e)(z—2)
Hence, since f'(z) is convex we have
(L= NFy) +Af(2) 2 f(2) + (1= NS @)y — 2) + 2 (2)(z —2) 2
> f(z)+ f(@) (- Ny —2)+A(z-2)) =
= f(z) + f'(2)(0) = f(z). ¢

Analogous results to Ths. 4-7 for concave functions can be ob-
tained too (if f : C — M is concave then —f is convex).

4. In this part of the paper we shall introduce a suitable definition
of differentiability of set-valued functions. Let Y be a reflexive Banach
space. The symbol B(Y) = B will be used to denote the family of
all non-empty, closed, bounded and convex subsets of Y. B with the
addition defined by formula

A+B={a+beY:acAbe B}
is an Abelian semigroup with zero element 0 := {0} in which the can-

cellation law holds true, i.e., if
A+ B=C+B, then A=C forall A, B,CeB

(ct. [4]).

We define also multiplication a4 of a nonnegative number o and
a subset A of Y by

ad:={aa:a€ A}
This multiplication has the following properties:
a(BA) = (aB)A, 1-A=A, a(A+B)=aA+aB

and
(10) (a+B)A=aA+ BA
for all o, 3 > 0 and A, B € B. The convexity of the elements of B is
used both in the proof of (10) and in the proof of cancellation law. The
reflexivity of Y is used to show closedness the sum A + B whenever
A, BeB.

The Hausdorff distance di between A, B € B is defined by relation
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du(A,B)=inf{t >0: AC B+tS, BCc A+1t5},

where S = {z € Y : ||z|]| < 1}. Since Y is complete, (B(Y),dy) is also
complete (see e.g., [2]).

The assumption that Y is reflexive in our considerations can be
replaced by the requirement that Y is a normed linear space but then
we have to take the subfamily (YY) consisting of compact elements of
B(Y).

R&dstrém’s embedding theorem (see [4]) states that there exists a
real normed space M = M(Y') and the isometry 7 : B — M such that
7(B) is a convex cone in M. Moreover addition and multiplication in
M induce the coresponding operations in B.

Now we shortly remind the definition of M (cf. [4]). An equiva-
lence relation ~ can be defined on B2 =B x B :

(A,B)~(C,D)&= A+D=B+C.
The equivalence class determined by (A, B) shall be denoted by [A4, B].
The space M is the quotient space B?/ ~. In this space we define
addition by

(11) [4, B]+[C, D] =[A+C, B+ D]
and multiplication by
AA, \B if A>0,
(12) as={ S
[IX|B,|A\A4] if X<O.

M is a linear space with addition given by (11) and multiplication given
by (12). The embedding map = : B —+ M is given by
w(A) =[4,0], Ae€B.

The element [0, 0] = [4, 4] is zero in M. In the sequel we will use the
abbreviation A = 7(A). In the linear space M a metric 8y is defined
by

ou([A, B, [C,D]) = du(A+ D, B+ C).
The Hausdorff metric dy is positively homogeneous and translation
invariant, so the formula

1[4, B]ll = 8= ([4, B, [0,0])
defines the norm in M such that
du (A, B) = 0u(n(4),(B)) = ||[4, B]|.
Let X be a normed space and let C be an open set in X. Con-

sider a set-valued map F : C — B. H.T. Banks and M.Q. Jacobs
[1] have introduced the following definition of differentiability of F' at
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zo € C. F is said to be m—differentiable at zo if the function F:C—
— M,z — F(z), where F(z) = n(F(z)) = [F(z),0] is differentiable
at zo in Fréchet sense. It means that there exists a continuous linear
transformation F"(zg) : X — M such that

(13) lim F(z) = F(zo) — F'(zo)(z — x0) _
20 [l — ol

For our purposes it suffices to adopt a weaker definition of differ-
entiability of set-valued functions. Our notion of differentiability will
be connected with Def. 1. ’
Definition 4. A set-valued function F : C — B is said to be differ-
entiable at £y € C if the function # : C — M is differentiable at
zo with respect to Def. 1, i.e., there exists a homogeneous function
F'(zg) : X — M such that (13) holds.

Continuity and additivity of the transformation F”(zo) are omit-
ted in Def. 4.

Write F'(z0)(h) =: [A(h), B(h)]. There is a § > 0 such that

ﬁ(mo + h) — F(mo) — F’(mo)(h) =
= F(zo + h) — F(z0) — [A(h), B(h)] =: [P(h), R(R)],
where P(h), R(h) € B for h € S(6). Hence it follows by (13) that

0.

(14) F(zo + h) + B(h) + R(h) = F(zo) + A(h) + P(h)
and ‘

I[P(R), RNl _ du(P(h), R(h))
19 I R
as h — 0. Since F'(z,) is homogeneous,
(16) A(th) +tB(h) = B(th) +tA(h) for t>0
and

(17) A(th) + (—t)A(h) = B(th) + (—t)B(h) for t<0
for all A € X. On the other hand, if (14)-(17) hold, then F' is differen-
tiable at zo. Thus we can formulate
Theorem 8. A set-valued function F' : C — B is differentiable at zo €
€ C if and only if there exist a § > 0, set-valued functions A,B: X — B
and P,R: S(6) — B such that (14)-(17) hold.

In connection with Th. 1 we get the following
Corollary 1. Leta set-valued function F : C — B be differentiable at
zo € C with F'(zg)(h) = [A(h), B(h)], h € X. Then F is continuous
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at xo with respect to Hausdorff metric if and only if for every e > 0
there is a 6 > 0 such that

du(A(h), B(R)) <& for he S().

