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Abstract: In the one dimensional case is already proved (see [5]) that the
dyadic Cesaro operator is bounded on L?[0,1) (1 < p < oo) and on the dyadic
Hardy space H1[0, 1) and is not bounded on the spaces VMO and on L°°[0,1).

In the present paper we show similary results in the two dimensional case.

1. Preliminaries

We shall denote the set of non-negative integers by N, the set of .

positive integers by P, the set of real numbers by R, and the set of dyadic
rationals in the unit interval [0, 1] by Q. In particular, each element of
'Q has the form p/2™ for some p,n € N, 0 < p < 2". Furthermore, let
I:=10,1) be the unit interval.

For any set X # () let X! := X and denote by X2 the cartesian
product X x X. Thus N? is the collection of integral latice points in
the first quadrant, and I? is the unit square.

We shall use the following partial ordering in R%. For z = (z1, z2),
y = (y1,92) ER2 let £ < y iff 71 < y1 and 3 < yo. We set |z| = |z1| +
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+|z3]. Forn = (ny,n2) € N? it will be used the notation n—1 = (n1—1,
T —-1).
The dyadic addition of z and y is defined (see [6] ) by

o0
(1.1) T+y= Z lzx — yg)27F 1
k=0
for z,y € I. If z,y € I? then by definition let z+y := (z1+y1, 22+ y2).
By a dyadic interval in I we mean one of the form [p/2", (p + 1)/
/2") for some p,n €N, 0 < p < 2" Givenn € N and z € I let I,,(x)
denote the dyadic interval of length 2~™ which contains z. Denote the
collection of dyadic intervals by Z.
Let Z?2 be the collection of dyadic intervals in I?, i.e. the sets of
the form I = I; x I, where I;,Is € Z. It is clear, that the dyadic
intervals in I? containing z = (z1, z3) € I? are of the form

(1.2) I (z) = In, (z1) X In,(z2),

where n := (ny,n3) € N2. We denote by fi X fo the Kronecker-product
of the functions f; : I =R (j = (1,2), i.e.

(fi x f2)(@) = fi(z1) - fa(z2)  (z=(z1,32) € T?).

Especially for f1 = fo = f we set f) := f x f.

The symbol LP(I?), 1 < p < oo stands for the usual Lebesgue
LP-space on I2.

The atomic o-algebra generated by the two dimensional dyadic
intervals of the form I = K x L with |K| = 277 and |L| = 279 will
be denoted by AP, For n € N? let L(A") be the set of the A"-
measurable function defined on I2. Set

A" = Alm—linz—l) (n = (n1,nz) € N?),
where
ACLD = @O and AL = O] AB-D = AGO) (j ¢ N).
The conditional expectation of the function f € L!( I?) with re-
spect to A™ (n € N?) is denoted by E,, f and can be given in the form

(1.3) (Enf)(:c)=7—1m—’ / f(s,8)dsdt (z € ,n € N2).

| In ()

I (z)
Extending (1.3) we set
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(14) (Bl @) = e [ Flon,)ds
I (2)
(z = (z1,22) €%, k€N)

(148)  (Beo)(o) 1= s Ik / Ft, za)dt
Ik(-’ﬂl)
(x = (z1,72) € I?, k €N).
A sequence of functions f = (f,,n € N?) defined on I? is called a
dyadic martingale if f,, belongs to L{A") and
(1.5) Epfm=1fn forall n<m and n,mecN.
If 0 < p < oo, fn € LP(I?) (n € N?) and

”fllp i= sup ”fn“P < 00,
neN?

then f is a so-called LP-bounded martingale.
Let f € L*(I?) and define the sequence f = (f,,n € N?) b

(1.6) frni=FEnf (neN?).

It easy to see that f is a martingale. Martingales of this type are called
regular.

The map f — f := (E, f,n € N?) is norm-preserving from LP onto
the space of LP-bounded martingales if 1 < p < oo and consequently
the two spaces can be identified. In a similar way, we can identify L*(I?)
with the space of uniformly integrable martingales (see [11], [12]).

The martingale maximal function f* is given by
(1.7) f* = sup |fal.

" neEN?
To define the martingale transform introduce the martingale dif-

Eerer;ce sequence in two-dimensional case by
1.8

do,o = fo,0, k0 := fr,0 — fx—1,0, dok = for — for—1 (kK€P)
n «— f(nl,nz)_'f(nl~1,n2)_f(n1,n2—1)+f('n1—-1,n2—1) (n = (nl) 77:2) € PZ)
Obviously,
=Y dp.

k<n
Moreover, if & = (an,n € N?) and o, € A" (n € N?) , then the
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sequence
(1.9) fe=> ogds, f£*:=(f7,neN)

k<n
is also a martingale and it is called the transform of f by the sequence a.

