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" Abstract: This continuation of our paper *Equivalence of shape fibrations
and approximate fibrations” explores further some basic properties of shape
and approximate fibrations of arbitrary topological spaces using relations.
Our method is to use relations with smaller and smaller images of points. The

paper is self-reliant and does not require extensive knowledge of relations.

1. Introduction

In the paper "Equivalence of shape fibrations and approximate
fibrations” [4], the author has introduced an intrinsic definition of app-
roximate fibrations using relations with smaller and smaller images of
points. These approximate fibrations are formally similar to approxi-
mate fibrations of Coram and Duvall [5]. However, by replacing single-
valued continuous functions with relations i. e., multi-valued functions
with non-empty images of points, we achieved greater flexibility. The
use of multi-valued maps in shape theory was initiated by J. Sanjurjo
[16].

The main result in [4] proves that the approximate fibrations de-
fined either with functions or with relations agree with Mardesié’s shape
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fibrations [13]. The goal in this paper is to explore basic properties of
approximate fibrations. Our results are shape theoretic versions of stan-
dard theorems about fibrations. Here we shall consider the following
topics: fibrations as approximate (X, 7)-fibrations; dependence of app-
roximate (X, 7)-fibrations on the class A of spaces and on the triple 7
of classes of relations; generalizations of approximate (X, T)-fibrations
suggested by Chapter III in [10] and S. Ungar’s notion of a shape bun-
dle [18]; approximate fibrations with dense images; and restrictions,
compositions, and products of approximate fibrations.

In the second part of this paper we shall deal with other properties
of approximate fibrations such as: approximate fibrations and (shape)
dominations; preservation of (shape) pathwise connectedness, (shape)
stability, and (shape) contractibility under approximate fibrations; and
the almost unique path lifting property.

Of course, some of these themes have been studied by Coram and
Duvall for their approximate fibrations and also for shape fibrations
by Mardesi¢, Rushing, Jani, Keesling, Yagasaki, Haxhibeqiri, and oth-
ers. However, it appears that with our approach the assumptions in
theorems are weaker and our proofs resemble more the proofs of corre-
sponding results for fibrations.

Absolutely no expertise on relations is necessary to follow this
paper. Anybody unfamiliar or uncomfortable with relations should
replace them with functions and exercise slightly more care at places
where inverses appear to get special functional versions of our results.
For this the reference [3] might be useful. However, since the inverse of
a function is more often a relation rather than a function, insisting on
functions is not natural for our approach because it makes statements
and proofs more complicated and less general.

2. Recalls from [4]

In this section we shall recall several important definitions and
results from [4] in order to make this paper self-reliant as much as
possible.

For the definition of approximate fibrations we need numerable
coverings, small relations, and the notion of closeness for relations.

2.1. Numerable coverings. An open covering o of a space Y is
numerable if it has a partition of unity [1]. Let Cov(Y') denote the
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collection of all numerable coverings of a topological space Y. With
respect to the refinement relation > the set Cov(Y') is a directed set.

Let 0 € Cov(Y). Let o denote the set of all numerable coverings
of Y refining o while o* denotes the set of all numerable coverings 7
of Y such that the star s¢(7) of 7 refines o. Similarly, for a natural
number n, 0*" denotes the set of all numerable coverings 7 of Y such
that the n-th star st™(7) of 7 refines o.

2.2. Relations. Let X and Y be topological spaces. By a relation
F: X —Y we mean a rule which associates a non-empty subset F(z)
of Y to every point z of X. .

For a relation F' : X — Y and a subset A of X, let F(A4) =
= U{F(z)|z € A}. Let F~! denote the relation from F(X) into X
defined by F~*(y) = {z € X |y € F(z)}, for every y € F(X).

Let G be a class of relations. In order to state that a relation
F:X =Y is from the class G we shall say that F is a G-relation.

We reserve R, S, and M for classes of all relations, single-valued
relations, and single-valued continuous relations, respectively. We shall
use relation, function, and map instead of R-relation, S-relation, and
M-relation, respectively. Unless stated otherwise, we shall use u, o,
and o to denote the triples (M, M, M), (R, R, R), and (S, S, S),
respectively. The class of all topological spaces is denoted by 7 while
P stands for the class of all polyhedra.

2.3. Small relations. Let F : X — Y be a relation and let o €
€ Cov(X) and B € Cov(Y). We shall say that F is an («, B)-relation
provided for every A € « there is a By € @ with F(A) C By.

Now, we define that F' is a [(-relation provided there is an o €
€ Cov(X) such that F is an (e, §)-relation. On the other hand, F is
called a weak [(-relation provided for every z € X there is a B, € 3
with F(z) C B,.

We shall frequently use the obvious property of maps f : X —+ Y
that they are o-relations for every ¢ € Cov(Y). Moreover, if 0 €
€ Cov(Y) and a € Cov(X) refines f~1(c), then f is an (o, o)-relation.

The fact that a relation F is at the same time from the class
G of relations and that it is a (weak) S-relation will be expressed by
saying that it is a (weak) BG-relation. The term (a, B)G-relation has
an analogous meaning.

The following lemma will be used to estimate the size of the com-
position of relations. Recall that the composition G o F' of the relations
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F:X —Y and G:Y — Z is the relation from X into Z defined for
every £ € X by
GoF(z)={2€Z|(yeY) yecF(z)&zecGy)}.

Lemma 2.1. Let o, 8, and v be numerable coverings of spaces X,
Y,and Z. Let G:Y — Z be a (B, v)-relation, let F : X — Y bea
relation, and let H : X — Z denote the composition of F' and G.

1. If F is an (o, ()-relation, then H is an (o, v)-relation.

2. If F is a (weak) B-relation, then H is a (weak) y-relation.

2.4. Proximities for relations. Let F, G : X — Y be relations and
let o € Cov(Y). We shall say that F' and G are o-close and we write
F Z @ provided for every = in X there is an S, € o with F(z) UG(z) C
C Sz.

On the other hand, let F, G : X — Y be relations, let o €
€ Cov(X), and let o € Cov(Y). We shall say that F' and G are (a, 0)-

near and we write F' = @ provided for every member A of the covering
a there is a member Sy4 of o with F(A) U G(A) C S4. Moreover, F

and G are o-near and we write F = G provided there is a numerable
covering « of X such that F and G are (o, o)-near.

