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Abstract: In this paper we prove some results concerning Dade’s conjecture.
First we prove that for every finite group G with Op(G) = 1 for d = 1 the
ordinary and invariant conjectures are true. Later we consider the connection
of the ordinary and the projective conjectures for groups having Schur mul-
tiplier of prime order. In the end we show some examples that the analogue
of Brauer’s first main theorem and that of the Alperin-McKay conjecture is

not true in general for chain normalizers.

1. Introduction

We mention a few notations used in this paper: Let G be a finite
group, p a prime. R denotes a complete discrete valuation ring with
quotient field F' of characteristic zero and residue class field F’ = R/
/J(R) of characteristic p. We assume that F, F are both splitting fields
for every subgroup of G. If A is an F-algebra, then Irr(A) is the set
of irreducible F-characters of A. The set of irreducible F-characters
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of G are denoted by Irr(@), if B is a p-block of G, then Irr(B) stands
for the set of all irreducible F-characters of G belonging to the block
B. If N<G and 6 € Irr(NV), then Irr(B|6) denotes the set of all ir-
reducible characters x € Irr(B) lying over 6 and BI(G|0) is the set of
blocks of G, lying over 8. v, is the p-adic exponential valuation of R.

The p-defect of a character x € Irr(G) is d(x) = vp( ]ﬁl)) and the p-

defect of the block B is d(B) = max{d(x)|x € Irr(B)}. The height
of the character x € Irr(B) is ht(x) = d(B) — d(x). It is well-known
that d(B) is exactly the exponent of p in the order of the defect group
of B. With BI(G|D) we denote the set of blocks of G with defect
group D. O,(G) is the largest normal subgroup of G of p-power order.
For further definitions and notations of modular representation theory,
see [14].

Let R(G),U(R),E(G|P),N(G|P) and P(G|P) denote the set of
radical chains, -chains, elementary, normal and p-chains, the latter
three beginning with the subgroup P, as it is defined in [11]. We
mention that subgroups belonging to a chain in £(G|P) need not be
elementary abelian, only their factors by the initial subgroup P, which
is normal by definition, see [7].

We recall the conjectures of Dade, about more details see [6], [7]
and [8].

Dade’s ordinary conjecture 1.1. Let G be a finite group with
0,(G) = 1, and let B be a p-block of G with defect d(B) > 0. Let
d be a non-negative integer. Then
> (-1 )‘C|k(NG(C’),B,d):O,
CEeF/G
where k(Ng(C), B,d) is the number of characters in the set
{x € Er(Na(C))b(x)° = B, d(x) = d}.
Here b(x) denotes the block of Ng(C) containing x and F is any of the
families R(G), U(G), E(G|1), N(G|1) or P(G|1).

Let a : G x G — F be a factor set. The projective representations
of G with factor set equivalent to a correspond bijectively to repre-
sentations of the twisted group ring F(®) @ with factor set «, where
F®@ = @.cqu.F and uzuy = ugya(z,y). In this correspondence,
irreducible projective representations of G correspond to irreducible
representations of F(®G. In [7] Dade developed a theory of blocks
for twisted group algebras and proved that most theorems of the block
theory of group algebras have analogues in this theory. For H < G let
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F(®)[H] denote the twisted group ring over H with factor set o. If B
is a block of F(®)@, then an analogue of the above function % can be
defined, see [7], namely
k(F[H], B, d) = |{$ € I(F*)[H]), d(y) = d,b($)® = B},
If C is running on representatives of G-conjugacy classes of chains of
p-subgroups of G in P(G|1), then f(C) = k(F(®)[Ng(C)], B, d) satisfies
the conditions of (3.2 a) and (3.2 b) in [6] for G = H = E. With this
terminology, the projective form of Dade’s conjecture can be formulated
in the following way: '
Dade’s projective conjecture 1.2. (first form) Let Op(G) = 1 and
let F(®)G be the twisted group ring with factor set o : G X G — F. Let
B be a block of F(*)G with defect d(B) > 0 and d be any non-negative
integer. Then
Z (_1)|C|k(F(0‘)[NG(O)],B,d) =0,
CeF/G
where F is any one of the families R(G),U(G), E(G|1), N(G|1) or
P(G|1).

