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Abstract: In 1987 K. Corridi conjectured if a finite abelian group is a direct
product of its subsets, then the annihilator of one of the factors must span
the whole character group. The paper verifies this conjecture in three special

cases.

In this paper we will use multiplicative notation for abelian groups.
Let G be a finite abelian group. We denote the identity element of G
bye. If B, Ay,..., A, are subsets of G such that each b in B is uniquely
expressible in the form

b=a,1...(1n, aleAl,...,aneAn,

and each product a;. . .a,, belongs to B, that is, if the product A;... A,
is direct and is equal to B, then we say that B is factored by subsets
Ajq,...,An. The equation B = A, ... A, is also said to be a factoriza-
tion of B. If e € BNA1N...NA,, then the factorization B = A, ... A,
and the subsets B, A4, ..., A, are said to be normed.

This work was supported in part by the Hungarian Research Fund Grant
number 7441.
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: There is an equivalent way describing factorizations of B. The
product A; ... A, is afactoringof Bif A; ... A, = Band |A;]...|4,| =
=|B|.

The subset A of G is called eyclic if it is of form {e, a,a?,...,a" "'},
where a is an element of G \ {e} and r is a positive integer.

In 1941 G. Hajés [4] proved that if a finite abelian group is a
direct product of cyclic subsets, then at least one of the factors must
be a subgroup of the group.

By a character on a finite abelian group we mean a homomorhism
of the group into the multiplicative group of the roots of unity of the
field of complex numbers. The characters of a finite abelian group G
form a group G under pointwise multiplication. In addition G and G
are isomorphic. If A is a subset and x is a character of G, then we will
use the notation x(A) to denote the sum

> x(a)

acA
The set of all characters for which x(A) = 0 we will call the annihilator
set of A and will denote it by Ann(A4).

In 1987 K. Corrddi [1] conjectured that in any factorization of a
finite abelian group by its subsets the annihilator of one of the factors
spans the whole character group.

In this paper we verify this conjecture in three special cases. In the
first case the finite abelian group is a p-group generated by two elements.
In the second case the number of the factors in the factorization is not
greater than four. In the third case p > n, where p is the least prime
factor of the order of G.

1. The Dirichlet correspondence

Let G be a finite abelian group and let G be its character group.
The identity element of G is the character which takes the value 1 on
each element of G. We call this character the principal character of G
and we will denote it by €. For a character x of G we use the notation
Ker x to denote the set of elements of G on which y takes the value 1.
Ker x is a subgroup of G. It is the largest subgroup of G on which the
restriction of yx is principal.

To a subgroup H of G we assign the subgroup H = {x : H C
C Ker x} of G. The mapping H — # is a bijection between the sub-
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groups of G and G. This map has the following properties.
fH—+H, K—K,then HK - HNK and HN K — HK;
{e} = G; G — {e}.
In short, this map is an antiisomorphism between the subgroup lattices
of G and G and it is called the Dirichlet correspondence. To a subgroup
H of G the inverse map assigns the subgroup
H= ﬂ Ker x
XEM
of G.

Next we sketch the connection between Hajds’ theorem and Cor-
radi’s conjecture. In order to do this we need the following character
test for factorization. (See [5])

The product of the subsets Aj,..., A, of a finite abelian group G
is direct and gives G if and only if |4,]...|4,| = |G| and Ann(4;) U

.U Ann(4,) = G\ {e}.

Next consider a cyclic subset 4; of G. Let 4; = {e,a;,a?,...

al*™'}. Clearly x(4;) = r; if X(az) =1 and

() = L)
if x(a;) # 1. Thus the annihilator of 4; is a difference of two subgroups
of G. Namely, Ann(4;) = £, \ M,, where £; = {)x : (x(a;))™ = 1} and
M ={x: x(a;) = 1}.

By Hajés’ theorem there is an i, 1 < ¢ < n such that 4, is a
subgroup of G. This means that af" = e. Now (x(a;))™ = 1 for
each character x of G and so £; = G. Since a; # e, M; # G and
so [M;| < |G|/2. Hence (Ann(4;)) = G as |G \ M;| > |G|/2. Thus
Hajoés’ theorem implies Corrddi’s conjecture in the special case when
the factors are cyclic.

Conversely, assume that Corrddi’s conjecture holds, that is,
(Ann(A4;)) = G for some ¢, 1 < 7 < n. From this it follows that £;
must be G. This gives that (x(a;))™ = 1 for each character x of G.
Therefore a;* = e and so A; is a subgroup of G. Thus Corradi’s con-
jecture implies Hajds’ theorem.