We introduce a set of function sequences to define special martin-

gale transforms. To this end set
wwo) o {r=(mn,n € N*) : 7(2) € {0,1}, ™ € L(AZ) and
. ‘Tnsz if ’I’LSm}

For 0 < p < oo denote by HP the set of martingales f = (f,,n €
€ N?) for which

(1.11) €ll30 2= 17 llp < oo.

It is easy to see that if p > 1 then (1.11) implies that f is uniformly in-
tegrable and consequently 7? can be identified by a subspace of L!(I?).
For any Y C L'(I%) denote by Yp the set

Yo:={f €Y : Enof=Eownf=0 (neN)}
The dual space of H} is the BMO space which is defined by
(1.12) Il = SEI;I{AT =0} ~2F = £ 2

where AT = inf,ene Tn , f = (Enf,n € N?) and f € L3(I?) (see [2],
[12)).

Feffermann’s inequality implies
013) | [ 1@0e)] < Clflelloso, (€ 17,6 € BMO)

where C' is an absolute constant (see [11]).

The closure of the set of the dyadic step functions in the BMO-
norm is the VMO space. It is well-known (see [11]) that the dual space
of the VMO space is Hg.

We study the double Walsh series

(1.14) D aw;(z),

JjEN?

where (a;,j € N?) is a null sequence of real numbers, and w; = wj, X
X wj, (7 = (J1,J2) € N?) is the two dimensional Walsh orthonormal
system generated by the Walsh-Paley system. Thus, series (1.14) are
considered on the unit square I2.
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The pointwise convergence of series (1.14) will be taken in Pring-
sheim’s sense (see [13], vol.2., ch.17). In other words, if we form the
rectangular partial sums

n— -1 ng—~ -1
Sn(z) = Z Z a;w;(z)
J1=0 j2=0
(.7 = (j17j2)1 n = (n11n2); T = (IL‘]_,LUQ), Ny, Ng 2 1)a
then let both n; and n, tend to infinity independently of one another,
and assign the limit f(z) (if it exists) to the series (1.14) as its sum.
It is known that Syn f = E, f (n € N?), where E,, f is defined in
(1.3) (see [6]). In the case n; = 0o or ny = co we use the notations
S(Z”'l,oo)f = E(n1,oo)f7 S(oo,2”2)f = E(oo,nz)fa

where E 1,),E(n,,00) are defined in (1.4 a) and (1.4 b). Furthermore
we introduce the operators

Anf = Sam1,00)f + S(c0,202) f — Son f.
Let D,, denote the two dimensional Walsh-Dirichlet kernel of order
n = (n1,ng), Le.,

(1.15) .
Z Wg (k:(kl,kz)ENz, TLE]P#)
k=(0,0)

In the one dimensional case the dyadic difference quotient is defined
as

dnf () : sz Yf(z) - flz+2777h)

for each f defined on [0,1), n € P and z € [0,1) (see [6]). The two
dimensional variant is defined as follows. For each function f given on
the unit square I? and for n € P2 set

n—1

d, = 2|j|—2 ’ _ . 2—.7'1—1’ B
(1.16) ) j=(zo,o) (P, 22) = flan & 22)

—f(z1, zp 279271 4 flzy 27771 2y F 27J2-1))
where z = (z1,z3) € I2. We shall say that f is dyadically differentiable
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at z if

(1.17) df(z):= lim d,f(z)

min(ny,ng)—+oo

exists and is finite, and call df the two dimensional dyadic derivative of
f at z (see [7]).

Tt is easy to see that for f = g x h and n = (n1,n2)

dnf = dn, g X dn,h,

and consequently (see [6])
(1.18) dpwy, =my-me Wy, (m <27 m,n € N?).

Obviously, it follows by (1.17) and (1.18) that the Walsh functions
wy, (n € N?) are dyadic differentiable and

dw, =m;-my - wy, (m=(m1,ma) € N?).

The inverse operator of d, i.e., the dyadic antiderivative (or inte-
gral) can be given by the convolution

(TF)(@) = (f x WP)(z) = / FOWD (z + 1)t
12

(f € LY(I2),t = (t1,t2),z = (z1,22) € I2), where W@ (z) = W x W
and W =322 w;/j.

It is known (see [3]) that

 WeI@m, Wh=0() (keN),

Consequently W2 ¢ L'(I?). Furthermore it follows from the one di-
mensional case, that ||d,W||1 = O(1) (n € P?).
Lemma 1. We can write d, W®) in the following form:
(1.19) dp W@ (z) = Dym () + R (z) (m = (M1, ms)),

where Ry (k) = 0 if k = (k1,k2) € N and k; < 2™ or ky < 2™
respectively and ||Rm||1 = O(1).
Proof. It is known that if n € N then d,W(z) = Da~(z) + Rn(z),
where for R, (k) = 0 for k < 2™ and ||R,||1 = O(1) (see [5]). From this
it follows also the two dimensional equality, since
d, W = (dp, W) X (A, W) = (Dgm1 + Rpm,) X (Damz + Rpm,) =
= Dgm + Ry, X Damz + Damy X Ry, + Ry X Ry, = Dam + Ry

Hence that if k; < 2™4 for j =1 or j = 2 then R (k) = 0 and also our
statement is established. ¢
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We will introduce a modified form of the one dimensional operator
dk:

22?1 — flz 27971 -

- 2" Yf(z) - f flz+27 1) (neNzeR).

