Mathematica Pannonica

9/2 (1998), 243–258

THE TWO-PARAMETER CESÀRO OPERATORS

Tímea Eisner

Janus Pannonius University, Dept. of Mathematics, 7624 Pécs, Ifjúság út 6, Hungary

Received: February 1998

MSC 1991: 42 C 10, 42 B 05, 42 B 30

Keywords: Dyadic Cesàro and Copson operator, Hardy and VMO spaces, two-parameter martingales.

Abstract: In the one dimensional case is already proved (see [5]) that the dyadic Cesàro operator is bounded on $L^p[0,1)$ $(1 \le p < \infty)$ and on the dyadic Hardy space $H^1[0,1)$ and is not bounded on the spaces VMO and on $L^{\infty}[0,1)$. In the present paper we show similary results in the two dimensional case.

1. Preliminaries

We shall denote the set of non-negative integers by \mathbb{N} , the set of positive integers by \mathbb{P} , the set of real numbers by \mathbb{R} , and the set of dyadic rationals in the unit interval [0,1] by \mathbb{Q} . In particular, each element of \mathbb{Q} has the form $p/2^n$ for some $p, n \in \mathbb{N}$, $0 \leq p \leq 2^n$. Furthermore, let $\mathbf{I} := [0,1)$ be the unit interval.

For any set $\mathbf{X} \neq \emptyset$ let $\mathbf{X}^1 := \mathbf{X}$ and denote by \mathbf{X}^2 the cartesian product $\mathbf{X} \times \mathbf{X}$. Thus \mathbb{N}^2 is the collection of integral latice points in the first quadrant, and \mathbf{I}^2 is the unit square.

We shall use the following partial ordering in \mathbb{R}^2 . For $x = (x_1, x_2)$, $y = (y_1, y_2) \in \mathbb{R}^2$ let $x \leq y$ iff $x_1 \leq y_1$ and $x_2 \leq y_2$. We set $|x| = |x_1| + |x_2|$

This research was partially supported by the Hungarian National Foundation of Scientific Research under Grant FKFP 0204/97 and T 016 393.

 $+|x_2|$. For $n = (n_1, n_2) \in \mathbb{N}^2$ it will be used the notation $n-1 = (n_1-1, n_2-1)$.

The dyadic addition of x and y is defined (see [6]) by

(1.1)
$$x + y = \sum_{k=0}^{\infty} |x_k - y_k| 2^{-k-1}$$

for $x, y \in \mathbf{I}$. If $x, y \in \mathbf{I}^2$ then by definition let $x + y := (x_1 + y_1, x_2 + y_2)$.

By a dyadic interval in I we mean one of the form $[p/2^n, (p+1)/(2^n))$ for some $p, n \in \mathbb{N}$, $0 \leq p < 2^n$. Given $n \in \mathbb{N}$ and $x \in I$ let $I_n(x)$ denote the dyadic interval of length 2^{-n} which contains x. Denote the collection of dyadic intervals by \mathcal{I} .

Let \mathcal{I}^2 be the collection of dyadic intervals in \mathbf{I}^2 , i.e. the sets of the form $I = I_1 \times I_2$, where $I_1, I_2 \in \mathcal{I}$. It is clear, that the dyadic intervals in \mathbf{I}^2 containing $x = (x_1, x_2) \in \mathbf{I}^2$ are of the form

(1.2)
$$I_n(x) := I_{n_1}(x_1) \times I_{n_2}(x_2),$$

where $n := (n_1, n_2) \in \mathbb{N}^2$. We denote by $f_1 \times f_2$ the Kronecker-product of the functions $f_j : \mathbf{I} \to \mathbb{R}$ (j = (1, 2), i.e.)

$$(f_1 \times f_2)(x) = f_1(x_1) \cdot f_2(x_2) \qquad (x = (x_1, x_2) \in \mathbf{I}^2).$$

Especially for $f_1 = f_2 = f$ we set $f^{(2)} := f \times f$.

The symbol $L^p(\mathbf{I}^2)$, $1 \leq p \leq \infty$ stands for the usual Lebesgue L^p -space on \mathbf{I}^2 .

The atomic σ -algebra generated by the two dimensional dyadic intervals of the form $I = K \times L$ with $|K| = 2^{-p}$ and $|L| = 2^{-q}$ will be denoted by $\mathcal{A}^{(p,q)}$. For $n \in \mathbb{N}^2$ let $L(\mathcal{A}^n)$ be the set of the \mathcal{A}^n measurable function defined on \mathbf{I}^2 . Set

$$\mathcal{A}^{n}_{-} := \mathcal{A}^{(n_{1}-1,n_{2}-1)} \qquad (n = (n_{1},n_{2}) \in \mathbb{N}^{2}),$$

where

$$\mathcal{A}^{(-1,-1)} := \mathcal{A}^{(0,0)} \quad ext{and} \quad \mathcal{A}^{(-1,i)} := \mathcal{A}^{(0,i)}, \ \mathcal{A}^{(i,-1)} := \mathcal{A}^{(i,0)} \ (i \in \mathbb{N}).$$

The conditional expectation of the function $f \in L^1(I^2)$ with respect to \mathcal{A}^n $(n \in \mathbb{N}^2)$ is denoted by $E_n f$ and can be given in the form

(1.3)
$$(E_n f)(x) = \frac{1}{|I_n(x)|} \int_{I_n(x)} f(s,t) ds dt \quad (x \in \mathbf{I}^2, n \in \mathbb{N}^2).$$

Extending (1.3) we set

The two-parameter Cesàro operators

$$(1.4a) \quad (E_{(\infty,k)}f)(x) := \frac{1}{|I_k(x_2)|} \int_{I_k(x_2)} f(x_1,s) ds$$
$$(x = (x_1, x_2) \in \mathbf{I}^2, \ k \in \mathbb{N})$$

(1.4b)
$$(E_{(k,\infty)}f)(x) := \frac{1}{|I_k(x_1)|} \int_{I_k(x_1)} f(t,x_2)dt$$

$$(x=(x_1,x_2)\in \mathbf{I}^2, \; k\in \mathbb{N}).$$

A sequence of functions $\mathbf{f} = (f_n, n \in \mathbb{N}^2)$ defined on \mathbf{I}^2 is called a dyadic martingale if f_n belongs to $L(\mathcal{A}^n)$ and

(1.5) $E_n f_m = f_n \text{ for all } n \leq m \text{ and } n, m \in \mathbb{N}^2.$ If $0 <math>(n \in \mathbb{N}^2)$ and

$$\|\mathbf{f}\|_p := \sup_{n \in \mathbb{N}^2} \|f_n\|_p < \infty,$$

then f is a so-called L^p -bounded martingale.