Observe that o-near relations are also o-close. The next lemma
shows that the converse is almost true for o-relations.
Lemma 2.2. Let o be a numerable covering of a space Y. If two o-
relations F' and G from a space X into Y are o-close, then they are
also st(o)-near.

2.5. Homotopy. Let F' and G be relations from a space X into a
space Y. It is customary to call a relation H from the product X x I
of X and the unit segment I = [0, 1] into Y such that F(z) = H(z, 0)
and G(z) = H(z, 1) for every z € X a homotopy that joins F' and G.
We say that F' and G are homotopic and we write F ~G.

Let 8 be a numerable covering of Y. If a homotopy H : X x I —
— Y is a (weak) (-relation, then we shall say that H is a (weak) -
homotopy, that F and G are (weakly) B-homotopic, and we shall write

F éw G for weak homotopy and F £ G for homotopy.

2.6. Fibrations and approximate fibrations. Let 7 = (G, H, K)
be a triple of classes of relations and let X be a class of topological
spaces. A map p: F — B is said to be an (X, 7)-fibration provided for
every a € Cov(B) and every ¢ € Cov(E) there are § € ™ and € € 6T
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such that for every X € X, every eG-relation G : X —+ E, and every
BH-relation H : X x I — B with Hy = po G there is a §K-relation
K:XxI—Fwith Kgy=GandpoK =H.

Observe that a map p : £ — B is a Hurewicz fibration if and only
if it is a (7, u)-fibration while it is a Serre fibration if and only if it is
a (P, u)-fibration.

A map p: E — B is called an approzimate (X, 7)-fibration pro-
vided for every o € Cov(B) and every § € Cov(FE) there is a 8 €
€ Cov(B) and an ¢ € Cov(E) such that for every member X of X,
every eg-relation G : X — E, and every fH-relation H : X x I — B

with Hy —p oG there is a §K-relation K : X x I — E with K| ia
and poK=H.

An approximate (7, g)-ﬁbratlon will be called simply an approzi-
mate fibration. We shall prove later in §5 that approximate fibrations
agree with approximate (7, o)-fibrations and with shape fibrations [4,
58].

There are three other forms called approzimate (X, 7)C-fibrations,
approzimate (X, T)D-fibrations, and approzimate (X, 7)CD-fibrations.
We get them from the above definition by replacing either only the
first condition, only the second condition, or both the first and the
second conditions on closeness of relations with the equality of relatlons
respectively.

Observe that a map p : E — B is an approximate fibration in
the sense of Coram and Duvall [5] if and only if it is an approximate
(T, n)CD-fibration.

Finally, by replacing in the above definitions the relation of close-
ness with the relation of nearness we get four additional versions which
we denote in the same way using the word proximate instead of the
word approximate. It is most fortunate that these two groups coincide
and that for a map p: E — B and for ¢ either (R, R, R) or (S, S, S)
the four versions of approximate (77, ¥)-fibrations coincide (see [4, The-
orems 6.1 and 6.2]).

2.7. Proximate and approximate movability. Let F and G be
classes of relations and let X be a class of topological spaces. Let w =
= (F, G). A space B is called prozimately (X, w)-movable provided for
every o € Cov(B) there is a 7 € Cov(B) such that for every X € X and
every TJF-relation F : X — B there is a oG-relation G : X —+ B with
FZG. On the other hand, a space B is approzimately (X, w)-movable
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provided for every o € Cov(B) there is a 7 € Cov(B) so that for every
X in X, every TF-relation F : X — B, and every o € Cov(B) there is
a oG-relation G : X — B with F ZG.

Recall [13] that an approzimate polyhedron is a topological space
Y with the property that for every o € Cov(Y) there are a polyhedron
Pandmapsu:Y — Pandd: P —Y with idy =d o u. The following
is Th. 5.1 in [4].
Theorem 2.1. Let w = (R, M). Let T be the class of all topological
spaces. A space Y is an approzimate polyhedron iff it is approximately
(T, w)-movable.

3. Fibrations vs. approximate fibrations

In this section we shall explore under what conditions will a fi-
bration be an approximate fibration. These conditions include the as-
sumption that the base space B is an approximate (X, p)-plank which
we define in the following definition.

Let 7 = (G, H, K) be a triple of classes of relations. Let & be a
class of topological spaces. A space Y is called an approzimate (X, 7)-
plank provided for every a € Cov(Y) there is a § € Cov(Y') such that
for every space X from the class X, every (fG-relation G : X — Y,

and every GH-homotopy H : X xI — Y with HogG there is an
aK-homotopy H: X x I - Y with Ko =G and K=H.
Theorem 3.1. Let A, B, C, D, and £ be classes of relations and let
X be a class of spaces. Let A = (A, B,C), v = (A, D,C), and 7 =
=(&,B,D). If p: E — B is an (X, v)-fibration, the space B is an
approzimate (X, w)-plank, and the class po A is contained in the class
£, then the map p is also an approzimate (X, A)-fibration.
Proof. Let o € Cov(B) and § € Cov(E) be given. Since pis an (X, v)-
fibration, there are £ € ot and n € 6% such that for every space X in X,
every nA-relation G : X — E, and every £ B-homotopy D : X xI — B
with Dg = p o G there is a 6C-homotopy K : X x I — E with Ky =G
and po K = D.

We utilize now the assumption that B is an approximate (X, 7)-
plank to select a § € Cov(B) such that for every space X from the
class X, every @€-relation L : X — B, and every BB-homotopy H :

: X xI — B with HOQL there is a ¢éD-homotopy D : X xI — B
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with Dy =L and D=H. Let ¢ € Cov(E) be a common refinement of
n and p~*(f). ¢

Example 3.1. Let E = AU B, where A and B are subsets of R® given
by

{(0,9, 1) -1<y <1}
and

{(o,y,o>|—1Sy51}u{(x,sin§,o>|o<ws%}.

Let p: E — B be a projection given by p(z, y, 2) = (z, y, 0) for every
(z, y, 2) € E. Tt is easy to check that p is a Hurewicz fibration, both
E and B are approximate polyhedra, and p is not a shape fibration.
This example shows that Cor. 3 in [13] is not true. The reason for
this according to Th. (3.31) is that the space B is an approximate
polyhedron which is not an approximate (7, g)-plank.

