Mathematica Pannonica

9/2 (1998), 173–180

SOME PROPERTIES OF THE DENSITY TOPOLOGY WITH RESPECT TO AN EXTENSION OF THE LEBESGUE MEASURE

Jacek Hejduk

Mathematical Institute, University of Lódz, ul. Banacha 22, 90– 238 Lódz, Poland

Received: October 1997

MSC 1991: 28 A 1205, 54 A 09

Keywords: Lebesgue extension measure, density point, density topology.

Abstract: We investigate some properties of the μ -density topology where μ is an extension of the Lebesgue measure.

Let μ denote an extension of the Lebesgue measure l over the real line \mathbb{R} . Let S_{μ} denote the domain of μ and let \mathcal{L} be the σ -field of all Lebesgue measurable sets. Let \mathcal{I}_{μ} be the σ -ideal of μ -null sets and Lthe σ -ideal of Lebesgue null sets. By \mathcal{T}_d we denote the density topology and by \mathcal{T}_0 - the natural topology in \mathbb{R} . We recall that $x \in \mathbb{R}$ is a density point of a μ -measurable set X if

$$\lim_{h \to 0} \frac{\mu(X \cap [x - h, x + h])}{2h} = 1$$

Let $\Phi_{\mu}(X) = \{x \in \mathbb{R}; x \text{ is a density point of } X\}$. Let us define a family \mathcal{T}_{μ} in the following way:

 $\mathcal{T}_{\mu} = \{ X \in S_{\mu}, X \subset \Phi_{\mu}(X) \}.$

Theorem A (cf. [5], [6]). \mathcal{T}_{μ} is a topology in \mathbb{R} .

If $\mu = l$, then the family \mathcal{T}_l is the topology in \mathbb{R} , usually called density topology and labelled by \mathcal{T}_d (cf. [9]). It was observed in [5] that

every \mathcal{T}_{μ} -open set is a member of the σ -field $\mathcal{L} \triangle \mathcal{I}_{\mu}$ and the topology \mathcal{T}_{μ} is generated by the density topology \mathcal{T}_{d} and the σ -ideal \mathcal{I}_{μ} (cf. [4]). Namely, we have

Theorem B (cf. [5]). Every \mathcal{T}_{μ} -open set X has the form U - Z where U is \mathcal{T}_d -open and $Z \in \mathcal{I}_{\mu}$ (abbr. $\mathcal{T}_{\mu} = \mathcal{T}_d \ominus \mathcal{I}_{\mu}$). Moreover, the family of all meager sets in the topology \mathcal{T}_{μ} is identical with the family \mathcal{I}_{μ} .

The important role in our further considerations is played by the consequence of Theorems 4 and 5 in [8] which we can establish in the following form:

Theorem C. Let (X, \mathcal{T}) be an arbitrary topological space, (Y, τ) a regular topological space and \mathcal{I} a σ -ideal of subsets of X free from nonempty \mathcal{I} -open sets and such that family of sets

$$\mathcal{T} \ominus \mathcal{I} = \{ Z \subset X : Z = U - P, \quad U \in \mathcal{T}, \quad P \in \mathcal{I} \}$$

forms a topology (called the Hashimoto topology). Then

 $C((X,\mathcal{T}),(Y,\tau)) = C((X,\mathcal{T} \ominus \mathcal{I}),(Y,\tau))$

where $C((X, \mathcal{T}), (Y, \tau))$ is family of all continuous functions acting from space (X, \mathcal{T}) to (Y, τ) and $C((X, \mathcal{T} \ominus \mathcal{I}), (Y, \tau))$ is the family of all continuous functions acting from the space $(X, \mathcal{T} \ominus \mathcal{I})$ to the space (Y, τ) .

Now, we present some properties of \mathcal{T}_{μ} -topology in the context of the properties of \mathcal{T}_{d} -topology and \mathcal{I} -density topology, contained in [1]. As an obvious conclusion of Th. C we have

Property 1. The family of all real continuous functions with respect to the topology \mathcal{T}_{μ} is identical with the family of all approximate continuous functions.