Let $f \in L^1(\mathbf{I}^2)$ and define the sequence $\mathbf{f} = (f_n, n \in \mathbb{N}^2)$ by

(1.6)
$$f_n := E_n f \quad (n \in \mathbb{N}^2).$$

It easy to see that f is a martingale. Martingales of this type are called regular.

The map $f \mapsto \mathbf{f} := (E_n f, n \in \mathbb{N}^2)$ is norm-preserving from L^p onto the space of L^p -bounded martingales if 1 and consequently $the two spaces can be identified. In a similar way, we can identify <math>L^1(\mathbf{I}^2)$ with the space of uniformly integrable martingales (see [11], [12]).

The martingale maximal function f^* is given by

(1.7)
$$f^* := \sup_{n \in \mathbb{N}^2} |f_n|.$$

To define the martingale transform introduce the martingale difference sequence in two-dimensional case by (1.8)

 $\begin{aligned} &d_{0,0} := f_{0,0}, \quad d_{k,0} := f_{k,0} - f_{k-1,0}, \quad d_{0,k} := f_{0,k} - f_{0,k-1} \quad (k \in \mathbb{P}) \\ &d_n := f_{(n_1,n_2)} - f_{(n_1-1,n_2)} - f_{(n_1,n_2-1)} + f_{(n_1-1,n_2-1)} \quad (n = (n_1,n_2) \in \mathbb{P}^2). \\ &\text{Obviously,} \end{aligned}$

$$f_n = \sum_{k \le n} d_k.$$

Moreover, if $\alpha = (\alpha_n, n \in \mathbb{N}^2)$ and $\alpha_n \in \mathcal{A}^n_ (n \in \mathbb{N}^2)$, then the

sequence

(1.9)
$$f_n^{\alpha} := \sum_{k \le n} \alpha_k d_k, \quad \mathbf{f}^{\alpha} := (f_n^{\alpha}, n \in \mathbb{N}^2)$$

is also a martingale and it is called the transform of f by the sequence α .

We introduce a set of function sequences to define special martingale transforms. To this end set

(1.10)
$$\mathcal{T} := \{ \tau = (\tau_n, n \in \mathbb{N}^2) : \tau_n(x) \in \{0, 1\}, \ \tau_n \in L(\mathcal{A}_{-}^n) \text{ and} \\ \tau_n \ge \tau_m \quad \text{if} \quad n \le m \}.$$

For $0 denote by <math>\mathcal{H}^p$ the set of martingales $\mathbf{f} = (f_n, n \in \mathbb{N}^2)$ for which

(1.11)
$$\|\mathbf{f}\|_{\mathcal{H}^p} := \|f^*\|_p < \infty.$$

It is easy to see that if p > 1 then (1.11) implies that **f** is uniformly integrable and consequently \mathcal{H}^p can be identified by a subspace of $L^1(\mathbf{I}^2)$.

For any $Y \subseteq L^1(\mathbf{I}^2)$ denote by Y_0 the set

$$Y_0 := \{ f \in Y : E_{(n,0)} f = E_{(0,n)} f = 0 \quad (n \in \mathbb{N}) \}.$$

The dual space of \mathcal{H}_0^1 is the \mathcal{BMO} space which is defined by

(1.12)
$$||f|| := \sup_{\tau \in \mathcal{T}} |\{ \wedge \tau = 0\}|^{-1/2} ||f - f^{\tau}||_2,$$

where $\wedge \tau := \inf_{n \in \mathbb{N}^2} \tau_n$, $f := (E_n f, n \in \mathbb{N}^2)$ and $f \in L^2_0(\mathbf{I}^2)$ (see [2], [12]).

Feffermann's inequality implies

(1.13)
$$\left| \int_{\mathbf{I}^2} f(x)\phi(x)dx \right| \leq C \|f\|_{\mathcal{H}^1} \|\phi\|_{\mathcal{BMO}}, \quad (f \in L^{\infty}, \phi \in \mathcal{BMO})$$

where C is an absolute constant (see [11]).

The closure of the set of the dyadic step functions in the \mathcal{BMO} -norm is the \mathcal{VMO} space. It is well-known (see [11]) that the dual space of the \mathcal{VMO} space is \mathcal{H}_0^1 .

We study the double Walsh series

(1.14)
$$\sum_{j\in\mathbb{N}^2}a_jw_j(x),$$

where $(a_j, j \in \mathbb{N}^2)$ is a null sequence of real numbers, and $w_j = w_{j_1} \times w_{j_2}$ $(j = (j_1, j_2) \in \mathbb{N}^2)$ is the two dimensional Walsh orthonormal system generated by the Walsh-Paley system. Thus, series (1.14) are considered on the unit square \mathbf{I}^2 .

The pointwise convergence of series (1.14) will be taken in Pringsheim's sense (see [13], vol.2., ch.17). In other words, if we form the rectangular partial sums

$$S_n(x) = \sum_{j_1=0}^{n_1-1} \sum_{j_2=0}^{n_2-1} a_j w_j(x)$$

(j = (j_1, j_2), n = (n_1, n_2), x = (x_1, x_2), n_1, n_2 \ge 1),

then let both n_1 and n_2 tend to infinity independently of one another, and assign the limit f(x) (if it exists) to the series (1.14) as its sum.