The projective conjecture holds for G if the above sum is zero for
each factor set a : G x G — F, each block B of F(®)@G of positive defect
and each non-negative integer d.

It is well-known, see e.g. [10], that projective representations with
factor set o are equivalent to ones that can be lifted to ordinary rep-
resentations of a covering group G* of G got as a central extension of
G by Z* = (a), where o can be chosen up to equivalence so that its
order is equal to the order of its image in the Schur multiplier of G.
In this correspondence, irreducible projective representations of G lift
to irreducible representations of G* and if we fix a faithful irreducible
character ¢ of Z*, then those irreducible characters of G*, that come
from lifting projective characters of G, are just those, which lie above
¢, while the factor set belonging to the central extension G* of G, is
just ¢~(a).

Remark 1.3. According to Prop. 2.2 of [7], if K = K, X Z, where
K <G, K, is a p-subgroup and Z is a central p’-subgroup of G, then
if G = G/K then there is an inclusion preserving bijection between
p-subgroups of G and p-subgroups of G containing K, which induces
a length preserving bijection on p-chains C of G and those p-chains C*
of G that K, < Fy, where Py is the initial subgroup of the chain C.
In this correspondence normalizers of p-subgroups and p-chains corre-
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spond to similar normalizers in the other group, radical p-subgroups
correspond to radical p-subgroups etc. Applying this to K := Z*, G :
= G* and G = G, we get that R(G*/Z*) and R(G*), U(G*/Z*)
and U(G*), P(G*/Z*|PZ*/Z*) and P(G*|P), etc. correspond to each
other.

Remark 1.4. If x € Irr(F(®)@), and x* € Irr(G*) is the corresponding
character, then d(x*) = d(x)+v,(|Z*|), a block B of F(*)G corresponds
to B* € BI(G*|¢) and d(B*) = d(B) + vp(|Z*|). In this way we get a
bijection of blocks of F(®)G and BI(G*|¢) and between Irr(F(*)G) and
Irr(G™[C).

It was proved in [7], that if O,(G) = 1 and the chains C' € P(G|1)

and C* € P(G*|0,(G*)) correspond to each other, then ’
k(F(®)[Ng(C)], B,d) = k(Ng-(C*), B*,d*,() =
= { € Im(Ne- (C*))|d(w) = d*,b(¥)" = B",
(TPZ* ) C) 75 0}7
where ( is a faithful irreducible character of Z* and d* = d + v, (|Z*|).

Thus we can state Dade’s projective conjecture in another form,
just using ordinary characters of the covering group G* above:
Dade’s projective conjecture 1.5. (second form) Let G be a finite
group with Op(G) = 1. Let Z* be a cyclic subgroup of the Schur mul-
tiplier of the group G and let G* be a central extension of G with Z*.
Let ¢ be a faithful irreducible character of Z*. Then

> (-1)1€"k(Ng- (C*), B*,d*,¢) = 0
C*eF(G*|05(G*))/G*
for each block B* € BI(G*|() with d(B*) > v,(|Z*|), where F is any of
RU,E,N,P.

For the invariant conjecture, one has to embed G as a normal
subgroup into an extension group E. If the centre of G is trivial, then
we can identify G with its inner automorphism group, and so G<Aut(G).
In this case, we may assume that £ = Aut(G). Then E acts on the
chains in R(G), U(G), E(G|1), N(G|1) or P(G|1). For each chain C,
Ng(C) < Ng(C) and so for each 9 € Irr(Ng(C)) there exists an inertia
subgroup T'(v) in Ng(C). Of course Ng(C) < T'(¢). For each chain C
and for each subgroup H of F containing G, let k(C, B, d, H) denote
the number of irreducible characters i of Ng(C), with d(¢) = d and
GT(+) = H, which belong to a p-block b = b(¢) of Ng(C) with ¢ = B.
Now we formulate
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Dade’s invariant conjecture 1.6. Let O,(G) = 1 and d(B) > 0.
Then
Z (_1)|C|k(C7B7d1 H) =0,
CeF/G ,
where F is any of R(G), U(G), E(G|1), N(G|1), P(G|1), d is any

nonnegative integer, H is any subgroup of E containing G.