Since the topology \mathcal{T}_d is connected, we see that:

Property 2. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is connected.

We easy conclude that

Property 3. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is Hausdorff.

Property 4. A set X is closed and discrete in \mathcal{T}_{μ} if and only if $X \in \mathcal{I}_{\mu}$.

Proof. Let $X \in \mathcal{I}_{\mu}$. Then X is \mathcal{T}_{μ} -closed and, since the measure μ is complete, any subset of X is a μ -null and \mathcal{T}_{μ} -closed set. Let us suppose that X is closed and discrete in the topology \mathcal{T}_{μ} , and $X \notin \mathcal{I}_{\mu}$. Hence $\operatorname{Int} X = \emptyset$ because, otherwise, the set $\operatorname{Int} X$ being open and closed in \mathcal{T}_{μ} which is connected would coincide with \mathbb{R} . This would contradict the fact that \mathcal{T}_{μ} is connected. In such a way, X is nowhere dense in \mathcal{T}_{μ} , which implies, by Th. B that X is a μ -null set. \Diamond

Property 5. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is neither separable nor possesses the Lindelöf property.

Proof. Any countable set is a μ -null set. This implies by Th. B, that it is closed in the topology \mathcal{T}_{μ} . Hence \mathbb{R} is not separable with respect to \mathcal{T}_{μ} . Let X be the Cantor set. It is clear that X is a μ -null set and thus \mathcal{T}_{μ} -closed. Then each set $U_x = (\mathbb{R} - C) \cup \{x\}$ is \mathcal{T}_{μ} -open and $\bigcup_{x \in C} U_x = \mathbb{R}$, but there does not exist a countable subfamily $\{U_x\}_{x \in C}$ covering \mathbb{R} . \Diamond

Lemma 1. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is regular if and only if, for an arbitrary set $X \in \mathcal{I}_{\mu}$ and any point $x \notin X$, there exist disjoint \mathcal{T}_d -open sets V_1 , V_2 such that $X \subset V_1$ and $x \in V_2$.

Proof. Let $X \in \mathcal{I}_{\mu}$ and $x \notin X$. Since \mathcal{T}_{μ} is regular, there exist \mathcal{T}_{μ} -open sets W_1, W_2 such that $X \subset W_1, x \in W_2$ and $W_1 \cap W_2 = \emptyset$. By Th. 2, $W_1 = V_1 - Z_1, W_2 = V_2 - Z_2$, where $V_1, V_2 \in \mathcal{T}_d$ and $Z_1, Z_2 \in \mathcal{I}_{\mu}$. We see that $V_1 \cap V_2 = \emptyset$ if and only if $W_1 \cap W_2 = \emptyset$. In fact, $V_1 \cap (V_2 = W_1 \cap W_2 - (Z_1 \cup Z_2) = \emptyset$ implies that $W_1 \cap W_2 \subset Z_1 \cup Z_2$ and $0 = \mu(W_1 \cap W_2) = l(W_1 \cap W_2)$. Hence $W_1 \cap W_2 = \emptyset$ because, otherwise, $l(W_1 \cap W_2) > 0$. If $W_1 \cap W_2 = \emptyset$, then $V_1 \cap V_2 = \emptyset$. Hence the sets W_1 and W_2 separate the sets X and $\{x\}$.

Now, let F be \mathcal{T}_{μ} -closed and let $x \notin F$. The set F is the union of a \mathcal{T}_d -closed set F_1 and a μ -null set X. Since $x \notin F_1$ and the topology \mathcal{T}_d is regular, then there exist \mathcal{T}_d -open sets V_1, V_2 such that $F_1 \subset V_1$ and $V_1 \cap V_2 = \emptyset$. By the assumption, there exist \mathcal{T}_{μ} -open sets V_3, V_4 such that $X \subset V_3, x \in V_4$ and $V_3 \cap V_4 = \emptyset$. Putting $V_1 \cup V_3$ and $V_2 \cap V_4$, we have \mathcal{T}_{μ} -open sets separating the sets F and $\{x\}$. \Diamond

Property 6. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is regular if and only if $\mathcal{T}_{\mu} = \mathcal{T}_{d}$.