In order to get some examples of approximate (N, u)-planks,
where N denotes the class of all normal spaces, we need the follow-
ing two definitions.

In the literature there is another notion of size for homotopy based
on the idea that tracks of points are included in members of a given
covering on the codomain.

Let X and Y be spaces and let § € Cov(Y). A relation H :
: X x I =Y will be called a weak track S-homotopy provided for every
z € X there is an S; € B with H({z} x I) C S;. Two relations F' and

G are weakly track B-homotopic and we write F éw G provided there is
a weak track S-homotopy H : X x I — Y joining them.

Let 7 = (A, B, C) be a triple of classes of relations. Let X be
a class of spaces. A space Y is called an approzimate (X, 7)-bridge
provided for every o € Cov(Y') thereis a 8 € Cov(Y') such that for every
space X € X, every fA-relation F' : X — Y, and every 3B-relation

G:X — Y such that GEF there is a weak track aC-homotopy H :
X><I—+YW1thH0=FandH1=G

Observe that [11, p. 111] implies that every absolute neighbour-
hood retract for the class of all metrizable spaces is an approximate
(T, p)-bridge.
Lemma 3.1. Every approzimate (N, p)-bridge Y is an approzimate
(N, p)-plank.
Proof. Let a numerable covering o of Y be given. Let n € o*. Since
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the space Y is an approximate (N, p)-bridge, there is a 7 € Cov(Y)
such that for every normal space X and all maps f: X — Y and g :
: X =Y with f<g there is a weak track n-homotopy k: X X I =Y
with kg = f and k; = g. Then 7 is the required numerable covering.

Indeed, consider a normal space X and maps f : X — Y and
g:XxI— Y such that f=gg. Let amap k: X x[-1,0] = Y
be a weak track n-homotopy joining f and go. Define a homotopy
m:X x[-1,1] =Y askon X x [-1, 0] and as g on X x [0, 1].

The collection § = g~*(n) is a numerable covering of the product
X x I. By [7, p. 358], there is a numerable covering £ of X and a
function r : € — {2, 3,4, ...} such that every set U x [(i —1)/rU,
(i4+1)/rU] is contained in some D € §, where U € £ and i =
=1,...,7U —1. Let 7 = {my} be a locally finite numeration of . De-
fine a function p : X — (0, 1) by the rule p(z) = inf{1/rU | 7y (z) # 0},
for every z € X. Since the function p is lower semi-continuous and the
space X is a normal space, by [[Jp. 442]eng, there is a map ¢ : X —
— (0, 1) such that g({z} x [0, ¢(z)]) is contained in some member of 7
for each z € X.

Define a map h: X x I — Y by the formula

m(z, 2t/q(z) — 1), 0<t<q(z)/2,
h(z, 1) = § m(z, 2t — q(z)), g(z)/2 <t < q(z),
m(z, t), g(z) <t <L

Then h(z, 0) = m(z, —1) = f(z). If0 <t < ¢(z)/2, then s = 2t/q(z) —
—1liesin [—1, 0], so h(z, t) = m(z, s) and g(z, 0) are contained in some
member of . On the other hand, g(z, 0) and g(z, ¢) are also in some
member of 7. Hence, a member of ¢ contains both h(z, t) and g(z, t).

The case ¢(z)/2 <t < ¢(z) is verified similarly. ¢

4. Dependence on classes of spaces

This section examines how the definition of an approximate (X, 7)-
fibration depends on the class X. The answer is offered by the following
concept of approximate domination for classes of spaces.

Let X be a space, let Y be a class of spaces, and let m = (A, B) be
a pair of classes of relations. Let o be a numerable covering of X. We
say that the space X is approzimately (7, o)-dominated by the class Y
provided there is a space Y in Y and a g A-relation A : Y — X such
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that for every 7 € Cov(Y) there is a 7B-relation B : X — Y with
AoBZidy . ,

If a space X is approximately (7, o)-dominated by Y for every
o € Cov(X), then the space X is said to be approzimately n-dominated
by the class Y.

A class X of spaces is approzimately m-dominated by the class of
spaces ) provided every member of X' is approximately m-dominated
by V.

By replacing the closeness relation with the nearness relation we
shall get another version of previous notions. It follows from Lemma
2.2 that this version agrees with the original.

For classes A and B of relations, let Ao B and A x B denote all
compositions A o B and all products A x B where A is a relation in A
and B is a relation in B.

Theorem 4.1. Let A, B, C, D, and V be classes of relations and
let X and Y be classes of topological spaces. Let G = Co (V x idy),
F=Bo(Dxid;), E=AcD, A=(A,B,G),v=(E, F,C), and m =
= (D, V). If a map p: E — B is an approzimate (Y, v)-fibration and
the class X is approzimately 7w-dominated by the class ), then p is also
an approzimate (X, A)-fibration.

Proof. Let an oo € Cov(B) and a § € Cov(E) be given. Let £ € o*
and m € ¢6*. Since p is a proximate (Y, v)-fibration, there is a 3 €
€ £1 and € € 7T with the property that for every space Y in Y, every
e€- relatlon S:Y — E, and every fF-relation F : Y x I — B with

Fo = p o S there is a mC-relation C : Y x I — F such that Cy = S
and F : po G
Let a space X in &, an e A-relation A : X — F, and a 3B-relation

T:X xI— Bwith Ty é po A be given. Pick a numerable covering
n of X and a stacked numerable covering g of X x I over n such that A

is an (7, €)-relation, Ty néﬁ po A, and B is a (g, §)-relation. Since the
class X is approximately 7m-dominated by the class ), there is a space
Y in Y and an nD-relation D : Y — X such that for every s € Cov(Y)

there is a kV-relation V : X — Y with idxy = DoV. Put § =
= AoDand F =T o (D xidy). Observe that S is an e€-relation, F is

a fF-relation, and Fj é po S. By assumption, there is a wC-relation
C:Y x I — E such that S = Co and F é poC. Pick a numerable
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covering k of Y and a stacked numerable covering ¢ € ot of Y x1I

over k such that S Z C,, F o poC, and C is a ((, 7)-relation.