It is known that $S_{2^n}f = E_nf$ $(n \in \mathbb{N}^2)$, where E_nf is defined in (1.3) (see [6]). In the case $n_1 = \infty$ or $n_2 = \infty$ we use the notations

$$S_{(2^{n_1},\infty)}f := E_{(n_1,\infty)}f, \qquad S_{(\infty,2^{n_2})}f := E_{(\infty,n_2)}f,$$

where $E_{(\infty,n_1)}, E_{(n_2,\infty)}$ are defined in (1.4 a) and (1.4 b). Furthermore we introduce the operators

$$\Delta_n f := S_{(2^{n_1},\infty)} f + S_{(\infty,2^{n_2})} f - S_{2^n} f.$$

Let D_n denote the two dimensional Walsh-Dirichlet kernel of order $n = (n_1, n_2)$, i.e.,

(1.15)
$$D_{n} := D_{n_{1}} \times D_{n_{2}} = \sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} w_{k} = \sum_{k=(0,0)}^{n-1} w_{k} \qquad (k = (k_{1}, k_{2}) \in \mathbb{N}^{2}, \ n \in \mathbb{P}^{\neq}).$$

In the one dimensional case the dyadic difference quotient is defined as

$$\mathbf{d}_n f(x) := \sum_{j=0}^{n-1} 2^{j-1} (f(x) - f(x + 2^{-j-1}))$$

for each f defined on [0,1), $n \in \mathbb{P}$ and $x \in [0,1)$ (see [6]). The two dimensional variant is defined as follows. For each function f given on the unit square \mathbf{I}^2 and for $n \in \mathbb{P}^2$ set

(1.16)
$$\mathbf{d}_{n}f(x) := \sum_{j=(0,0)}^{n-1} 2^{|j|-2} (f(x_{1}, x_{2}) - f(x_{1} + 2^{-j_{1}-1}, x_{2}) - f(x_{1}, x_{2} + 2^{-j_{2}-1}) + f(x_{1} + 2^{-j_{1}-1}, x_{2} + 2^{-j_{2}-1}))$$

where $x = (x_1, x_2) \in \mathbf{I}^2$. We shall say that f is dyadically differentiable

at x if (1.17) $\mathbf{d}f(x) := \lim_{\min(n_1, n_2) \to \infty} \mathbf{d}_n f(x)$

exists and is finite, and call df the two dimensional dyadic derivative of f at x (see [7]).

It is easy to see that for $f = g \times h$ and $n = (n_1, n_2)$

$$\mathbf{d}_n f = \mathbf{d}_{n_1} g \times \mathbf{d}_{n_2} h,$$

and consequently (see [6])

(1.18)
$$\mathbf{d}_n w_m = m_1 \cdot m_2 \cdot w_m \quad (m \le 2^n; \ m, n \in \mathbb{N}^2).$$

Obviously, it follows by (1.17) and (1.18) that the Walsh functions $w_n \ (n \in \mathbb{N}^2)$ are dyadic differentiable and

$$\mathbf{d}w_m = m_1 \cdot m_2 \cdot w_m \quad (m = (m_1, m_2) \in \mathbb{N}^2).$$

The inverse operator of d, i.e., the dyadic antiderivative (or integral) can be given by the convolution

$$(Jf)(x) := (f * W^{(2)})(x) = \int_{\mathbf{I}^2} f(t) W^{(2)}(x + t) dt$$

 $(f \in L^1(\mathbf{I}^2), t = (t_1, t_2), x = (x_1, x_2) \in \mathbf{I}^2)$, where $W^{(2)}(x) = W \times W$ and $W = \sum_{j=1}^{\infty} w_j/j$.

It is known (see [3]) that

$$W\in L^1({f I}), \hspace{1em} \|W\|_1=O(1) \hspace{1em} (k\in {\mathbb N}).$$

Consequently $W^{(2)} \in L^1(\mathbf{I}^2)$. Furthermore it follows from the one dimensional case, that $||\mathbf{d}_n W||_1 = O(1)$ $(n \in \mathbb{P}^2)$.

Lemma 1. We can write $d_m W^{(2)}$ in the following form:

(1.19)
$$\mathbf{d}_m W^{(2)}(x) = D_{2^m}(x) + R_m(x) \quad (m = (m_1, m_2)),$$

where $\hat{R}_m(k) = 0$ if $k = (k_1, k_2) \in \mathbb{N}$ and $k_1 \leq 2^{m_1}$ or $k_2 \leq 2^{m_2}$ respectively and $||R_m||_1 = O(1)$.

Proof. It is known that if $n \in \mathbb{N}$ then $\mathbf{d}_n W(x) = D_{2^n}(x) + R_n(x)$, where for $\hat{R}_n(k) = 0$ for $k \leq 2^m$ and $||R_n||_1 = O(1)$ (see [5]). From this it follows also the two dimensional equality, since

$$\mathbf{d}_{n}W^{(2)} = (\mathbf{d}_{m_{1}}W) \times (\mathbf{d}_{m_{2}}W) = (D_{2^{m_{1}}} + R_{m_{1}}) \times (D_{2^{m_{2}}} + R_{m_{2}}) = = D_{2^{m}} + R_{m_{1}} \times D_{2^{m_{2}}} + D_{2^{m_{1}}} \times R_{m_{2}} + R_{m_{1}} \times R_{m_{2}} = D_{2^{m}} + R_{m}.$$

Hence that if $k_j \leq 2^{m_j}$ for j = 1 or j = 2 then $\hat{R}_m(k) = 0$ and also our statement is established. \Diamond

We will introduce a modified form of the one dimensional operator \mathbf{d}_k :

(1.20)
$$(\mathbf{d}_n^{-}f)(x) := \sum_{j=0}^{n-1} 2^{j-1} (f(x) - f(x + 2^{-j-1})) - 2^{n-1} (f(x) - f(x + 2^{-n-1})) \quad (n \in \mathbb{N}, x \in \mathbb{R}).$$

Since $\mathbf{d}_k^- f = \mathbf{d}_k f - (\mathbf{d}_{k+1}f - \mathbf{d}_k f) = 2\mathbf{d}_k f - \mathbf{d}_{k+1}f$, therefore $\|\mathbf{d}_k^- W\|_1 = O(1)$ $(k \in \mathbb{P})$.