2. The defect one case

It is easy to see that if C € P(G|1) is of positive length then
Ng(C) has no blocks of defect zero. In this section we investigate the
case of defect one blocks of Ng(C), and Dade’s conjecture for d = 1.
Proposition 2.1.

(i) If C is a p-chain 1 = Py < Py < .-+ < P, with |P,| > p then its
normalizer, Ng(C) has no defect one blocks (and hence no defect
one characters, either). Thus k(Ng(C), B,1) = 0 for these chains
and for each block B of G.

(i) If the defect of the block B of G is greater than one, then blocks of
Ng(C) which induce B are also of defect greater than one, for all
p-chains C. Hence k(Ng(C), B,1) = 0 for these blocks B, and for
all p-chains C.

(iil) If the defect group D of a block B of G is abelian, then each block
b of a chain normalizer Ng(C) that induces B has defect group
G-conjugate to D. Especially, if B is of defect one, then blocks of
Ng(C) which induce B are also of defect one. So it can only be
induced from blocks of chain normalizers Ng(C) of chains of length
zero and one. In the latter case |Py| = p also holds.

(iv) If G is an arbitrary finite group with Op(G) = 1, then the ordinary
and invariant Dade’s conjectures are true for G for the prime p
and d = 1.

Proof. (i) It is easy to see, that P, < Ng(C) so it is contained in

the defect group of each block of Ng(C). If |Pi| > p, then we get

that Ng(C) has no blocks of defect one. If |P;| = p then by our
assumption, the length of the chain is at least two, and hence |Py| >
> p?. Let Go = Ng(C?) be the second final subchain normalizer,
where C? : Py < --- < P,,. Then P, < G5 < Ng(P,), thus P, <G5. But

NG(C) = Ng, (Pl) > Ng, (Pl)ﬂPz = Np, (Pl), hence Np, (Pl)ng(O)

of order at least p?. So in this case G has no blocks of defect one, either.
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By Th. 4.5 of [15], each irreducible character of defect one belongs to
a block of defect one, hence Ng(C) has no defect one characters.

(ii) Let us suppose that the defect of B is greater than 1. By (i) if
|P,,| > p then Ng(C) has no blocks of defect one and k(Ng(C), B,1) =
= 0. If n = 0 then Ng(C) has no blocks of defect one which induces B.
If |P,,| = p then n = 1. Let us suppose in this latter case that some block
b of Ng(C) is of defect one. Then b has defect group P,. By Brauer’s
first main theorem, blocks of Ng(P;) with defect group P induce blocks
with defect group Py, hence b¢ # B and k(Ng(C), B,1) = 0.

(iii) Let us suppose that B has abelian defect group D. Let b be a
block of Ng(C) with 8% = B and defect group 6(b). Let us denote by G;
i=1,...,n the normalizer of the ith final subchain C* : P; < --- < P,
and let Gpy1 = G. Then Ng(C) = Ng,(P1) < Gz, P1 < 6(b) and
hence Cg, (6(b)) < Cg,(Py). Thus by Th.5.21 of Chapter 5 in [14], the
defect group §(b%?) is conjugate in G to 6(b). Let us suppose that we
have already proved that the defect group of 5%, §(b%%), is conjugate
to 6(b) in G;. As G; = Ng(P;) N Git1 < Gig1, B < §(b%) and hence
Cg,.: (6(0%)) < Cg,,,(P:). Thus by the same Th. 5.21, the defect
group §(b%i+1) of the block b%i+1 is conjugate in G;11 to 6(b). And so
the defect group D of the block B = b%»+1 is conjugate in G = Gpq1
to §(b). Especially if d(B) = 1, then it can only be induced from blocks
of Ng(C) of defect 1. As Ng(C) does not have blocks of defect one if
|P| > p so B can be induced from itself and from a block of defect one
of the normalizer of the length one chain C with |P;| = p.

(iv) For blocks B of defect greater than 1 the ordinary and invari-
ant Dade’s conjectures hold trivially for d = 1. If d(B) = 1, then the
defect group of B is cyclic, so by [9] we know that Dade’s conjectures
are true. ¢
Remark 2.2. Similarly as in Prop. 2.1(iii), one can also prove the
generalization of Th. 5.21 of [14] for chain normalizers, namely: Let C
be a p-chain of G, let b be a p-block of Ng(C) with defect group Q.
Then for a suitable defect group D of b4, D N Ng(C) = Q. Moreover,

Z(D)<Cp(@)=2(Q)<Q<D.