Proof. Sufficiency is a consequence of the fact that the \mathcal{T}_d -topology is regular (cf. [2]).

Necessity. Let us suppose that \mathcal{T}_{μ} is regular and $\mathcal{T}_{\mu} \neq \mathcal{T}_d$. Hence there exists a set $X \in \mathcal{I}_{\mu} \setminus L$. It is clear that $X \notin \mathcal{L}$. Let S be a measurable cover of X. We see that $\Phi_l(S) \setminus X \neq \emptyset$ because, otherwise, $\Phi_l(S) \subset X \subset S$, and X would be Lebesgue measurable. Let $x \in$ $\in \Phi_l(S) \setminus X$. Since \mathcal{T}_{μ} is regular, by Lemma 1, there exist \mathcal{T}_d -open sets V_1 and V_2 such that $V_1 \supset X$, $x \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then

$$V_2 \subset \mathbb{R} - V_1$$

and

$$S \cap V_2 \subset S - V_1 \subset S - X.$$

From the definition of the cover S we conclude that $l(S - V_1) = 0$ and $\Phi_l(S \setminus V_1) = \emptyset$. This implies that $\Phi_l(S \cap V_2) = \Phi_l(S) \cap \Phi_l(V_2) = \emptyset$. At

the same time, $x \in \Phi_l(S) \cap V_2 \subset \Phi_l(S) \cap \Phi_l(V_2) = \emptyset$. This contradiction ends the proof. \Diamond

Remark. We have proved that there exist a \mathcal{T}_{μ} -closed set X and a point $x \notin X$, such that the sets X and $\{x\}$ cannot be separated by \mathcal{T}_{d} -open sets.

We are able to demonstrate a much stronger result. Namely, there exists a \mathcal{T}_{μ} -closed set X^* such that, for each point $x \notin X^*$, the sets X and $\{x\}$ cannot be separated by \mathcal{T}_d -open sets. Let $X \in \mathcal{I}_{\mu} \setminus L$ and let S be a Lebesgue measurable cover of X such that $X \subset \Phi_l(S)$. Putting $X^* = X \cup (\mathbb{R} - \Phi_l(S))$, we see that X^* is \mathcal{T}_{μ} -closed. Then $x \notin X^*$ if and only if $x \in \Phi_l(S) \setminus X$ and, analogously as in the proof of the above property, we conclude that the set X^* has the desired property.

Property 7. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is completely regular if and only if $\mathcal{T}_{\mu} = \mathcal{T}_{d}$.

Proof. Sufficiency is a consequence of the fact that the \mathcal{T}_d -topology is completely regular (cf. [3]). Necessity is a consequence of Prop. 6. \Diamond

Property 8. The space $(\mathbb{R}, \mathcal{T}_{\mu})$ is not normal.

Proof. The topology \mathcal{T}_d is not normal (cf. [3]). Let $\mathcal{T}_{\mu} \neq \mathcal{T}_d$. If \mathcal{T}_{μ} where normal, then \mathcal{T}_{μ} would be completely regular and, by Prop. 7, we have the contradiction with the fact that $\mathcal{T}_{\mu} = \mathcal{T}_d$. \diamond

Property 9. A set X is \mathcal{T}_{μ} -compact if and only if it is finite.

Proof. If X finite, then it is \mathcal{T}_{μ} -compact. Let X be \mathcal{T}_{μ} -compact. Then we claim that X is finite. Let us suppose that X is infinite. Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence of distinct elements of X. Putting $U_n = \mathbb{R} - \{x_k : k \ge n\}$, we have that $\mathbb{R} \supset \bigcup_{n=1}^{\infty} U_n$, but there does not exist a finite subfamily of $\{U_n\}_{n\in\mathbb{N}}$ covering \mathbb{R} . \Diamond

Lemma 2. A \mathcal{T}_{μ} -open set X is \mathcal{T}_{μ} -regular open if and only if $X = = \Phi_{\mu}(X)$