It is known that in the one dimensional case the Walsh-Dirichlet kernel can be written in the following form (see [5])

(1.21)
$$D_n(t) = \mathbf{d}_{s-1}^- w_n(t) \quad (n \in \mathbb{N}),$$

if $t \in [2^{-s}, 2^{-s+1})$, s = 1, 2, ... In the two dimensional case, that is, if $t \in [2^{-s_1}, 2^{-s_1+1}) \times [2^{-s_2}, 2^{-s_2+1})$ and $n \in \mathbb{N}^2$ we get by means of the equality

(1.22)
$$D_n(t) = (D_{n_1} \times D_{n_2})(t) \quad (t \in \mathbb{R}^2, n \in \mathbb{N}^2)$$

 that

(1.23)
$$D_n(t) = \mathbf{d}_{s_1-1}^- w_{n_1}(t_1) \cdot \mathbf{d}_{s_2-1}^- w_{n_2}(t_2) =: \mathbf{d}_{s-1}^- w_n(t).$$

Using the dyadic addition we introduce the so-called dyadic translation operators τ_x for any $x \in \mathbf{I}^2$ as

(1.24)
$$(\tau_x f)(t) = f(x + t) \quad (x, t \in \mathbf{I}^2),$$

where $f: \mathbf{I}^2 \to \mathbb{R}$ is an arbitrary function (see [6]). Dyadic translations are norm preserving in L^p spaces, i.e. for all $f \in L^p(\mathbf{I}^2)$ and $x \in \mathbf{I}^2$ we have $\tau_x f \in L^p(\mathbf{I}^2)$ and $||\tau_x f||_p = ||f||_p$.

A Banach space $\mathbf{X} \subseteq L^1(\mathbf{I}^2)$ with the norm $|| \cdot ||_X$ is called a homogeneous Banach space if the set \mathcal{P} of double dyadic step functions is dense in \mathbf{X} , $||f||_1 \leq ||f||_X$ $(f \in \mathbf{X})$ and the norm $|| \cdot ||$ is translation invariant, i.e. if $f \in \mathbf{X}$ and $x \in \mathbf{I}^2$ then $\tau_x f \in \mathbf{X}$ and $||\tau_x f||_X = ||f||_X$. It is known (see [6]) that $L^p(\mathbf{I}^2)$ $(1 \leq p < \infty)$ and \mathcal{H}^1 are homogeneous Banach spaces.

If X is a homogeneous Banach space and if $f \in L^1(\mathbf{I}^2)$ and $g \in \mathbf{X}$ then $f * g \in \mathbf{X}$. Moreover,

(1.25) $||f * g||_X \le ||f||_1 ||g||_X$

is true (see [6]).

Denote by \mathbf{X}' the dual space of any homogeneous Banach space **X**. If $f \in L^1$ and $g \in \mathbf{X}' \cap L^1$, then

T. Eisner

(1.26)
$$||f * g||_{X'} \le ||f||_1 ||g||_{X'}$$

is also true (see [1]).

2. The two dimensional dyadic Cesàro operator on $L^1(\mathbf{I}^2)$

Let $f \in L^1(\mathbf{I}^2)$ be an integrable function with Walsh-Fourier series

$$f \sim \sum_{k \in \mathbb{N}^2} \hat{f}(k) w_k.$$

We will assume that $\hat{f}(0,l) = \hat{f}(l,0) = 0$ $(l \in \mathbb{N})$ and denote the class of such functions by L_0^1 . Now, we shall define the two dimensional dyadic Cesàro operator. First we prove that there exists a unique $g \in L_0^1$ such that

(2.1)
$$\hat{g}(n) = \frac{1}{n_1 \cdot n_2} \sum_{i=(0,0)}^{n-1} \hat{f}(i) \quad (n \in \mathbb{P}^2),$$
$$\hat{g}(0,l) = \hat{g}(l,0) = 0 \quad (l \in \mathbb{N})$$

is satisfied (see Th. 1). The map $\mathcal{C}: L_0^1 \to L_0^1$ defined by $\mathcal{C}f := g$ is called the two dimensional dyadic Cesàro operator. The aim of this paper is to investigate some properties of Cesàro operators in several subspaces of $L^1(\mathbf{I}^2)$.

First of all we will give a representation of ${\mathcal C}$ in a form of integral-operator

$$(\mathcal{C}f)(x)=\int_{\mathbf{I}^2}f(t)M(x,t)dt\quad(x\in\mathbf{I}^2,f\in L^1_0),$$

where the kernel M can be expressed by the modified dyadic difference operators \mathbf{d}_n^- as follows:

(2.2)
$$M(x,t) = \sum_{r=(1,1)}^{(\infty,\infty)} \chi_r(t) (\mathbf{d}_{r-1}^- W^{(2)})(x + t).$$

Here χ_r is the characteristic function of the rectangle $[2^{-r_1}, 2^{-r_1+1}) \times [2^{-r_2}, 2^{-r_2+1})$. It will be proved that series (2.2) converges in $L^1(\mathbf{I}^4)$ norm and for almost all $(x, t) \in \mathbf{I}^4$.

Define the integral operator $\mathcal{M}^{(2)}$ by

(2.3)
$$(\mathcal{M}^{(2)}f)(x) := \int_{\mathbf{I}^2} f(t)M(x,t)dt \quad (x \in \mathbf{I}^2, f \in L_0^1),$$

where M is given by (2.2).