3. Connections of the ordinary and the projective
conjectures

From now on let G be a finite group with Schur multiplier of order
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q, where ¢ is a prime. Let us suppose further that O,(G) = 1. Let G*
be a nonsplit central extension of G with a cyclic subgroup Z* of order
q. Let (5,...,(q be the faithful irreducible characters of Z*. Let C
be a p-chain from P(G|1) and C* its image under the bijection from
Remark 1.3. There are two cases, p = ¢ and p # q.
Remark 3.1. By Th. 8.11 of Chapter 5 in [14], if p = ¢, then domina-
tion of blocks gives a one-to-one correspondence between p-blocks B* of
G* and blocks B of G, where the image of the defect group is the defect
group of the image, thus d(B*) = d(B)+1. By Lemma 8.6 of Chapter 5
in [14], Irr(B) C Irr(B*), so Irr(B*)\ Irr(B) = UJ_, Irr(B*|(;). Similar
statements hold for p-blocks of chain normalizers Ng-(C*) and Ng(C),
as well. '
Remark 3.2. According to Lemma 8.6 and Th. 8.9 in Chapter 5
of [14], if B* is a p-block of G* for p # g, then it either dominates
no block of G, and in this case does not contain any characters of
G, or it dominates exactly one block B of G, containing the same irre-
ducible characters. Thus Irr(B*) = U]_, Irr(B*|¢;) in the first case and
Irr(B*|(;) =0, for j€{2,..., ¢} in the second case. In this case d(B*) =
= d(B). Similar statements hold for p-blocks of chain normalizers
Ng«(C*) and Ng(C), as well.
Remark 3.3. Let pz+* be the algebra homomorphism F'G* — F'G,
the so called domination map, given by ) agg — > agg, where 7 is
the image of g under the natural homomorphism G* — G. Let H* =
= Ng+(C*) be a chain normalizer. Let sy+* be the F'-homomorphism
Z(F'G*) — Z(F'H*) given by the projection on the H*-components,
while sg* denotes the similar F’'-homomorphism Z(F'G) — Z(F'H)
where H = Ng(C) is the image of H*. Then the domination map and
the projection maps commute, namely
pz*osgt =sg*ougs*.
Proposition 3.4. Let b € Bl(Ng«(C*)) and B* € BI(G*). Letb €
€ Bl(Ng(C)) and B € BI(G).
(i) If B is dominated by B* and b is dominated by b then B* = b%" if
e
and only if b = B.
(i) If 2% = B and b = B* then B is dominated by B* if and only if
b is dominated by b.
Proof. (i) Let wp+*, wp*, wp* and w;* be the central F'-characters of
the above mentioned blocks. Let us suppose that B is dominated by
B*, b is dominated by b and b6 = B*. Then w*, 0 sg+* = wp-*. By
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Lemma, 8.5 in Chapter 5 of [14], wg* o pz+* = wp. Thus
wp* =wy opug* o sg+*.
-G . -
Thus by Remark 3.3, wp+* = wg*osfouz-*. Asb is defined, we get
that wye* o pz-* =w g+*. If eg~ is the central primitive idempotent of
F'G* belonging to B*, then wyc* opug+*(epr) = 1. Thus B* dominates

5°. As B* dominates exactly one block of G, we get that B = EG. The
converse statement follows similarly, by taking the above equations in
the reverse order. o

(i) Let us suppose that b = B and b¢" = B*. If b is dominated
by b then by Lemma 8.5 in Chapter 5 of [14] wp* = wi* o uz+*. Since
wp+* = wp* o sy+* and wz* o sg* = wp*, we get that wp*opg* = wg*
xosg*ouz* =wgtougtosy* =wptosyt =wp. If we put in
ep+ into both sides of this identity, we get that B* is dominating B. If
B* dominates B, then wp* o sg+* = wp»* = wp* o ug+* = wz* o sg™
* 0 fiz»* = wy* o pgz»* 0 sg-*. Thus, if we apply both sides of this to
ey, the central primitive idempotent of F'H* belonging to the block b,
then we get that 1 = wi* o uz-*(es). So we get that b dominates b. O