2. Certain p-groups

In this section we verify the conjecture for finite abelian p-groups
generated by two elements. For the proof we need two lemmas.
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Lemma 1. Let G be a finite abelian group and let G be its character
group. If a € G and H is a subgroup of G, then

Z (a) {[’H|, if a € K;
x\a) = .
=) 0, ifa ¢ K,
where
K = ﬂ Ker x.
XEH

Proof. If a € K, then x(a) =1 for each x € # and so

> x(a) = H|.

XEH ’
If a ¢ K, then there is a X' € H for which x'(a) # 1. Multiplying the
elements of H by x' permutes the elements of 7. Hence

> x(a) =D ('x)(@) =Y x'(a)x(a).

XEH XEH XEH
From which we get
0=(1-x(a) Y x(a).
‘ xXeH

As x/'(a) # 1 it follows that
Z x(a) = 0. O

XEH

The next result is a special case of a theorem of E. Wittmann [7].
For easier reference we state it as a lemma.
- Lemma 2. Let p be a prime and let p1,...,pn be roots of unity of
p-power orders. Then py + -+ + pn, = 0 implies that n > p.

We may turn now to the main result of this section.
Theorem 1. Let p be a prime and let G be a finite abelian p-group
generated by two elements. If G = A;...A,, is a factorization of G,
then there is an i, 1 < i < n such that (Ann(A;)) = G, where G is the
character group of G.
Proof. First of all note that in proving the theorem we may restrict our
attention to normed factorizations. Indeed, let a1 € A4,...,an € Ap.
Multiplying the factorization G = A; ... A, by a = al_1 ...a; ! leads to
the normed factorization G = aG = (a7 41) ... (a;'4,). In addition,
it is clear that Ann(A4;) = Ann(a]*4;).

In order to prove the theorem assume the contrary that
(Ann(A;)) # G for each ¢, 1 < ¢ < n. Further assume that n is minimal
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with this property. As (Ann(A;)) # G for each 1, 1 < i < n there is a
maximal subgroup M; of G such that Ann(A;) C M;. By the character
test for factorization Ann(A4,)U...U Ann(4,) = G\ {¢} and conse-
quently M;U.. .UM, = G. The minimality of n in our counterexample
implies that the subgroups My,..., M, are distinct. To keep the no-
tational difficulties in minimum we prove that M,_; # M,. From
the factorization G = A;...A,_2(An_14,) by the minimality of n it
follows that (Ann(A4,_14,)) = §. If we assume that M,_; = M,
then we get the contradiction
Ann(A, 14,) C Ann(A4,_;) U Ann(4,) C M1 UM, = M,_;.

Thus M,,_; # My, or in general M; # M, if i # j, 1 <14, j <n.

As G and G are isomorphic, G is a finite abelian p-group generated
by two elements. Let ®(G) be the Frattini subgroup of G and consider
the factor group G = G/®(G). Clearly, G is an elementary abelian
group of order p?. Let M; denote the image of M; in G. We know that
My, ..., M, are distinct subgroups of order p and G = My U...UM,,.
This gives that My,..., M, are all the subgroups of G of order p and
son=p+1.

We claim that M; N M; = ®(G) for each 1 # j, 1 < 4, j < n.
By definition ®(G) = M;N...NM,. Hence &(g) C M; N M; and
so it is enough to establish that |G : ®(G)| < |G : (M; N M;)|. As
G is a p-group generated by 2 elements, |G : ®(G)| = p?. As M; is a
maximal subgroup of G, |G : M;| = p. From M, # M; it follows that
M; N M; # M; and so from &(G) C M; N M, # M, it follows that
|G« (M My)| > p?.

Next we claim that M;\®(G) C Ann(4;) foreachi, 1 <i<n. Or
equivalently, that from 7; € M;\ ®(G) it follows that 7;®(G) C Ann(A4;)
for each ¢, 1 < i < n. To prove this claim assume the contrary that
there is a £ € 7;®(G) with £ ¢ Ann(A4;). Since 7;8(G) N ®(G) = 0,
§ # € and so from Ann(A4;)U...U Ann(A,) = G\ {e} it follows that
£ € Ann(A;) for some j, j # i. But Ann(A;) C M; which leads to the
contradiction £ € M; N M, = ®(G).