Denote \mathcal{P}_n the set of the two dimensional Walsh polynomials p of order less than 2^n and set

$$\mathcal{P} = igcup_{n=(0,0)}^{(\infty,\infty)} \mathcal{P}_n,$$

 $\mathcal{P}_* = \{ p \in \mathcal{P} : p(0,0) = 0, \hat{p}(0,k) = \hat{p}(k,0) = 0, k = 0, 1, \dots \}.$ Then for any $p = \sum_{k=(0,0)}^n c_k w_k, \ p \in \mathcal{P}_*$ we have

$$\sum_{k=(0,0)}^{N} \hat{p}(k) = \sum_{k=(0,0)}^{n} c_k = p(0,0) = 0$$

if $N \ge n, n \in \mathbb{N}^2$, therefore the operator

$${\cal C}p = \sum_{k=(1,1)}^{(\infty,\infty)} rac{\hat{p}(0,0) + \dots + \hat{p}(k-1)}{k_1 \cdot k_2} w_k$$

is well defined, maps \mathcal{P}_* into \mathcal{P} and satisfy

$$(\mathcal{C}p)\widehat{\ }(n)=rac{\hat{p}(0,0)+\cdots+\hat{p}(n-1)}{n_1\cdot n_2}\quad (n\in\mathbb{P}^2).$$

We show that C and the integral operator $\mathcal{M}^{(2)}$ coincides on \mathcal{P}_* and $\mathcal{M}^{(2)}$ has the required properties.

Theorem 1. Let $\mathcal{M}^{(2)}$ denote the integral operator defined by (2.3). Then

(1) $\mathcal{M}^{(2)}$ is a bounded linear operator from L_0^1 into itself,

(2) for all $f \in L_0^1$ the function $g := \mathcal{M}^{(2)} f \in L_0^1$ satisfies (2.1).

Proof. Part (1). It is easy to see that

$$\mathcal{M}^{(2)}(x,t) = (M^{(1)} \times M^{(1)})(x,t) \quad (x,t \in \mathbf{I}^2),$$

where

$$M^{(1)}(x,t) = \sum_{s=1}^{\infty} \chi_s^{(1)}(t) (\mathbf{d}_{s-1}^{-} W^{(1)})(x+t)(x,t \in \mathbf{I}),$$

and $\chi_s^{(1)}(t)$ denotes the characteristic function of the interval $[2^{-s}, 2^{-s+1})$. Because of this the last sum converges in $L^1(\mathbf{I}^2)$ -norm and also almost everywhere (see [5]), so the series (2.2) converges in $L^1(\mathbf{I}^4)$ -norm and the operator $\mathcal{M}^{(2)}$ is bounded.

To prove (2) first we show that $\mathcal{M}^{(2)}f = \mathcal{C}f$ for every $f \in \mathcal{P}^*$. If $f \in \mathcal{P}^*$, then $f, \mathcal{C}f \in \mathcal{P}_N$ for some $N \in \mathbb{N}^2$. Consequently $\mathcal{C}f$ can be written in the form

$$(\mathcal{C}f)(x) = \sum_{k=(1,1)}^{(2^{N_1},2^{N_2})} \frac{\hat{f}(0,0) + \dots + \hat{f}(k-1)}{k_1 \cdot k_2} w_k(x) =$$
$$= \sum_{k=(1,1)}^{(2^{N_1},2^{N_2})} \frac{w_k(x)}{k_1 \cdot k_2} \sum_{i=(0,0)}^{k-1} \int_{\mathbf{I}^2} f(t) w_i(t) dt =$$
$$= \int_{\mathbf{I}^2} f(t) \sum_{k=(1,1)}^{(2^{N_1},2^{N_2})} \frac{D_k(t) w_k(x)}{k_1 \cdot k_2} dt.$$

Hence by (1.23) we get for the kernel for $t \in [2^{-N_1}, 1) \times [2^{-N_2}, 1)$

$$\sum_{s=(1,1)}^{(N_1,N_2)} \chi_s(t) \sum_{k=(1,1)}^{(2^{N_1},2^{N_2})} \frac{w_k(x)}{k_1 \cdot k_2} \big(\mathbf{d}_{s-1}^- w_k \big)(t).$$

Thus for $f \in \mathcal{P}^*$ we have

$$(\mathcal{C}f)(x) = \int_{\mathbf{I}^2} f(t)M(x,t)dt = (\mathcal{M}^{(2)}f)(x).$$

This means that C coincides with $\mathcal{M}^{(2)}$ on the dense set \mathcal{P}^* of L_0^1 . We will show that $g = \mathcal{M}^{(2)}f$ satisfies (2.1) for all $f \in L_0^1$. To this end consider the functions

$$\phi_k(f) = (\mathcal{M}^{(2)}f)(k), \qquad \psi_k(f) = rac{f(0,0) + \dots + f(k-1)}{k_1 \cdot k_2} \quad (k \in \mathbb{P}^2)$$

on L_0^1 . It is easy to check that both are bounded linear functionals on L_0^1 , for all $k \in \mathbb{N}^2$ and they coincide on \mathcal{P}^* . Since \mathcal{P}^* is dense in $L_0^1(\mathbf{I}^2)$, our statement is established. \Diamond

3. Main results

As in the one dimensional case (see [5]) we will define a class of operators denoted by \mathcal{N} . Each element of \mathcal{N} is given by a sequence of two dimensional dyadic convolution-operators $\Phi_n f = f * \phi_n$, $n \in \mathbb{N}^2$, where $\phi_n(x) = (\phi_{n_1}^{(1)} \times \phi_{n_2}^{(1)})(x)$, $x \in \mathbf{I}^2$ and $\phi_k^{(1)}$ $(k \in \mathbb{N})$ are integrable functions. Namely, let $\Phi \in \mathcal{N}$ be defined as

The two-parameter Cesàro operators

(3.1)
$$\Phi f = \sum_{n \in \mathbb{N}^2} \Phi_n(\chi_n f) \quad (f \in L^1_0(\mathbf{I}^2)),$$

where $\chi_n = \chi_{n_1}^{(1)} \times \chi_{n_2}^{(1)}$, $n = (n_1, n_2) \in \mathbb{N}^2$. The convolution-operator Φ_n maps the class of the Walsh-polynomials into itself and

$$(3.2) \qquad \langle \Phi_n f, g \rangle = \langle f, \Phi_n g \rangle \qquad (f \in \mathcal{P}, g \in L^1(\mathbf{I}^2), n \in \mathbb{N}^2),$$

where $\langle f,g \rangle = \int_{\mathbf{I}^2} f(t)g(t)dt$ is the usual inner product of f and g. For the maximal operator of the sequence Φ_n $(n \in \mathbb{N}^2)$ we will use the notation $\Phi^* f = \sup_{n \in \mathbb{N}^2} |\Phi_n|$.