Choose a kV-relation V as above and put G = C o (V x idy). Notice
that G : X x I — E is a mG-relation and therefore also a dG-relation.
Moreover, Go=CooVEZSoV=AoDoV=Aand

poG=poCo(Vxidy)EFo(Vxidf)=To((DoV)xids)2T.

Hence, A=Gy and T=poG. ¢

Theorem 4.2. Let w be a pair (R, M). The class T of all topological
spaces is approzimately w-dominated by the class P of all polyhedra.
Proof. Let a topological space X and a numerable covering o of X
be given. Let 7 € o*. Let N(7) be the nerve of the covering 7, let
P = |[N(7)| be a geometric realization of N(7), and let ¢ : X — P
be a canonical map. Define D : P — X by the following rule: If an

z € P lies in the interior of a simplex of P with vertices Uy, ..., Up,
then D(z) = Uy N...NUy. The relation D is clearly a o-relation and
idy ZDog. ¢

Corollary 4.1. A map p : E — B is an approzimate (P, o)-fibration
if and only if it is an approzimate (T, p)-fibration.

5. Dependence on classes of relations

The following result explores in what way does the definition of
an approximate (X, 7)-fibration depend on the triple 7 = (A, B, C) of
classes of relations.

Recall that for a class X of spaces, X x I denotes the class of all
products of members of X with the unit closed segment I.

Theorem 5.1. Let A = (A4, B,C) and v = (D, &, F) be triples of
classes of relations. Let n = (A, D), k = (B, ), and 7 = (F, C).
Let X be a class of spaces and let Y = X xI. Ifp: B — B is
an approzimate (X, v)-fibration from a space E which is both proz-
imately (X, n)-movable and prozimately (Y, T)-movable into a prowi-
mately (Y, k)-movable space B, then p is also an approzimate (X, A)-
fibration.

Proof. Let numerable coverings o and ¢§ of spaces B and E be given.
Let ¢ € o and m € &* Np~1(£)*. Since E is proximately (Y, 7)-
movable, there is a ¢ € 71 such that for every space X € X, every
- oF-relation F' : X x I — E is m-close to a wC-relation. Now we use the
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assumption that the map p is an approximate (X, v)-fibration to select
o € o7 and ¢ € &1 such that for every X € X, every oD-relation D :

: X = E, and every (&-relation S : X x I — B with S, ép o D there

is a pF-relation F : X x I — E which satisfies Fp=D and S £ poF,
Let w € (* and p € ot Np~!(w)*. Since F is also proximately (X, 7)-
movable, there is an € € A% such that for every space X € X, every
eA-relation A : X — FE is p-close to a pD-relation. Finally, we utilize
the fact that B is a proximately (), x)-movable space to pick a § € wt
so that for every space X € X, every BB-relation T : X x I — B is
w-close to an w&-relation. Then S and ¢ are numerable coverings that
we were looking for. ¢

From Theorems 5.1 and 2.1 we get the following two corollaries.
Corollary 5.1. Let X be a class of spaces. Let m = (R, M). Ifp :
: B — B is an approzimate (X, g)-fibration and E is an approzrimate
polyhedron or approzimately (X X I, w)-movable, then p is also an app-
rozimate (X, u)-fibration.
Corollary 5.2. Let X be a class of spaces. If a mapp : E — B
is an approximate (X, p)-fibration and both E and B are approzimate
polyhedra, then the map p is also an approzimate (X, o)-fibration.
Theorem 5.2. Let X be a class of spaces. A mapp: E — B is an
approzimate (X, g)-fibration if and only if it is an approzimate (X, o)-
fibration.
Proof. (=): Let o € Cov(B) and § € Cov(E) be given. Since p is an
approximate (X, g)-fibration, there are 8 € at and £ € § such that for
every space X in X, every e-relation G : X — E, and every S-relation

H:X xI— Bwith poGZ Hy, there is a é-relation K : X x I — E
with KogG and po K=H.

Consider a space X from the class X, an e-function g : X — E,
and a S-function h : X x I — B with hg £ pog. Select a relation K
as above. Let k : X x I — E be a single-valued selection of the relation
K. Clearly, k is a d-function, kg 2 g,and pok=h.

(<=): Let @ € Cov(B) and § € Cov(E) be given. Let m €
€ o” and 7 € ¢*. Since p is an approximate (X, o)-fibration, there
are § € 7" and £ € 71 such that for every space X from the class
&, every e-function g : X — FE, and every S-function h: X x I — B
with poggho, there is a 7-function k: X x I — E with kg=g and
pokZh.
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Consider a space X in X, an e-relation G : X — FE, and a (-

relation H : X x I — B with HyZpoG. Let g: X — E and h :
: X x I —+ B be single-valued selection functions for G and H, respec-
tively. By assumption, there is a 7-function & : X x I — E with kg Zg

and pok=h. Clearly, ko2 G and po k< H. 0

6. Generalizations of approximate fibrations

In this section we shall introduce some classes of maps related to
approximate fibrations and explore their relationships.

Let m = (H, K), 7 = (F, H, K), and x = (F, G, H, K) for classes
F, G, H, and K of relations. Let X be a class of spaces and let &), be
a class of pairs (X, A) consisting of a space X and a subspace A of X.

A map p: E — B is an approzimate (X, 7)-bundle provided for
every 6 € Cov(FE) and every a € Cov(B) there is a § € Cov(B) such
that for every space X in X and every fH-relation H : X — B there
is a §K-relation K : X — E with po K =H.

A map p: E — B is an approzimate (X, 7)-bundle provided for
every § € Cov(E) and every a € Cov(B) there is a § € Cov(B) and an
e € Cov(E) such that for every pair (X, A) in X,, every eF-relation

F: A — FE, and every fH-relation H : X — B with po I £ H|, there
A

is a §KC-relation K : X — E with K|AiF and po K=H .

A map p : E — B is an approzimate (X,p, x)-fibration provided for
every § € Cov(E) and every o € Cov(B) there is a § € Cov(B) and an
e € Cov(FE) such that for every pair (X, A) in X,, every eF-relation F :

: X — E, every eG-homotopy G : AxI — E with GoéF‘A, and every
BH-homotopy H : X x I — B with pOFgHO and pOG£H|AxI’
there is a §/C-homotopy K : X x I — E with KogF, K[AngG,

and po K=H.