According to Th. 2 we have
Corollary 2. Let C be an open and connected set in X. A set-valued
function F' : C — B is constant if and only if it is differentiable
throughout C and Ag(h) = Bg(h) for all z € C and h € X, where
[Az(R), Bz(h)] = F(z)(h), ze€C, he X.

5. Example. Let f,g: (a,b) = Randlet f < g on (d;b). Assume
that f, g are differentiable at zq € (a,b). Then the set-valued function
F(z) = (f(z),9(z)) ({(f(z), g(x)) denotes the closed interval of the line
with endpoints f(z) and g(z)), z € (a,b) is m—differentiable at z¢ (see
Cor. 3.1 in [1]).

Now suppose that F' is differentiable at zq € (a,b). Then there ex-
ists a § > 0 compact intervals A(h) = (a(h),c(h)), B(h) = (b(h),d(h))
for h € R and compact intervals P(h) = (p(h), ¢(h)), R(h)={r(h),s(h))
for |h| < ¢ such that

f(zo + k) + b(h) +7(h) = f(z0) + a(h) + p(h),
g9(zo + k) + d(h) + s(h) = g(o) + c(h) + q(h)
for |h| < 6 as well as

- oo max{ir(h) — p(h), ls(h) — ()} _

h—0 Ihl

Furthermore in virtue of homogeneity of #”(zo) we have
a(th) + tb(h) = b(th) + ta(h), c(th) + td(h) = d(th) + tc(h)
for all h,t € R, whence

W) oy -ar), I o) ),
Consequently
oot 0= flo) )y 20000

and

so the differentiability of f and g results from (18).
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In general, each set-valued function defined on an interval is dif-
ferentiable with respect to Def. 4 if and only if it is w—differentiable.
The set-valued function F, F(z1,z2) = (v/[3]z} + 23, /[8]z3 + =3 +
+1), (z1,z2) € R?, is differentiable at (0,0) with respect to Def. 4 but
it is not 7 -differentiable.

6. In this part of the paper we transfer results of the Part 3 to
convex set-valued functions.
Definition 5. (cf., e.g., [3]). Let X,Y be linear spaces and let C be a
convex subset of X. A set-valued function F' defined on C with non-
empty values in Y is said to be convez (concave) if

(1 —t)F(z) +tF(y) C F((1 - t)z + ty)
(F((l —t)z+ty) C (1—t)F(z) + tF(y))

for all z,y € C and t € (0,1).

Let X be a normed space and let Y be a reflexive Banach space.
Assume that C is an open and convex subset of X. We introduce an
order in the normed space M = M(Y) = B?/ ~ as follows:

[A,B]<[D,El&®B+DCA+E
One can easy check that the order satisfies the two first conditions of
Def. 2. Write
K:={[A,Ble M:[A, B]>0}.

It is clear that [A,B] > 0 & A C B. To prove the last condition of
Def. 2 we take the sequence {[A,, B,]} converging to [A4, B] with terms
belonging to K. Then A, C B, for all n € N and dyg (A4, + B, B, +
+ A) - 0asn — oo. Let us fix an € > 0. There is an n € N such
that

B,+ACA,+B+¢S,
whence

B,+ACB,+B+¢€S.
Canceling B, (see [4], Lemma 1) we get

AC B+€S.

Since the set B is closed the relation A C B, i.e., [A4, B] > 0 follows in
view of the unrestricted choice of € > 0.

It has been shown that (M, <) is the ordered normed space. Ob-
- serve that the map F' : C — B is convex (concave) if and only if the

map C 2 z — F(z) = [F(x),0] € M is convex (concave). Therefore
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in virtue of considerations Parts 3 and 4 we may obtain the following

theorems which characterize differentiable convex set-valued functions.

Theorem 4'. Let F : C — B be conver and differentiable at zq € C.

Then there exists a § > 0 such that P(h) C R(h) for h € S(5), where

set-valued functions P and R are given in Th. 8.

Theorem 5'. If F: C — B is convezr and differentiable at zo € C and

F'(z0)(h) = [A(h), B(h)], h € X, then F(zo+h)+B(k) C F(zo)-+A(R)

for h € X such that zog +h € C. v

Theorem 6'. If F: C — B is convez and differentiable at zo € C and

F'(z0)(h) = [A(R), B(R)], h € X, then

B((1=X)h+ k) + (1= XN)A(R) + MA(k) C

C A((1 = Xh+ Ak) + (1 — A\)B(h) + AB(k)

for h,k € X and X € (0,1).

Theorem 7'. Assume that F : C — B is differentiable throughout C

and the derivative F'(z), F'(z)(h) = [A4(h), B, (h)] satisfies

(20) F(z + h)+ Bg(h) C F(z) + Az (h)

for each x € C and h € X such that x + h € C, as well as inclusion

(19) holds for every h,k € X, A € (0,1) and z € C. Then F is conver.
Analogous theorems hold true for concave functions. In this case

sign of "C” should be replaced by ”D>”.

Example. Take F(z) = (z?,/z), for z € (0,1). We can set

22,2+ 55=)h for h>0

(19)

(~2,0)h for h < 0,
5 om | (0.2 for b >0
2(h) = (—2 — \/— —2z)h for h <0

and Py(h) = (0,vz +h), Ry(h)= (- hz\/_—l—z\/—)foralle(Ol)
and h € R such that £ + h € (0,1). It is easy to check that inclusions
(19) and (20) hold.
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