Theorem 2. Let $\Phi \in \mathcal{N}$ be given as above; 1 and <math>1/p + +1/p' = 1. Then

(1) if the generating sequence of
$$\phi_n$$
 $(n \in \mathbb{N}^2)$ satisfies
(3.3) $M := \sup_{n \in \mathbb{N}^2} ||\phi_n||_1 < \infty,$

then Φ is a bounded linear operator from L^1 into itself. and

(3.4)
$$||\Phi f||_1 \le M ||f||_1 \quad (f \in L^1_0(\mathbf{I}^2))$$

(2) Suppose that Φ^* is bounded from $L^{p'}$ into itself:

$$\begin{aligned} ||\Phi^*g||_{p'} &\leq M^* ||g||_{p'} \quad (g \in L^{p'}(\mathbf{I}^2)). \\ Then \ \Phi \ is \ a \ bounded \ linear \ operator \ from \ L^p \ into \ itself \ and \\ (3.5) \qquad ||\Phi f||_p &\leq M^* ||f||_p \quad (f \in L^p). \end{aligned}$$

Proof. Using the triangle inequality, (1.26) and (3.3) we get

$$egin{aligned} ||\Phi f||_1 &\leq \sum_{n \in \mathbb{N}^2} ||(\chi_n f) st \phi_n||_1 &\leq \sum_{n \in \mathbb{N}^2} ||\chi_n f||_1 ||\phi_n||_1 \leq \ &\leq M \sum_{n \in \mathbb{N}^2} ||\chi_n f||_1 = M \cdot ||f||_1, \end{aligned}$$

and (1) is proved.

Part (2): Let $f \in \mathcal{P}$, $g \in L^{p'}(\mathbf{I}^2)$ with $||g||_{p'} \leq 1$ and consider the inner product of Φf and g. It follows by (3.2) that

$$\langle \Phi f, g \rangle = \sum_{n \in \mathbb{N}^2} \langle \Phi_n(\chi_n f), g \rangle = \sum_{n \in \mathbb{N}^2} \langle \chi_n f, \Phi_n g \rangle.$$

If we take the absolute value of this inner product, and apply Hölder's inequality we get

T. Eisner

$$egin{aligned} |\langle \Phi f,g
angle|&\leq \sum_{n\in\mathbb{N}^2}\langle |\chi_nf|,\Phi^*g
angle=\langle |f|,\Phi^*g
angle\leq\ &\leq ||f||_p||\Phi^*g||_{p'}\leq M^*||g||_{p'}||f||_p. \end{aligned}$$

Taking the supremum with respect to $g \in L^{p'}$, $||g||_{p'} \leq 1$ it follows that

$$||\Phi f||_p = \sup\left\{|\langle \Phi f, g \rangle| : g \in L^{p'}, ||g||_{p'} \le 1\right\} \le M^* ||f||_p,$$

which proves our statement. \Diamond

Corollary 1. The Cesàro operator C

- (1) is bounded linear operator from L^p into itself if $1 \leq p < \infty$,
- (2) is not bounded from L^{∞} into itself.

Proof. By (2.2) the Cesàro operator belongs to \mathcal{N} with generator sequence $\mathbf{d}_n^- W^{(2)}$. It is known (see [11], [12]) that the maximal operator given by this sequence is a bounded operator from $L^{p'}$ to itself, $1 < p' < \infty$ and by Lemma 1 (3.3) holds, too. If we apply Th. 2 to the Cesàro operator we get part (1).

Part (2) follows immediately from the one dimensional case (see [5]). \diamond

Theorem 3. Let $\Phi \in \mathcal{N}$ an operator for which

(1) the function sequence ϕ_n satisfies (3.3) and

(3.6) $\hat{\phi}_n(k) = 0 \quad (0 \le k_1 < 2^{n_1} \text{ or } 0 \le k_2 < 2^{n_2}), n \in \mathbb{N}^2), \text{ or}$

(2) $\phi_n = D_{2^n} \quad (n \in \mathbb{N}^2).$

Then Φ is a bounded linear operator from the dyadic Hardy space \mathcal{H}^1 into itself, and

$$\|\Phi f\|_{\mathcal{H}^1} \le M_1 \|f\|_{\mathcal{H}^1} \qquad (f \in \mathcal{H}^1)$$

with a constant M_1 dependly only on M in (3.3).

To the proof of Th. 3 we need

Lemma 2. If $f \in L^1$ then the following inequality is true

(3.7)
$$\sum_{n\in\mathbb{N}^2} \|\chi_n(f-\Delta_n f)\|_{\mathcal{H}^1} \leq 4 \cdot \|f\|_{\mathcal{H}^1}.$$