For a class X of spaces, let Ap, and A}, denote classes of pairs
{(X,0)| X € X} and {(X x [0,1], X x {0}) | X € X}.

Observe that a map p : E — B is an approximate (X, 7)-fibration
if and only if it is an approximate (X, 7)-bundle. Also, it is an app-
roximate (X, 7)-bundle if and only if it is an approximate (Xp,, 7)-
bundle. Moreover, the map p is an approximate (X, 7)-fibration if and
only if it is an approximate (Xp,, x)-fibration.



On properties of approzimate fibrations, I 223

In the first result in this section we shall show that approximate
(X, o)-fibrations with P-dense image for the class X of spaces with
trivial shape is an approximate (X, g)-bundle, where o = (S, S, S)
and ¢ = (S, S). The analogous property is shared by fibrations (see
(17, p. 74]).

A subspace A is P-dense in a space B provided for every z € B
and every o € Cov(B) there is a member S of o such that z € S and
SN A#0. In other words, A is P-dense in B provided the star st(A4, o)
of A with respect to every numerable covering of B agrees with all of B.

Observe that a dense subset is also P-dense. In the next lemma
we shall show that for normal spaces the converse is also true.
Lemma 6.1. FEvery P-dense subset A of a normal space B is dense.
Proof. Let € B and let U be an open neighbourhood of z in B. Since
B is regular, there is an open neighbourhood V of z in B such that the
closure V' of V is contained in U. Let o = {U, B\ V}. This is a finite
open covering of B. Since the space B is normal, o is a numerable
covering of B [1]. By assumption, there is a member S of ¢ such that
z € § and SN A # (. But, the first requirement on S can be fulfilled
only for S = U. Hence, U N A # ) so that A is indeed dense in B. ¢

Let G be a class of relations. Recall that a space E is G-contractible
provided for every ¢ € Cov(E) there is a §G-homotopy h: E x I — E
such that hg is the identity map on F and h; is a constant map of E
into a point of E. We use contractible for M-contractible. One can
show (see [cer-tv]) that a space has trivial shape if and only if it is
either S-contractible or R-contractible.

Theorem 6.1. If X is a class of S-contractible spaces, then every
approzimate (X, o)-fibration p : E — B with a P-dense image is an
approzimate (X, o)-bundle.

Proof. Let an o € Cov(B) and a § € Cov(E) be given. Select a
B € Cov(B) and an ¢ € Cov(E) using the assumption that p is an
approximate (X, o)-fibration.

Consider a space X in X and a S-function A : X — B. Pick a
¢ € Cov(X) such that h is a (£, §)-function. Since X is S-contractible,
there is a {S-homotopy m : X x I — X such that mg is a constant
map of X into a point z of X and m; is the identity map on X. The
composition H = h om is a fS-homotopy such that Hy is the constant
map of X into the point b = h(z) and H; = h.

Since the image p(F) is P-dense in B, there is a member A of 8
such that b € A and ANp(E) # 0. Choose an e € E with p(e) € A.
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Let F': X — E be a constant map into the point e. Then po FQHO.
By assumption, there is a §S-homotopy K : X xI — E with po K =H.
The relation & = K, satisfies pok = po K; £ H, = h. Hence,
pok=h.0

In analogy with approximate (X, 7)-fibrations the notion of an
approximate (X,, 7)-bundle has its C, D, and CD versions. The fol-
lowing theorem is similar to Th. (6.2) in [4]. It can be proved with same
techniques.

Recall that a subset A of a space X is P-embedded provided for

every o € Cov(A) there is a § € Cov(X) such that the restriction 8|4
of B to A refines o (see [1]).
Theorem 6.2. Let 9 be either (R, R, R) or (S, S,S). Let A, be
a class of pairs (X, A), where X is a space and A is a P-embedded
subset of X. For a map p : E — B the four notions of approzimate
(Xp, U)-bundle coincide.

The situation with stronger forms of approximate (X, x)-fibra-
tions is slightly more complicated. We shall need later the following C'D
version and the next theorem which is just a part of a more elaborate
result resembhng the previous theorem.

Let w = (F, G, H, K) and let X, be a class of topologlcal pairs.
A map p: E — B is an approzimate ( , w)C D-fibration provided for
every § € Cov(FE) and every a € Cov(B) there is a 8 € Cov(B) and an
e € Cov(E) such that for every pair (X, A) in A}, every eF-relation
F: X — E, every eG-homotopy G : A x I — E with Go = F|,, and
every SH-homotopy H : X x I — B with poF = Hy and poG =
= H| ., there is a 6K- homotopy K : X x I — E such that Kg = F),

K|, =G, and poK=H.
Theorem 6.3. Let w be either (R, R, R, R) or (S, S, S, S). Let &,
be a class of pairs (X, A), where X is a space and A is a P-embedded
subset of X. A map p : E — B is an approzimate (Xp, w)-fibration if
and only if it is an approzimate (Xp, w) CD-fibration.

For a simplicial complex X and each m > 0, let X™ denote the
m-dimensional skeleton of X.
Lemma 6.2. Let X be a finite simplicial complex and let A be a
subcomplex of X. Let Y be a space and let £ be a numerable covering
of Y. Suppose that h: X™™ ! —Y is a &-relation, g: AxI —Y isa
ER-homotopy with g(z, t) = h(z) for every z in A™ ! and every t in
I, and for every m-simpler o of X not in A there is a {R-homotopy
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g° : 0 x I =Y such that g°(x, t) = h(z) for every z in the boundary
0o of o and every t in I. Then the relation k : (AUX™) x T =Y
‘obtained by pasting g on Ax I and g°’s on o X I for each m-simplez
o of X not in A is a st(€)-relation.

Proof. Pick an n > 0 such that g on A x I and g° on o % T for each
m-simplex o of X not in A takes 7-close points to a same member
of £&. Let T be a barycentric subdivision of K,, = AU X™ with the
property that each simplex of T has diameter less than 7. Let *T be
the open covering of K,, by open stars of vertices of T'. Let m > 0 be
the Lebesgue number for the open covering #7 x w, where w is an open
covering of I with sets of diameter less than 7.