Proof. First of all, we prove that, for each $X \in \mathcal{T}_{\mu}$, the set $\Phi_{\mu}(X)$ is \mathcal{T}_{μ} regular open. We see that $\Phi_{\mu}(X)$ is \mathcal{T}_{μ} -open. It is a consequence of the fact that it is sufficient to consider the case where $S_{\mu} = \mathcal{L} \triangle \mathcal{I}_{\mu}$ (see [5]) and then $\Phi_{\mu}(\Phi_{\mu}(X)) = \Phi_{\mu}(X)$. Now, we show that $\Phi_{\mu}(X) = \operatorname{Int} \overline{\Phi_{\mu}(X)}$ with respect to \mathcal{T}_{μ} . Since $\Phi_{\mu}(X)$ is \mathcal{T}_{μ} -open, then $\overline{\Phi_{\mu}(X)} = \Phi_{\mu}(X) \cup Z$ where $Z = Fr(\Phi_{\mu}(X))$ is nowhere dense and thus $Z \in \mathcal{I}_{\mu}$. Let U be any open set in \mathcal{T}_{μ} . Then U = V - Y where $V \in \mathcal{T}_d$, $Y \in \mathcal{I}_{\mu}$. We can assume that $V = \Phi_l(W)$ where $W \in \mathcal{L}$. We see that if $U \subset \overline{\Phi_{\mu}(X)}$, then

$$egin{aligned} \Phi_l(W) - Y \subset \Phi_l(W) &= \Phi_\mu(\Phi_l(W) - Y) \ &\in \Phi_\mu(\Phi_\mu(X) \cup Z) &= \Phi_\mu(\Phi_\mu(X)) = \Phi_\mu(X). \end{aligned}$$

Since the set $\Phi_{\mu}(X)$ is \mathcal{T}_{μ} -open, therefore $\Phi_{\mu}(X) = \operatorname{Int} \overline{\Phi_{\mu}(X)}$. Hence if $X = \Phi_{\mu}(X)$, then X is regular open. Let X be regular open. Since $\mu(X \triangle \Phi_{\mu}(X)) = 0$, the set $X \triangle \Phi_{\mu}(X)$ is nowhere dense. But the sets X and $\Phi_{\mu}(X)$ are \mathcal{T}_{μ} -regular open in the Baire space $(\mathbb{R}, \mathcal{T}_{\mu})$, whence $X = \Phi_{\mu}(X)$. \Diamond

Property 10. A set X is \mathcal{T}_{μ} -regular open if and only if X is \mathcal{T}_d -regular open.

Proof. If X is \mathcal{T}_d -regular open, then $X = \Phi_l(X) = \Phi_\mu(X)$ and X is \mathcal{T}_μ -regular open. If X is \mathcal{T}_μ -regular open, then $X = \Phi_\mu(X)$. But we may assume that $X \in \mathcal{L} \triangle \mathcal{I}_\mu$; then there exists a Lebesgue measurable set Y such that $X = \Phi_\mu(X) = \Phi_l(Y)$. This implies that X is \mathcal{T}_d -regular open. \Diamond

Property 11. By assuming C.H., the topological space $(\mathbb{R}, \mathcal{T}_{\mu})$ is not a Blumberg space for any complete extension μ of the Lebesgue measure.