Proof. Let us consider the following function

$$egin{aligned} g_n(x) &:= \chi_n(x)(f(x) - \Delta_n f(x)) = \ &= \chi_n(x) \Big(f(x) - rac{1}{|J_{n_1}|} \int\limits_{J_{n_1}} f(s, x_2) ds - rac{1}{|J_{n_2}|} \int\limits_{J_{n_2}} f(x_1, t) dt + \ &+ rac{1}{|J_n|} \int\limits_{J_n} f(s, t) ds dt \Big) \quad (x \in \mathbf{I}^2, n \in \mathbb{N}^2), \end{aligned}$$

where

 $J_{n_1}=[2^{-n_1},2^{-n_1+1}), \quad J_{n_2}=[2^{-n_2},2^{-n_2+1}), \quad J_n=J_{n_1}\times J_{n_2}.$ It is easy to prove that

$$\int_{J_{n_1}} g_n(s, x_2) ds = \int_{J_{n_2}} g_n(x_1, t) dt = 0.$$

From this follows that if $x \in J_n$ then for $m_1 \leq n_1$ or $m_2 \leq n_2$ we get $S_{2^m}g_n(x) = 0$. If $x \notin J_n$ then we get for all m that $S_{2^m}g_n(x) = 0$. Furthermore, if $x \in J_1 \times J_2$ and $m \geq n$ then

$$S_{2^m} S_{2^n}(\chi_n f) = \chi_n S_{2^n} f,$$

$$S_{2^m} S_{(2_1^n,\infty)}(\chi_n f) = \chi_n S_{(2^{n_1},2^{m_2})} f,$$

$$S_{2^m} S_{(\infty,2_2^n)}(\chi_n f) = \chi_n S_{(2^{m_1},2^{n_2})} f,$$

and so

$$|S_{2^m}g_n| \le \chi_n(|S_{2^m}f| + |S_{(2^{m_1},2^{m_2})}f| + |S_{(2^{n_1},2^{m_2})}f| + |S_{2^n}f|).$$

Taking the supremum over m we get

$$g_n^* \le 4\chi_n f^*,$$

and so our statement is proved. \Diamond

Proof of the Theorem 3. Statement (1): Because \mathcal{P} is dense in \mathcal{H}^1 , it is sufficient to prove that the Th.3 holds for $f \in \mathcal{P}$. Let $f \in \mathcal{P}$, $g \in \mathcal{BMO}$, with $||g||_{\mathcal{BMO}} \leq 1$, and consider the inner product of Φf and g. It follows by (3.2) that

$$\langle \Phi f, g \rangle = \sum_{n \in \mathbb{N}^2} \langle \Phi_n(\chi_n f), g \rangle = \sum_{n \in \mathbb{N}^2} \langle \chi_n f, \Phi_n g \rangle,$$

where by (3.6) $(\Phi_n g) \hat{(}k) = \hat{\phi}_n(k) \cdot \hat{g}(k) = 0$ for all $0 \leq k_1 < 2^{n_1}$ or $0 \leq k_2 < 2^{n_2}$. Therefore $\langle \chi_n f, \Phi_n g \rangle = 0$ for all *n* large enough, and $S_{2^n}(\Phi_n g) = 0$, $S_{(2^{n_1},\infty)}(\Phi_n g) = 0$ and $S_{(\infty,2^{n_2})}(\Phi_n g) = 0$. Consequently for all $h \in L^1$ and $n \in \mathbb{N}^2$

T. Eisner

$$egin{aligned} &\langle S_{2^n}h,\Phi_ng
angle = \langle h,S_{2^n}(\Phi_ng)
angle = 0,\ &\langle S_{(2^{n_1},\infty)}h,\Phi_ng
angle = \langle h,S_{(2^{n_1},\infty)}(\Phi_ng)
angle = 0,\ &\langle S_{(\infty,2^{n_2})}h,\Phi_ng
angle = \langle h,S_{(\infty,2^{n_2})}(\Phi_ng)
angle = 0. \end{aligned}$$

Applying these equalities for $h = \chi_n f$ we get

$$\begin{aligned} \langle \chi_n f, \Phi_n g \rangle &= \langle \chi_n f + S_{2^n}(\chi_n f) - S_{(2^{n_1},\infty)}(\chi_n f) - S_{(\infty,2^{n_2})}(\chi_n f), \Phi_n g \rangle = \\ &= \langle \chi_n (f - \Delta_n f), \Phi_n g \rangle. \end{aligned}$$

From (1.13), (1.26) it follows by Lemma 2 for $\mathbf{X} = \mathcal{H}^1$ that

$$egin{aligned} &|\langle \Phi f,g
angle|&\leq\sum_{n\in\mathbb{N}^2}|\langle \chi_n(f-\Delta_n f),\Phi_ng
angle|&\leq \ &\leq C\sum_{n\in\mathbb{N}^2}\|\chi_n(f-\Delta_n f)\|_{\mathcal{H}^1}\|\Phi_ng\|_{\mathcal{BMO}}\leq \ &\leq C\sum_{n\in\mathbb{N}^2}\|\chi_n(f-\Delta_n f)\|_{\mathcal{H}^1}\|\phi_n\|_1\|g\|_{\mathcal{BMO}}\leq \ &\leq 4MC\|f\|_{\mathcal{H}^1}\|g\|_{\mathcal{BMO}}. \end{aligned}$$

If we take the supremum over those functions g for which $g \in \mathcal{BMO}$ and $||g||_{\mathcal{BMO}} \leq 1$ we will prove part (1) with $M_1 = 4MC$, where the absolute constant C is from the Feffermann's inequality.

Statement (2): Since $\Phi_n f = (\chi_n f) * D_{2^n} = 0$ outside the interval $J_n = [2^{-n_1}, 2^{-n_1+1}) \times [2^{-n_2}, 2^{-n_2+1})$ and $\Phi_n f = S_{2^n} f$ on J_n , thus Φ is of the form

$$\Phi f = \sum_{n \in \mathbb{N}^2} \chi_n S_{2^n} f.$$

Hence it is easy to see that

$$|S_{2^m}\Phi f| \le f^*$$

for all $m \in \mathbb{N}^2$, and so $(\Phi f)^* \leq f^*$.

Using Th. 3 for the Cesàro operator we get by Lemma 1 and (2.2) **Corollary 2.** The Cesàro operator is bounded linear operator from \mathcal{H}^1 into itself. \diamond

4. The two dimensional dyadic Copson operator

The Cesàro operator isn't selfadjoint operator, so if we take the adjoint of C we get a new operator with new statements. This adjoint operator is called the two dimensional dyadic Copson operator.