Now, if the points (z, t), (y, s) € Ky x I are m-close, then there
is a vertex v of T and a U € w such that both x and y lie in the open star
*x+ of v in T and both ¢ and s lie in U. Hence, there are m-simplexes
o and 7 of T with v as a joint vertex such that z € ¢ and y € 7. Since
diameters of o and 7 are less than 7, there are members M, M,, and
My of & such that k(z, t), k(v, t) € My, k(y, s), k(v, s) € My, and
k(v, t), k(v, s) € My. Hence, k(z, t), k(y, s) € st(My, &) € st(§). ¢

Let Q be the class of all finite polyhedra and let &, be the class
of all finite polyhedral pairs. For an integer n > 0, let Q" denote all
members of @ with dimension at most n while Q; denotes all members
(X, A) of @, with dim(X \ A) < n. Also, let sdr Q7 denote all members
(X, A) of Q; such that A is a strong deformation retract of X. Recall
that A™ denotes the n-simplex and S™~! the boundary (n — 1)-sphere.

~ Using Lemma (6.2) and an inductive argument from Chapter III
of Hu’s book [10] one can prove the following theorem.
Theorem 6.4. Let ¥ denote either (R, R, R) or (S, S, S) and let
w denote either (R, R, R, R) or (S, S, S, S), respectively. For an
arbitrary map p : E — B and an integer n > 0, let us make the
following statements.
(1)n The map p is an approzimate (Q™, V)-fibration.
(i), For each 0 < m < n, the map p is an approzimate
({A™}, 9)-fibration.
(iii), For each 0 < m < n, the map p is an approzimate
({(A™, S™=1)}, w)-fibration.
(iv)n The map p is an approzimate (Qy, w)-fibration.
(v)n The map p is an approzimate (sdrQp, ¥)-bundle.

Then (i)n = (it)n = (Wi)n = (W = (V)n and (V)nt1 = (i)n.
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7. Approximate fibrations with dense images

It is well-known that a fibration into a pathwise connected space
must be onto. This section gives an analogue of this statement for
approximate fibrations.

Let D be a class of relations. Let F be a space and let X and YV
be subsets of F. A D-relation A : I — F will be called a D-path (in
E). It XN A(0) # 0 and Y N A(1) # 0, then we say that A is a D-path
from X to Y or that it joins X and Y. When X = {z} and Y = {y}
for z, y € E and a D-path A joins X and Y, then we say that A joins
z and y or that it is a D-path from z to y. For M-path, S-path, and
R-path we use shorter names path, track, and trail, respectively.

A space B is D-pathwise connected provided for every pair z, y €
€ B and every o € Cov(B) there is a ¢D-path H : I — B joining z
and y.

The following theorem is a shape theory version of the fact that
a fibration into a pathwise connected space is a surjection.

Let C denote the class of all constant single-valued functions. Let
J denote a class consisting only of a single element space {x}.
Theorem 7.1. Let D be a class of relations. Let 7 = (C, D, R). If
p : E — B is an approzimate (J, 7)-fibration and B is D-pathwise
connected, then p(E) is P-dense in B.

Proof. Let a point z € B and a numerable covering o of B be given.
Let § = p~*(c). Let X = {x}. Since p : E — B is an approximate
(J, T)-fibration, there is a B € Cov(B) with the property that for every
map g : X — E, and every 8D-relation H : X x I — B with Hy Qp og
there is a d-relation K : X x I — E such that ¢g= Ky and H2po K.

Let z € E and y = p(z). Since B is D-pathwise connected, there
is a BD-relation M : I — B such that y € M(0) and = € M(1). Define
g:X - FEand H: X xI — Bby g(%) =z and H(x,t) = M(¢) for
every t € I. Clearly, g is a constant map from a member of the class X
into E, H is a BD-relation, and HyZpog.

By assumption, there is a dé-relation K : X x I — E such that
gii—KO and H=Zpo K. In particular, H; Zpo K. But, ¢ € H;(X)
and po K1(X) is a subset of p(E). The relation Hy=Zpo K; implies
that some member A of o must contain both Hy(*) and po Ki(x).

Hence, A contains z and it intersect the set p(E). In other words, p(E)
is P-dense in B. ,
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Corollary 7.1. Let B be a trackwise connected normal space. If p :
: B — B is an approzimate fibration, then p(E) is dense in B.

8. Approximate fibrations and pathwise connected-
ness

The main goal in this section is to prove for approximate fibrations
an analogue for the following property of fibrations. If a fibration has
a pathwise connected base and some fiber is pathwise connected, then
its total space is also pathwise connected (see [17,p. 104]).

A map p: E — B is normal provided for every a € Cov(FE) there
is a B € Cov(B) such that p~1(st(b, B)) C st(p~1(b), ) for every b €
€ B.

Let f: E — B be a map and let A be a subset of B. We shall
say that f is normal at A provided for every § € Cov(E) there is an
a € Cov(B) such that

7N (st(A, ) C st(£~1(A), 8).
On the other hand, f is strongly normal at A provided for every neigh-
bourhood N of f~!(A) in E there is an o € Cov(B) such that
f~Y(st(4, @)) C N.

Observe that a normal map f : E — B is normal at each subset
of B.

" Theorem 8.1. Letp: E — B be an approzimate (J, o)-fibration. If
the base B is trackwise connected and there is a point b € p(F) such
that p is normal at {b} and the fiber F, = p~1(b) is trackwise connected,
then the total space E is also trackwise connected. :
Proof. Let d € Fy. It suffices to show that for every £ € Cov(E) and
every e € E there is a é-track w : I — E such that w(0) = d and
w(l) =e.

Let an e € E and a ¢ € Cov(E) be given. Let § € £*. Since p is
normal at {b}, there is an o € Cov(B) such that p~1(st(b, a)) Cst(Fy, d).
Let X = {*}. We now utilize the assumption that p is an approximate
(J, o)-fibration to select a § € Cov(B) such that for every function
f:X — E and every fS-homotopy h : X X I — B with po f = hg,
there is a 6S-homotopy k: X x I — E with kg = f and pok=h.