Proof. We shall explore the fact that under the assumption of C.H. the topological space $(\mathbb{R}, \mathcal{T}_d)$ is not a Blumberg space (cf. [1]). Let us suppose that for some complete extension μ of the Lebesgue measure, such that $\mathcal{T}_{\mu} \neq \mathcal{T}_{d}$, (R, \mathcal{T}_{μ}) is a Blumberg space. This means that, for any function $f : \mathbb{R} \to \mathbb{R}$, there exists a \mathcal{T}_{μ} -dense set D such that $f/_D$ is a \mathcal{T}_{μ} -continuous function. Let us fix a function $f: \mathbb{R} \to \mathbb{R}$ and let D be a \mathcal{T}_{μ} -dense set such that $f/_{D}$ is continuous. This is equivalent to the fact that f is continuous with respect to the topology $\mathcal{T}_{\mu} \cap D = \{X \subset X\}$ $\subset \mathbb{R} : X = V \cap D; V \in \mathcal{T}_{\mu}$. Since \mathcal{T}_{μ} is the Hashimoto topology of the form $\mathcal{T}_d \ominus \mathcal{I}_\mu$, we have that $\mathcal{T}_\mu \cap D$ is the Hashimoto topology of the form $(\mathcal{T}_d \cap D) \ominus \mathcal{I}_D$ where $\mathcal{I}_D = \mathcal{I}_\mu \cap D = \{X \subset R : X =$ $Z \cap D$, $Z \in \mathcal{I}_{\mu}$. We notice that the σ -ideal \mathcal{I}_D is free from the nonempty $\mathcal{T}_d \cap D$ -open sets. Otherwise, there exist sets $V \in \mathcal{T}_d$ and $Z \in \mathcal{I}_{\mu}$ such that $V \cap D = Z \cap D$. Hence $(V - Z) \cap D = \emptyset$. But the set V - Z is nonempty and \mathcal{T}_{μ} -open. Then if the set D is \mathcal{T}_{μ} -dense, $(V-Z) \cap D \neq \emptyset$. We get a contradiction.

Now, applying Th. C, we have that

 $C((R,(\mathcal{T}_d\cap D)\ominus\mathcal{I}_D),(R,\mathcal{T}_0))=C((R,\mathcal{T}_d\cap D),(R,\mathcal{T}_0)).$

This implies that the function f is continuous with respect to the topology $\mathcal{T}_d \cap D$ and thus $f/_D$ is continuous. At the same time, the set Dis \mathcal{T}_d -dense, and we got a contradiction with the fact that the space (R, \mathcal{T}_d) is not a Blumberg space. \diamond

Definition 1. (cf. [2]). Let (X, \mathcal{T}) be a topological space. If, for any topology \mathcal{T}' on X with the property that the set of continuous selfmaps $f: (X, \mathcal{T}') \to (X, \mathcal{T}')$ contains the set of continuous selfmaps $f: (X, \mathcal{T}) \to (X, \mathcal{T})$, it is also true that $\mathcal{T}' \supset \mathcal{T}$, then (X, \mathcal{T}) is called generated.

Property 12. The topological space $(\mathbb{R}, \mathcal{T}_{\mu})$ for any complete extension μ of the Lebesgue measure is not generated.

Proof. When $\mathcal{T}_{\mu} = \mathcal{T}_d$, it was proved in [2] that $(\mathbb{R}, \mathcal{T}_d)$ is not generated. Let $\mathcal{T}_{\mu} \neq \mathcal{T}_d$. Let $C((\mathbb{R}, \mathcal{T}_{\mu}), (\mathbb{R}, \mathcal{T}_d))$ be the family of all continuous functions $f: (\mathbb{R}, \mathcal{T}_{\mu}) \to (\mathbb{R}, \mathcal{T}_d)$ and let $C((\mathbb{R}, \mathcal{T}_d), (\mathbb{R}, \mathcal{T}_d))$ be the family of all continuous functions $f: (\mathbb{R}, \mathcal{T}_d) \to (\mathbb{R}, \mathcal{T}_d)$. Since the space $(\mathbb{R}, \mathcal{T}_d)$ is regular (see [3]) and \mathcal{T}_{μ} is the Hashimoto topology $\mathcal{T}_d \ominus \mathcal{I}_{\mu}$, we infer that

$$C((\mathbb{R},\mathcal{T}_{\mu}),(\mathbb{R},\mathcal{T}_{d}))=C((\mathbb{R},\mathcal{T}_{d}),(\mathbb{R},\mathcal{T}_{d})).$$

Simultaneously, we see that

$$C((\mathbb{R},\mathcal{T}_{\mu}),(\mathbb{R},\mathcal{T}_{\mu}))\subset C((\mathbb{R},\mathcal{T}_{\mu}),(\mathbb{R},\mathcal{T}_{d}))$$