3.1. p=g¢

Proposition 3.5. Let B and B* be corresponding p-blocks of G and
G* as above, and C and C* corresponding p-chains in G and in G*,
respectively, d* = d + 1. Let k(H, B, d) be the function from the ordi-
nary Dade’s conjecture, while k(H*, B*,d*,() is the function from the
projective Dade’s conjecture. Then
k(Ng-(C*), B*,d*) — k(Ng(C), B,d) =
P
= Z k(NG* (O*)’ B*,d, CJ) = (p - 1)k(NG* (G*)a B*,d*, CZ)
j=2

Proof. We have to prove that {¢) € Irr(Ng-(C*)), d(¢) = d*, b(¢)¢" =
= B*I\{¢ € I(Ne(0)), d(¥) = d, b(¥)¢ = B} = Uj_,{y €
€ Irr(Ne-(C*)), d(¥) = d*, b(®)¥" = B*, (¥z+,¢;) # 0} If ¢ be-
longs to the left-hand side of this equality, then Ker(¢) cannot contain
Z*, as then ¢ € Irr(Ng(C)) and if b is the block of Ng(C) dominated

by b(¢) then by Prop. 3.4, BG = B, contradicting the assumption. Thus
it belongs to the right-hand side, too. If 9 belongs to the right-hand
side, then it obviously belongs to the left-hand side, too.
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By Lemma 5.8 (ii) in Chapter 5 of [14] Irr(B*) = UE_, Trr(B*|(;),
and this is a disjoint union. Let ),, denote an extension field of the
rationals @ with a primitive m®® root of unity, let n = |G| and n,, Tp!
its p-part and p'-part respectively. Let G = Gal(Q,/ an,) and o € G.
Then for every x € Irr(B*) and every p'-element z € G x(z) = x°(z),
so x belongs to Irr(B*), too. As Qn = Qn_,@n,, G is acting on Irr(Z*).
We state that this action is transitive on the set of nontrivial characters
of Z*, {Ca,...,(p}. If there would occur a proper G-orbit {(;,,..., i}
then for every z € Z* the sum Z?:l Ci, (z) were fixed by G, hence this
sum belongs to @n_, NQn, = Q. If we choose 1 # z € Z*, then (;, (z) =
= € is a primitive p** root of unity and (i, () is a power of it for every
j of degree at most p— 1. Thus ¢ satisfies an equation of degree at most
p — 1 with leading coeflicient 1, so it has to be equal to its minimal
polinomial zP~! 4-... 4 1. Hence the action of G has to be transitive on
nontrivial irreducible characters of Z*. This action defines bijections
between the sets Irr(B*|(;) for j € {2,...,p}. Hence these sets have
the same number of elements. If instead of G* one takes Ng«(C*), then
with similar argument we get that the numbers k(Ng-(C*), B*, d*, ;)
are independent of j € {2,...,p}. Hence the second equation is also
true. O

3.2. p#gq

Proposition 3.6. Let p be a prime different from q. Let B* and B
be corresponding p-blocks under domination as above, and C and C*
corresponding p-chains of G and G*, d* = d. Let k(H,B,d) be the
function from ordinary Dade’s conjecture, while k(H*, B*,d*, () is the
function from projective Dade’s conjecture. Then k(Ng-(C*), B*, d*,
¢j) =0 forj = 2,...,q. If B* does not dominate any blocks of G
then

k(Ng-(C*), B*,d*) =

q
=Y k(Ne+(C*), B*,d", () = k(NG-(C”), B*, d", &)
Jj=2 ,

for( suitable i € {2,...,q}.