Relying on these results we may argue in the following way. For
each 7; € M; \ ®(G), 7:®(G) C Ann(4;), that is, for each £ € 7;8(G),
£(A;)=0andso

- ¥ - ¥ (w3 ew)-3) ( > ).
ger: 2(9) £ETB(G) a€A; acA; \(€m;8(G)
Each character £ in 7;®(G) is uniquely expressible in the form ¢ = 7;,
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where x € ®(G). Hence

0= 3 m0@|=>{ > mx@]=

a€A; \x€®(G) a€A; \x€®(9)
=Y 7@ | > x@
a€A; x€2(G)

Consider the Dirichlet correspondence between the subgroup lattices of
G and G. Let K be the image of ®(G). By Lemma 1
@(@)), fack
2 X(a):{o fad K
x€2(9) S ’
and hence
0= Z 7;(a).
a€EKNA;
As e € K N A,;, the summation is not empty. The terms are roots of
unity of p-power orders. Thus by Lemma 2 |K N A;| > p for each i,
1 <1< n.

Now we can draw two conclusions about |K|. On one hand the
Dirichlet correspondence gives |K| = |G : ®(G)| = p?. On the other
hand note that the product (K N A;)...(K N A,) is direct and is part
of K. From this and from |K N 4;| > p it follows that |K| > p". Thus
p? = |K| > p™ = pP*! which lands on the 2 > p + 1 contradiction. ¢

3. The n < 4 special case and zero divisors

First we reformulate Corradi’s conjecture. Let G be a finite abelian
group and let G be its character group. To a subset A of G we assign
the subgroup

of G. TUsing the Dirichlet correspondence we can verify that if
(Ann(A))#G, then K #{e} and conversely if K # {e}, then (Ann(A)) #
# G. The new version of Corrdadi’s conjecture now reads as follows.
Let G = A, ... A, be a factorization of the finite abelian group G
and let K, ..., K, be the subgroups assigned to the factors 4,,..., 4,
respectively. Then there is an 7, 1 < ¢ < n such that K; = {e}.
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We say that a subset A of a finite abelian group G is periodic if
there is an element a € G such that a # e and aA = A. The element
a is called a period of A. The periods of A together with the identity
element form a subgroup H of G. Moreover there is a subset B of G
such that A = BH is a factorization of A.

Lemma 3. Let G be a finite abelian group and let G be its character
group. If A is a periodic subset of G, then (Ann(A4)) = G.
Proof. As A is periodic, it admits a factorization of the form A = BH,
where B is a subset and H is a subgroup of G, where the nonidentity
elements of H are the periods of A and so H # {e}. Let M be the
subgroup of G containing each character x of G which is principal on H.
As H # {e}, M #G. By Th. 1 of [6] G\ M C Ann(A). Now from
|G\ M| > |G|/2 it follows that (Ann(A)) = G. ¢
Lemma 4. Let A, B, C be subsets of an abelian group with e € B and
e € C. If the product ABC is direct, then ABN AC = A.
Proof. Let d € ABN AC. Since d € AB, there are a € A and b € B
such that d = ab. Since d € AC, there are a’ € A and ¢ € C such that
d =a'c. Now

d= (a) (b) (e) =(d) (e) (c).

e e e e
€A €B eC €A €B €C

By the directness of the product ABC it follows that a = o, b = e,
e = ¢, that is, d € A. Hence A D ABN AC. The containment AB N
NAC D Ais a consequence of e € Band e € C.

After these preparations we may turn to the main results of this
section.

Theorem 2. Let G = Ay ... A, be a factorization of the finite abelian
group G and let K1, ..., K, be the subgroups assigned to the the factors
A, ..., Apn, respectively. If n < 4, then there is an i, 1 < i < n such
that K; = {e}.

Proof. We assume in the contrary that K; # {e} for each 4, 1 < i <
< n. From this assumption we will draw the conclusion that one of the
factors Ay, ..., Ay, is periodic. By Lemma 3 this is a contradiction.

Case n = 1. Now G = A; and so A; is clearly periodic.

Case n = 2. Now G = A;A4; and x(A4;) = 0 for each character
x of G for which x(K3) = 0. By Th. 1 of [6] this means that A; is
periodic.