Hence

$$C((\mathbb{R},\mathcal{T}_{\mu}),(\mathbb{R},\mathcal{T}_{\mu})) \subset C((\mathbb{R},\mathcal{T}_{d}),(\mathbb{R},\mathcal{T}_{d})),$$

but it is not true that $\mathcal{T}_{\mu} \subset \mathcal{T}_{d}$ because $\mathcal{T}_{\mu} \neq \mathcal{T}_{d}$. Hence we conclude that the topological space $(\mathbb{R}, \mathcal{T}_{\mu})$ is not generated. \diamond

It is well known that the density with respect to the Lebesgue measure has the following property called the Lusin-Menchoff property: **Theorem D** (cf. [3]). Let E be a measurable Lebesgue set and let F be a closed set such that $F \subset E$ and every point of F is the density point of E then there exists a perfect set P such that $F \subset P \subset E$ and every point of F is the density point of P.

The Lusin-Menchoff property was published first time by Bogomolova in 1924 when the density topology \mathcal{T}_d was not known. Now we can interpretate this property as the some property of the topology \mathcal{T}_d introduced in 1952 and described in detail in 1961 (cf. see [3]). We have the following property.

Proposition. The Lusin-Menchoff property is satisfied if and only if for every set $U \in \mathcal{T}_d$ and for every closed set $F \subset U$ there exists a \mathcal{T}_d -open set V such that $F \subset V \subset \overline{V} \subset U$.

Proof. Let U be a nonempty \mathcal{T}_d -open set and let F be nonempty closed set such that $F \subset U$. Since U is \mathcal{T}_d -open then every point of U is the

Lebesgue density point of U, thus by the Lusin-Menchoff property there exists a perfect set P such that $F \subset P \subset U$ and $F \subset \Phi_l(P)$. Putting $V = P \cap \Phi_l(P)$ we see that V is \mathcal{T}_d -open and $F \subset V \subset \overline{V} \subset U$.

Sufficiency. Let E be a Lebesgue measurable set and let F be a closed set such that $F \subset E$ and every point of F is the Lebesgue density point of E. Putting $U = E \cap \Phi_l(E)$ we have that U is \mathcal{T}_d -open set. Thus there exists a \mathcal{T}_d -open set V such that $F \subset V \subset \overline{V} \subset U$. Let $\overline{V} = P \cup Z$ where P is perfect and Z is the set of all isolated points of \overline{V} . We see that P is countable. Moreover $V \cap Z = \emptyset$. Otherwise there exists a member $x \in V \cap Z$. It implies that x is a density point of V and x is an isolated point of V. This contradiction proves that $V \cap Z = \emptyset$. Thus we have that $F \subset P \subset E$ and every point of F is the density point of P. \Diamond

According to this theorem we see that we can consider the Lusin-Menchoff property of the density as the property of \mathcal{T}_d -topology with respect to the natural topology. This is a good starting point to formulate the Lusin-Menchoff property in more generale situation.

Let τ_1 and τ_2 be the topologies on the space X such that $\tau_2 \supset \tau_1$ **Definition 2** (cf. [7]). We shall say that the topology τ_2 has the Lusin-Menchoff property with respect to the topology τ_1 if for every pair of disjoint sets $F_{\tau_1}, F_{\tau_2} \subset X$ such that F_{τ_1} is τ_1 -closed and F_{τ_2} is τ_2 -closed there exist disjoint sets $G_{\tau_1}, G_{\tau_2} \subset X$ such that G_{τ_1} is τ_1 -open and G_{τ_2} is τ_2 -open and $F_{\tau_1} \subset G_{\tau_2}, F_{\tau_2} \subset G_{\tau_1}$.

This definition is equivalent to the following one (see [7]):

Definition 3. We shall say that the topology τ_2 has the Lusin-Menchoff property with respect to the topology τ_1 if for every $U_{\tau_2} \in \tau_2$ and every τ_1 -closed set F_{τ_1} such that $F_{\tau_1} \subset U_{\tau_2}$ there exists an τ_2 -open set V_{τ_2} such that $F_{\tau_1} \subset V_{\tau_2} \subset \bar{V}_{\tau_2}^{(\tau_1)} \subset U_{\tau_2}$.