Proof. We get similarly as in the proof of Prop. 3.5 that
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{4 € Irr(Ng- (C*)), d() = d*,b(#))¢" = B*}\
\{% € Irr(Ne(C)), d(¢) = d,b()¢ = B} =

= Ul_p{w € Ix(Ne- (C)), d(¥) = d*,b(%)¢" = B", (¥2-,¢;) # 0}
if B* dominates B. If 1 belongs to the first set of the left-hand side,
then by Prop. 3.4 b(¢)) dominates b(1)), so by Remark 3.2, they contain
the same characters, so the set on the right-hand side is empty. Thus
we get k(Ng-(C*),B*,d*,{;) = 0 for j € {2,...q}. If B* does not
dominate any blocks of G then {% € Irr(Ng«(C*)), d(v) = d*, b(¥)¢ =
= B*} = UL, {¢ € Irr(Ng- (C%)),d(3) = d*,b($)%" = B*, (¢z+,(;) #
# 0} since if (¢z~,(;) = 0 for some j > 1, then b(x)) dominates the
block b(2) of Ng(C), and thus by Prop. 3.4 B* dominates () . |

Let G%,...G} be the final subchain normalizers G} = Ng~ (c*)
for i =1,...n, where C* : P; < -+ < P,, together with G}, = G*.
Then we have that G* = Ng-(P;) N Ng-(C**) = Ngz (P1) < G ... <
< G} = Ng+(P,) < G*. Thus we can define a Brauer homomorphism

BI‘NG* (c*y = Bl‘p1 0,..0 Brpn : Z(F’G*) — Z(F’(Ng* (C*)),
where

Brp, : Z(F'G}y4) = Z(F'Ngy,, (P)),
given by K- K 0, where K denotes the class sum of the conjugacy
class K of G}, and K° = K N Cg;y,, (B).

Let b be a p-block of Ng»(C*) such that ¥4 = B* and b; the p-
block of Z* containing the faithful irreducible character ¢;. Let us sup-
pose that b covers b;. We claim that B* covers b;. If B* would cover b;
containing the faithful irreducible character {; # (; then since eg~ep; =
= ep- and epep, = €p, we have Bry,. (c~)(ep+) = Bry,.(c+)(eB-ep;) =
= epey; = €p- But e, = epep, which is a contradiction. In this way we
get a faithful irreducible character ¢; of Z* such that

q
> k(Ng+(C*), B*,d*,{;) = k(Ng-(C*), B*,d*, ;). ¢

j=1

3.3. For p = g the connection of the ordinary and projective
conjectures

In [6] it is shown, see Ex. 7.3, that for O,(G) > 1 the alternating
sum of 1.1 may also be not zero. We show that for the above group G*
it cannot happen if for G the projective Dade’s conjecture is true for
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the prime p.

Theorem 3.7. Let G be a group with Schur multipier of prime order
p and with Op(G) = 1. Let G* be a nonsplit central extension of G by
a cyclic group of order p. Then the following are equivalent:

(i) For G the ordinary Dade’s conjecture is true for the prime p and

(1) > (1) g (Ng- (C*), B*,d*) = 0,
C*€P(G*|0,(G*))/G*

where k is the function from 1.1

(ii) For G the projective conjecture is true for the prime p.

Proof. By Lemma 5.8 (ii) in Chapter 5 of [14], every p-block B* of

G* belongs to B1(G*|() for every irreducible character ¢ € Irr(Z*). By

summing up the two sides of the equation in Prop. 3.5, we get the

desired result. ¢

Corollary 3.8.

a) If G is a finite group with Schur multiplier Z* of order p = 2,
02(G) = 1 and G* is a nonsplit central extension of Z* with G,
B* € B(G*) with d(B*) > 1, then ”on the average” on dimensions
d* the sum of 1.1 for G* is zero, namely:

2 > > (~1)/"Ik(Ng-(C*), B*,d") = 0.

d*>1 C*eP(G*|0p(G*))/G*

b) If G is a finite group with Schur multiplier Z* of prime order p >
> 2, 0,(G) = 1 and G* is a nonsplit central extension of Z*
with G, B* € BI{G*) with d(B*) > 1, then if Dade’s ordinary
conjecture is true for the block B € BI(G) dominated by B* and
for the prime p then the sum (2) is zero. Especially if the Kndrr-
Robinson formulation of Alperin’s weight conjecture [13] is true for
G for the prime p and the block B, then (2) is zero.