Theorem 4. Let $\mathbf{X} = L^p$ $(1 \le p < \infty)$ or $\mathbf{X} = \mathcal{H}^1$ and denote $\mathbf{X}^* = L^{p'}$ (1/p + 1/p' = 1) or $\mathbf{X}^* = \mathcal{BMO}$ the dual space of \mathbf{X} . Then the Copson operator $\mathcal{C}^* : \mathbf{X}^* \to \mathbf{X}^*$ is a bounded linear operator and satisfies

(4.1)
$$(\mathcal{C}^*\phi)\widehat{}(n) = \sum_{k=n+1}^{(\infty,\infty)} \frac{\widehat{\phi}(k)}{k_1 \cdot k_2}, \quad (n \in \mathbb{N}^2, \phi \in \mathbf{X}^*).$$

The boundedness of the C^* follows from Cor. 1 and from Cor. 2. **Proof.** The linear functionals of X have the form

(4.2)
$$\langle f, \phi \rangle = \lim_{\min(n_1, n_2) \to \infty} \int_{\mathbf{I}^2} E_n f(t) \phi(t) dt \quad (f \in \mathbf{X}, \phi \in \mathbf{X}^*)$$

if $\mathbf{X} = \mathcal{H}^1$, and

(4.3)
$$\langle f, \phi \rangle = \int_{\mathbf{I}^2} f(t)\phi(t)dt \quad (f \in \mathbf{X}, \phi \in \mathbf{X}^*)$$

if $\mathbf{X} = L^p$ $(1 \le p < \infty)$ (see [11]). Since $||E_n f - f||_p \to 0$ if $\min(n_1, n_2) \to \infty$ and $1 \le p < \infty$, therefore (4.2) holds for $\mathbf{X} = L^p$ too. If $g, h \in L^1$, then

(4.4)
$$\int_{\mathbf{I}^2} E_n g(t) h(t) dt = \sum_{k=(0,0)}^{(2^{n_1-1}, 2^{n_2-1})} \hat{g}(k) \hat{h}(k).$$

From the definition of the adjoint operator, from (4.2) and (4.4) we get

$$(\mathcal{C}^*\phi)\widehat{}(n) = \lim_{\min(N_1,N_2)\to\infty} \int_{\mathbf{I}^2} (S_{2^N}w_n)(t)(\mathcal{C}^*\phi)(t)dt = \langle w_n, \mathcal{C}^*\phi \rangle =$$
$$= \langle \mathcal{C}w_n, \phi \rangle = \lim_{\min(N_1,N_2)\to\infty} \sum_{k=(0,0)}^{(2^{N_1-1},2^{N_2-1})} (\mathcal{C}w_n)\widehat{}(k)\widehat{\phi}(k).$$

Since by (2.1)

$$(\mathcal{C}w_n)\widehat{\ }(k)=\left\{egin{array}{cc} 0, & ext{if } k_1\leq n_1 ext{ or } k_2\leq n_2 \ rac{1}{k_1\cdot k_2}, & ext{if } k>n, \end{array}
ight.$$

therefore we get

$$(\mathcal{C}^*\phi)\hat{}(n) = \lim_{\min(N_1,N_2)\to\infty} \sum_{k=n+1}^{(2^{N_1-1},2^{N_2-1})} \frac{\hat{\phi}(k)}{k_1 \cdot k_2}.$$

Since $\mathbf{X}^* \subset \mathcal{H}^1$, therefore by a Hardy type inequality (see [11]) we get

$$\sum_{k \in \mathbb{P}^2} \frac{|\hat{\phi}(k)|}{k_1 \cdot k_2} \le c \|\phi\|_{\mathcal{H}^1} < \infty,$$

where c is an absolute constant. That is, (4.1) holds which complete the proof of Th. 4. \Diamond

Acknowledgment. I wish to express my gratitude to Professor Ferenc Schipp for his help and advice in preparing this paper.

References

- [1] BARON, S. and SCHIPP, F.: Certain complementary spaces and multipliers for double Walsh series, *Annales Univ. Sci.* **39** (1996), 125–144.
- [2] BERNARD, A.: Espaces H¹ de martingales à deux indices. Dualité avec les martingales de type BMO, Bull. Sc. Math., 2^e série 103 (1979), 297-303.
- [3] BUTZER, P.L. and WAGNER H.J.: Walsh series and the concept of a derivative, Appl. Anal. 3 (1973), 29-46.
- [4] DANG VU GIANG, and MÓRICZ, F.: The Cesàro operator is bounded on the Hardy space H¹, Acta Sci. Math. (Szeged) 61 (1995), 535-544.
- [5] EISNER, T.: The dyadic Cesàro operators, Acta Sci. Math. (Szeged) 64 (1998), 99-111.
- [6] SCHIPP, F., WADE, W.R., SIMON, P. and PÁL, J.: Walsh Series, An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó Budapest-Adam Hilger, Bristol-New-York, 1990.
- [7] SCHIPP, F.: Multiple Walsh Analysis, Theory and Appl. of Gibbs Derivatives, ed.: P.L. Butzer, R.S. Stankovic 4 (1990), 73-90.
- [8] SCHIPP, F.: Über einen Ableitungsbegriff von P.L. Butzer and H.J. Wagner, Mat. Balkanica 4 (1974), 451-546.
- [9] WEISZ, F.: Martingale Hardy spaces, BMO and VMO spaces with nonlinearly ordered stochastic basis, Anal. Math. 16 (1990), 227-239.
- [10] WEISZ, F.: Atomic Hardy spaces, Anal. Math. 20 (1994), 65-80.
- [11] WEISZ, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis, Springer-Verlag, Berlin, 1994.
- [12] WEISZ, F.: Some Maximal Inequalities with respect to Two-parameter Dyadic Derivative and Cesàro Summability, Applic. Anal. 62 (1995), 223–238.
- [13] ZYGMUND, A.: Trigonometric Series, Cambridge University Press, New York, N.Y., 1959.