We investigate the Lusin-Menchoff property of the topology \mathcal{T}_{μ} with respect to the topology \mathcal{T}_d and natural topology. Firstly we have the following

Lemma 3. If τ_1 , τ_2 are topologies on X such that $\tau_2 \supset \tau_1$, (X, τ_2) is not regular and (X, τ_1) is T_1 -space then the Lusin-Menchoff property of the topology τ_2 with respect to the topology τ_1 does not hold.

Proof. If τ_2 is not regular then there exist a τ_2 -closed set F_{τ_2} and a point $x \notin F_{\tau_2}$ such that the sets $\{x\}$, F_{τ_2} cannot be separated by τ_2 -open sets. Since the space (X, τ_1) is T_1 then the set $\{x\} = F_{\tau_2}$ is τ_1 -closed. We conclude that the disjoint sets F_{τ_1} and F_{τ_2} cannot be separated by τ_2 -open set and τ_1 -open set. \diamond **Property 13.** For any complete extension μ of the Lebesgue measure the topology \mathcal{T}_{μ} has not the Lusin-Menchoff property with respect to the topology \mathcal{T}_{d} .

Proof. If $\mathcal{T}_{\mu} = \mathcal{T}_d$ then \mathcal{T}_{μ} has not the Lusin-Menchoff property with respect to the Topology \mathcal{T}_d because otherwise \mathcal{T}_d would be normal. This fact is not true for the topology \mathcal{T}_d (cf. [3]). Let $\mathcal{T}_{\mu} \neq \mathcal{T}_d$. We have proved in Prop. 6 that \mathcal{T}_{μ} is not regular and it is obvious that the topology \mathcal{T}_d is T_1 . Thus by Lemma 3 we conclude that the Lusin-Menchoff property of the topology \mathcal{T}_{μ} with respect to the topology \mathcal{T}_d does not hold. \Diamond

Property 14. For any complete extension μ of the Lebesgue measure the topology \mathcal{T}_{μ} has the Lusin-Menchoff property with respect to the natural topology on the real line if and only if $\mathcal{T}_{\mu} = \mathcal{T}_d$.

Proof. Sufficiency is the consequence of the Proposition.

Necessity. Let us suppose that $\mathcal{T}_{\mu} \neq \mathcal{T}_{d}$. Then by Prop. 6 we have that the topology \mathcal{T}_{μ} is not regular. By Lemma 3 we conclude that the Lusin-Menchoff property of the \mathcal{T}_{μ} with respect to the natural topology does not hold. \Diamond

References

- K. CIESIELSKI, K., LARSON, L. and OSTASZEWSKI, K.: *I*-continuous functions, *Memoirs of Amer. Math. Soc.* 515 (1994).
- [2] CIESIELSKI, K. and LARSON, L.: The density topology is not generated, Real Analysis Exchange 16/2 (1990/91), 522-526.
- [3] GOFFMAN, C., NEUGEBAUR, C.J. and NISHIURA, T.: Density topology and approximate continuity, *Duke Math. J.* 28 (1961), 497-506.
- [4] HASHIMOTO, H.: On the * topology and its application, Fund. Math. 91 (1976), 5-10.
- [5] HEJDUK, J.: Density with respect to on extension of the Lebesgue measure, Lodz University Press, 1987.
- [6] KHARAZISHVILI, A.B.: The invariant extensions of the Lebesgue measure, Tbilisi (1983), (in Russian)
- [7] LUKEŠ, J., MALÝ, J. and ZAJIČEK, L.: Fine Topology Methods in Real Analysis and Potential Theory, Springer-Verlag, 1986.
- [8] MARTIN, N.F.G.: Generalized condensation points, Duke Math. J. 28 (1961), 507-514.
- [9] OXTOBY, J.: Measure and category, Springer-Verlag, 1971.