Proof. a) We sum up the two sides of the equality in 3.5 for d > 0,

where d* = d + 1 and for C, where C* is the corresponding chain in

G*, with coefficients (—1)I°!, then if we use Th. 2 of [16] then we get

that if p = 2 then the sum of (2) is zero.

b) If the Kndrr-Robinson formulation of Alperin’s weight conjec-
ture is true for G, e.g. if Dade’s ordinary conjecture is true, then if we
sum up the two sides of the equality in 3.5 for d > 0, where d* =d + 1
and for C, where C* is the corresponding chain in G*, with coefficients
(=1)I€l, and if we use Th. 2 of [16], then we get that "on the average”
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of dimensions the projective conjecture holds for the extension G*, so
the sum of (2) is zero. ¢

Remark 3.9. We mention that in Th. 3.7 (i) and in the Cor. 3.8 in the
equation (2) we could have replaced P(G*|0,(G*)) by R(G*), U(G*),
E(G*|0,(G*)) or N(G*|0p(G*)). This follows from results of [13], [6],
[7] and [11].

3.4. For p # q the connection of the ordinary and projective
conjecture

Theorem 3.10. Let G be a finite group with Schur multiplier of prime
order q. Let G* be a nonsplit central extension of G by a cyclic group
of order q. Then the following are equivalent: '

(i) For G and G* the ordinary Dade’s conjecture is true for the prime

p, where p # q.
(i) For G the projective Dade’s conjecture is true for the prime p, where

pP#q.

Proof. (i) — (ii): If the ordinary conjecture is true for G then the
projective conjecture is true for the extension of G with the trivial
group. For the central extension G*, if B* dominates a block B of
G, then the projective conjecture holds trivially, as k(Ng-(C*), B*,
d*, ¢;) = 0 for j € {2,...¢q}. If B* dominates no blocks of G then
k(Ngs(C*), B*,d*) = k(Ng+(C*), B*,d*,(;), for some i € {2,...,q}.
Hence the projective conjecture holds, as for G* the ordinary conjecture
holds.

(ii) — (i): If the projective conjecture holds for G, then the ordi-
nary conjecture also holds for G. Each block B of G is dominated by ex-
actly one block B* of G*. Thus k(Ng~(C*), B*,d*) = k(N (C), B, d),
and hence the ordinary conjecture holds for these blocks B* of G*.
If B* does not dominate any blocks of G then k(Ng-(C*), B*,d*) =
= k(Ng~(C*), B*,d*, (;), for some i € {2,...,¢}. Hence the ordinary
conjecture holds for these blocks of G*, too. ¢

4. Examples for block correspondence between Ng(C)
and G

In [11] we proved the generalization of Brauer’s third main the-

orem for chain normalizers. The first main theorem of Brauer tells -
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that block induction gives a one-to-one correspondence between
Bl(Ng(D)|D) and Bl(G|D). The first example shows that the analogue
of the first main theorem is not true for chain normalizers.

Let G be a finite group, let D be a defect group of G for the prime
p. Let ko(B) denote the number of height zero ordinary irreducible char-
acters of a given p-block B. The Alperin-McKay conjecture tells, see
e.g. [1] that ko(b) = ko(b®) if b € BI(Ng(D)|D). The second example
shows that the analogue of this for chain normalizers is not true. In
an earliaer version of this paper we had examples form [11], got from
calculations with GAP [17]. The first the example was 2HS for p = 3
and C' of length one, with |P;| = 3 and |S| = 3. The second example
was HS for p = 2 and C of length 1 and |P;| = 2 for the principal
block.

The following much simpler examples are due to Prof. Kiilsham-
mer.

Example 4.1. There is a group G and a p-chain C in G such that for
S €8yl (G), S<Ng(C) and there is no bijection between Bl(Ng(C)|S)
and BI(G|S) :

Let A be the Klein four group, B cyclic of order 7, H cyclic of
order 3 acting on A x B faithfully. Let G be the semidirect product
of Ax B with H. Let p = 2. Then S = A and if C is a chain of
length 1 with |Pi| = 2, then Ng(C) = A x B, |Bli(Ng(C)|S)| = 7,
while | BI(G|S)| = 3.

Example 4.2. There is a group G, a p-chain C of G and a block b of
N¢(C) such that k,(b) # ko(b%) :

Let G be the extraspecial group of order 32 which is the central
product of two Dihedral groups of order 8. Then there are 16 height zero
characters in the unique block of G. Hoewever if we take a noncentral
involution in G and define C to be the length one chain where P;
is generated by this involution, then Ng(C) is a nonabelian group of
order 16, so its unique block has less than 16 height zero irreducible
characters.
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