Let ¢ = p(e). Since the space B is trackwise connected, there is
a BS-homotopy h : X x I — B such that ho(*) = ¢ and hy(*) = b.
Define a function f : X — E by f(x) = e. Observe that po f = hy.
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By assumption, there is a §S-homotopy k as above. Since points hy(*)
and (p o k1)(*) lie in the same member of the covering «, a point k; ()
lies in the set st(Fy, 6). Pick a member D of § such that k;(*) € D and
DNFy,#0. Let a € DN Fp. Since F} is trackwise connected, there is a
(8| Fy)-track p: X x I — Fy such that pg(*) = d and p1(*) = a. Define
a function w : I — F by the rule

. N(*? 2t)7
wit) = { k(x, 2 — 2t),

Then w is a &-track joining d and e. ¢

In order to state a version of the above theorem for the approxi-
mate (7, p)C D-fibrations, where u denotes the triple (M, M, M), we
must assume that some fiber has the following property.

A subset F of a space E is neighbourhood pathwise connected in
E provided there is a neighbourhood N of F in E such that for every
z € N there is a path A : I — E with A(0) =z and A(1) € F.

‘Observe that in a (locally) pathwise connected space F each subset
is neighbourhood pathwise connected in E.
Theorem 8.2. Letp: E — B be an approzimate (J, u)CD-fibration.
If the base B is pathwise connected and there is a point b € p(E) such
that p is strongly normal at {b} and the fiber F, = p~1(b) is neighbour-
hood pathwise connected in E, then the total space E is also pathwise
connected.
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9. Compositions of approximate fibrations

In this section we shall see that approximate fibrations behave well
with respect to compositions in close analogy with fibrations. The first
result explores when will the composition of two approximate fibrations
be an approximate fibration, while the two theorems following it will
provide partial converses.

Theorem 9.1. Let A, B, C, D, and £ be classes of relations. Let
=WAEC,w=(ADBC), andv = (D, B, ). Let X be a class
of topological spaces. If a map f : S — T is an approzimate (X, N)-
fibration, a map g : T — U s an approzimate (X, v)-fibration, and the
class f o A is contained in the class D, then the composition go f is an
approzimate (X, w)-fibration.
Proof. Let numerable coverings § of S and « of U be given. Let ¢ € o*.
Let m = g~1(£). Notice that 7 is a numerable covering of the space T.
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Since f is an approximate (X, A)-fibration, there is a ¢ € Cov(T') and
an n € Cov(S) such that for every space X € X, every n.A-relation
A: X — S, and every p€-homotopy F : X X I — T with Ey and fo A

being p-close, there is a 6C-homotopy C : X x I — § with Cj LA and
EZfoC.

Now we utilize the assumption that g is an approximate (X, v)-
fibration to select numerable coverings 8 of U and o of T with the
property that for every space X € X, every oD-relation D : X —
— T, and every B-homotopy B : X xI — U with By and go D

being [-close, there is a {£-homotopy E : X x I — T with Eo-g—-D

and B£ go E. Finally, let € € Cov(S) be a common refinement of 7
and f~!(o). Then 8 and ¢ are numerable coverings that we wanted. ¢
Corollary 9.1. Let X be a class of spaces. The composition of appro-
zimate (X, p)-fibrations is an approzimate (X, o)-fibration.

The question which we address now can formulated as follows.
If the composition gof of maps f : S - T and g : T — U is an
approximate fibration, under what assumptions on the map f can we
conclude that the map ¢ is an approximate fibration? The answer
provides the following class of approximate dominations.

Let G be a class of relations. A map f : S — T is an approzimate
G-domination provided for every e € Cov(S) and every 8 € Cov(T)

there is an €G-relation G : T'— S such that fo G gidT .

Observe that approximate M-dominations between compact met-
ric spaces agree with G. Kozlowski’s approximately right invertible
maps [9]. .

Theorem 9.2. Let A, B, C, D, £, and G be classes of relations. Let
A= (A B,C) andv = (D, B, £). Let X be a class of spaces. If the
composition go f of an approrimate G-domination f : S — T and a
map g : T — U is an approzimate (X, A)-fibration, and the classes
G oD and foC are contained in the classes A and &, then the map g
is an approzimate (X, v)-fibration.

Proof. Let an oo € Cov(U) and a § € Cov(T) be given. Let 7 €
€ §* and n = f~1(x). Since the composition g o f is an approximate
(&, A)-fibration, there is a £ € Cov(U) and a ¢ € Cov(S) such that
for every space X in X, every (A-relation a : X — S, and every £B-

homotopy b: X xI — U with (go f)o aébo , there is an nC-homotopy
¢c: X xI— 8§ with cgZa and (gof)oc=b. Let B € £, Let p €
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e ™Ng YB)". Let w € Cov(S) be a common refinement of ¢ and

f~ (o). Next, we utilize the fact that f is an approx1mate G-domination
to select an w@-relation A : T — S such that fo h—ldT Pick a
numerable covering € € Cov(T) such that h is an (g, £)-relation and

foh =vet{e) idy . The numerable coverings [ and € are the ones we were
looking for. ¢

Corollary 9.2. Let X be a class of topological spaces. If the composition
go f of an approzimate R-domination f : S — T and a map g : T —
— U is an approzimate (X, p)-fibration, then g is also an approzimate
(X, o)-fibration.

An obvious dual problem is to find conditions on a map g : T' —
— U which are sufficient to guarantee that a map f : S — T is an
approximate fibration whenever the composition g o f is an approxi-
mate fibration. The solution relies on the following class of approximate
injections.

Let G be a class of relations and let X be a class of spaces. A
map g : T — U is an approzimate (X, G)-injection provided for every
§ € Cov(T) there is an o € Cov(U) and an e € Cov(T') such that for
every space X in X and every pair h, k : X — T of eG-relations the

relation g o h=g ok implies the relation Wik,

Theorem 9.3. Let A, B, C, and £ be classes of relations. Let )\ =
= (4, E&,C) and v = (A, B,C). Let X be a class of spaces. If the
composition go f of an approzimate (X, £)-injection g : T — U and
amap f: S — T is an approzimate (X, v)-fibration, and the classes
foC and go & are contained in the classes £ and B, then the map f is
an approximate (X, A)-fibration.