Case n = 3. Now G = A1 A3A3 and x(A;) = 0 for each character
x of G for which x(K3) = 0 and x(K3) = 0. By Th. 2 of [6] there are
subsets X,, X3 of G such that A; = XK, U X3K3, where the union
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is disjoint and the products XK, and X3K3 are direct. If X = 0
or X3 = (), then A; is periodic. So we may assume that X, # () and
X5 # 0. Similarly x(A2) = 0 for each character x of G for which
x(K1) = 0 and x(K3) = 0. Thus there are subsets Y1,Y3 of G such
that Ay = Y1 K7 U Y3K3, where the union is disjoint and the products
Y, K, and Y3Kj3 are direct. If Y; = 0 or Y3 = 0, then A, is periodic.
So we may assume that ¥; # 0 and Y3 # 0. As X3 # 0 and Y3 # 0,
there are elements z3 € X3 and y3 € Y3. Multiplying the factorization
G = A1 A, A3 by g = z3 'y 1 we get the factorization

G =gG = (23" 41)(y5 " A1) 4s =

= [:cgl(Xng U X3K3)][y3_1(Y1K1 U Y3K3)]A3.

Here K3 C :cglAl and K3 C y5 ! A,. This contradicts the definition of
factorization as K3 contains a nonidentity element.

Case n = 4. Assume that A;Aj is periodic and the periods to-
gether with e form the subgroup L of G. By Th. 1 of [6] x(A142) =0
for each  for which x(L) = 0. So x(A1) = 0 for each x with x(K2) =0
and x(L) = 0. There are U, U C G such that A; = Uz K2 UUL, where
the union is disjoint and the products are direct. Similarly, there are
Vi,V C G such that Ay = V1K1 UV L. The directness of the product
A1 A, implies that U = 0 or V = () and so A; or Aj is periodic. In the
remaining part we will show that A; A, is periodic.

First we prove that after a suitable relabeling the factors K3 C
C A4. From the factorization G = (A;A3)AsAy it follows that there
are X3, X4 C G such that A;A; = X3K3 U X4K4, where the union is
disjoint and the products are direct. As e € A;As, one of K3 C A1A»,
K, C A;A; holds. In general, for each {k,I} C {1,2,3,4} there is an
i ¢ {k,l} such that K; C ApA;. There are 6 choices for {k,l} and ¢
ranges over 4 values so by the pigeon hole principle there are i, {k,!},
{k',1'} such that K; C AxA; and K; C Ag Ay. If {k,1} and {k',I'} are
disjoint, then 7 ¢ {k,I} U {k',l'} = {1,2, 3,4} is a contradiction. Thus
we may assume that k = k’. Now, by Lemma 4, K; C AgA;N A Ay =
= Aj. By relabeling we may assume that K3 C Ay.

Let a€ A1 As and consider the factorization G=(a"1A4;A42)A3Ay,.
From this it follows that there are X3, X4 C G such that a=1A4;A4; =
= X3K3UX4K4, where the union is disjoint and the product are direct.
Consequently

K3 C (a_lAlAz) or K4C (a"lAlAg).
If K3 C (a=1A143), then K3 C (a™'A143)NAy = {e} is a contradiction
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and so K4 C (a7'A;A;) for each a € A;A;. By Lemma 1 of [2], A1 4,
is periodic. ¢

The group ring Z(G) consists of the formal linear combinations of
elements of G with integer coefficients. We can view elements of G as
indeterminates and the elements of Z(G) as multivariable polynomials.
The addition and multiplication in Z(G) can be defined accordingly
using the multiplication in G when we multiply indeterminates. A
character of G can be extended linearly to be a character of Z(G). The
following fact is a consequence of the standard orthogonality relations
of the characters. If A and B are elements of Z(G) and x(4) = x(B)
for each character x of G, then A = B.
Theorem 3. Let G = A;...A,, be a factorization of the finite abelian
group G and let Ky,...,K, be the subgroups assigned to Ai,..., A,
respectively. If p > n, where p is the least prime divisor of |G|, then
K; = {e} for somei, 1<i<n.
Proof. Assume the contrary that K; # {e} and consequently there
is an element z; € K; \ {e} for each i, 1 < i < n. Let us form the
product (e — z1)...(e — z,) which is an element of Z(G). We claim
that (e —z1)...(e — z,) = 0. Since

X((e——xl)...(e—xn)) =xle—z1)...x(e —z,) =

— (1= x(e1) - (1~ x(an)
it is enough to show that for each character y of G there is an z; with
x(z;) = 1. This obviously holds for the principal character. If y is not
the principal character of G, then from
0=x(G) = x(41.. Ap) = x(A41) ... x(4An)

it follows that x(4;) = 0 for some i, 1 < i < n. Now z; € K; C Kery
gives that x(z;) = 1.

By [3] the equation (e — z1)...(e — z,) = 0 implies that |z;| < n
for some ¢, 1 <9 < n and so we get the contradiction p < |z;| < n. ¢
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