Proof. Let an o € Cov(T') and a § € Cov(S) be given. We first utilize
the fact that the map g is an approximate (X, £)-injection to select
a & € Cov(U) and a ¢ € Cov(T) such that for every space X in &

-and every pair h, k : X — T of (£-relations the relation go hE gok
implies the relation h=k. Let w € Cov(S) be a common refinement
of § and f~1(¢). Since the composition g o f is an approximate (X, v)-
fibration, there is a m € Cov(U) and an € € Cov(S) such that for every
space X in X, every eA-relation a¢ : X — S, and every wB-homotopy
b: X xI— U with (go f) oaZbp, there is an wC-homotopy ¢ : X X

x I — S with cg=a and (go f) ocEb. Let B € Cov(T) be a common
refinement of ¢ and g~!(x). The numerable coverings 3 and ¢ are the
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ones we need. ¢

Corollary 9.3. Let X be a class of topological spaces. If the composition
go f of an approzimate (X, R)-injectiong: T — U and amap f : S —
— T 1is an approzimate (X, p)-fibration, then f is also an approzimate
(X, o)-fibration.

10. Approximate fibrations and products

In this section we shall see that nice behaviour of fibrations with
respect to products is also shared by approximate fibrations.

For spaces X and Y, let p%,, and p%., denote projections of
the product X x Y onto X and Y, respectively. Also, if y is a point of
Y, let 53 %7 : X = X x Y be the embedding of X into X x Y defined
by jié’;y (z) = (z, y) for every z € X.

The' projection p%¥ <y is a basic example of a fibration. In order
that this map should be an approximate fibration we must assume that
numerable coverings of X X Y can be refined by products of numerable
coverings of X and Y. This is made precise in the following definition.

Spaces X and Y are called entwined provided for every numerable
covering ¢ of the product X X Y there are numerable coverings o of X
and 3 of Y such that the numerable covering oo X § of X x Y formed
by all products A x B with A € o and B € (3 refines the covering o.
Theorem 10.1. The projection p§xy : X XY — X is an approzimate
fibration when the spaces X and Y are entwined.

Proof. Let an oo € Cov(X) and a § € Cov(X xY) be given. Since
spaces X and Y are entwined, there is a § € Cov(X) and a g € Cov(Y)
such that 8 X g refines 6. Let € = (p}/(xy)“l(g).

 Consider a space S, an e-function f : § - X XY, and a (5S-
homotopy h : S x I — X such that p%xy of 5 ho . Define a function
E:SxI—XxY by

k(s, t) = (h(s, 1), DXy (f(5))),
for every s € S and every t € I. Then k is a 6S-homotopy such that
ko< f and pX .y ok="h. 0
‘We shall also need the following construction in order to state a

result which describes conditions under which will the product of two
approximate fibrations be an approximate fibration.
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Let F : X - Y and G : X — Z be relations defined on the
same space. Then F' ® G denotes the relation from X into the product
Y x Z which associates to a point = of X the product F(z) x G(z).
This relation will be called the reduced product of F' and G. It differs
from the product F' X G which has the product X x X as the domain.

For classes F and G of relations, F ® G is the class of all reduced
products F ® G, where F' € F and G € G.

We shall state the product theorem for approximate fibrations and
its converse only for the product of two maps. It is obvious that similar
results can be established for any number (finite or infinite) of factors.
Theorem 10.2. Let A= (A, B,C),w= (D, &, F), andv = (G, H, K)
be triples of classes of relations. Let X be a class of spaces. Let f :
: 8 — T be an approzimate (X, A)-fibration and let g : U — V be
an approzimate (X, w)-fibration. If the classes p2.; 0 G, p%yy o0,
pr vy oH, pY oM, and C® F are contained in the classes A, D, B,
&, and K, respectively, and spaces S and U and T and V are entwined,
then the product map f X g is an approzimate (X, v)-fibration.
Proof. Let numerable coverings o: of T'x V and § of S x U be given.
Since T and V are entwined, there is an oy € Cov(T) and an ay €
Cov(U) such that the product ey X oy refines the covering «. Similarly,
there are numerable coverings §; of S and d5 of U such that d; x 2
refines §. Select ;1 € Cov(T') and €; € Cov(S) with respect to coverings
a1 and 67 using the assumption that the map f is an approximate
(X, A)-fibration. We now utilize the assumption that the map ¢ is an
approximate (X, w)-fibration to choose 3 € Cov(V) and &2 € Cov(U)
with respect to coverings as and §5. Let 8 = B X B2 and € = €1 X €3.
Then [ and ¢ are the required numerable coverings. ¢
Corollary 10.1. Let X be a class of spaces. The product of two app-
rozimate (X, p)-fibrations is an approzimate (X, o)-fibration if their
domains and codomains are entwined. :

The following result provides a converse to the product theorem
for approximate fibrations.

Theorem 10.3. Let A = (A, B, C) and v = (G, H, K) be triples of
classes of relations. Let X be a class of spaces. If the product map
fxgofmaps f: S =T andg: U — V is an approzimate (X, v)-

fibration, the class ng u © K is contained in the class C, there is a point

u € U such that the classes jgﬁ;U oA and jg:’;‘(;) o B are contained in

the classes G and H, respectively, and spaces S and U and T and V are
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entwined, then f : S — T be an approzimate (X, A)-fibration.

Proof. Let an o € Cov(T) and a § € Cov(S) be given. Let ax =
={AxV|A€a}and §* ={DxU|D € §}. Observe that * and §*
are numerable coverings. Since the product map f X ¢ is an approxi-
mate (X, v)-fibration, there are numerable coverings §* € Cov(T x V)
and e* € Cov(S x U) such that for every space X in X, every e*G-
relation e* : X — S x U, and every *H-homotopy h* : X xI - T xV

with (f x g) o e* % h*o, there is a 6*-homotopy k* : X x I — S x U

with e* £ k*; and (f xg)ok* % h* . Now we use the assumption that
the spaces S and U and T and V are entwined to select numerable cov-
erings § € Cov(T'), £ € Cov(V), € € Cov(S), and ¢ € Cov(U) such that
B x & refines B* and € x ( refines €*. Then @ and e are the required
numerable coverings. ¢

Corollary 10.2. Let X be a class of spaces. If the product of two
maps with entwined domains and codomains is an approzimate (X, p)-
fibration, then both of these maps are approximate (X, p)-fibrations.
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