Since di f = dpf — (dg41f — dif) = 2dxf — diy1f, therefore
ld; Wil = O(1) (k € P).

It is known that in the one dimensional case the Walsh-Dirichlet
kernel can be written in the following form (see [5])

(1.21) Dn(t) =d,_;w,(t) (n€N),

ift € [27°,27°1), s =1,2,.... In the two dimensional case, that is, if
t € [27°1,2751H) % [27%2,27%211) and n € N? we get by means of the |
equality '

(1.20)

(1.22) Dp(t) = (Dp, x Dp,)(t) (t € R%,n e N?)
~ that .
(1.23) Dy (t) = 51— 1Wn, (t1) - ds_z )W, (t2) =: d;_wa(t).

Using the dyadic addition we introduce the so-called dyadic translatlon
operators 7, for any z € I? as

(1.24) (o f) @) = flz +1t) (z,t€1?),

where f : I? — R is an arbitrary function (see [6]). Dyadic translations
are norm preserving in LP spaces, i.e. for all f € LP(I?) and z € I? we
have 7, f € LP(1%) and |7 f||p = || fl|,-

A Banach space X C L*(I?) with the norm || - ||x is called a
homogeneous Banach space if the set P of double dyadic step functions
is dense in X, ||f||l1 < ||f|lx (f € X) and the norm || - || is translation
invariant, i.e. if f € X and 2 € I? then 7, f € X and ||7. f||x = ||f]|x.
It is known (see [6]) that LP(I%) (1 < p < co) and H! are homogeneous
Banach spaces. '

If X is a homogeneous Banach space andif f € L'(I?) and g € X
then fxg € X Moreover, .

(1.25) If *gllx < HfllngHx

is true (see [6]).
Denote by X' the dual space of any homogeneous Banach space
X.If f € L' and g € X' N LY, then
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(1.26) £ * gllx < Ifllallglix

is also true (see [1]).

2. The two dimensional dyadic Cesaro operator on
LM12)

Let f € L*(1?) be an integrable function with Walsh-Fourier series
[~ Z f (k)wr.-
kEN?

We will assume that £(0,1) = f(1,0) = 0 (I € N) and denote the class of
such functions by L§. Now, we shall define the two dimensional dyadlc
Cesaro operator. First we prove that there exists a unique g € L} such
that

f(i) (n € P?),

(2.1) on) = z_-.(O 0)

is satisfied (see Th. 1). The map C : L§ — L{ defined by Cf := g
is called the two dimensional dyadic Cesaro operator. The aim of this
paper is to investigate some properties of Cesaro operators in several
subspaces of L!(I2).

First of all we will give a representation of C in a form of integral-
operator

Cf)(z) = /1 f(t)M(a;,i)dt (x € 12, f € LY),

where the kernel M can be expressed by the modified dyadic difference
operators d,; as follows:

(00,00)

(2.2) M(z,t)= Y xr () (d_ ;W) (z £ 1).

r=(1,1)
Here . is the characteristic function of the rectangle [277,27 "1 F1) x
x [2772,2772+1). Tt will be proved that series (2.2) converges in L*(I*)
norm and for almost all (z,t) € I*. '
Define the integral operator M(?) by
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23)  (MPf)(z) = /I FOM@t)dt (@€, f € L),

where M is given by (2.2).
Denote P, the set of the two dimensional Walsh polynomials p of
order less than 2™ and set
(00,00)

U P

n=(0,0)
P.={p€P:p(0,0) =0,5(0,k) = H(k,0) = 0,k =0,1,...}.
Then for any p = ZZ=(0,0) CxWk, p € P, we have

N
> bk) = ch_ (0,0)=0
k=(0,0) k=(0,0)

if N > n, n € N2, therefore the operator

(00,00) .

5(0,0)+---+p(k—1)
Cp = Z W
k=(1,1) ky - ke
is well defined, maps P, into P and satisfy
~ 5(0,0) + - -+ p(n—1

ni - ng
We show that C and the integral operator M(?) coincides on P, and
M(?) has the required properties.
Theorem 1. Let M®) denote the integral operator defined by (2.3).
Then

(1) M@ s o bounded linear operator from L} into itself,
(2) for all f € L§ the function g := M@ f € L} satisfies (2.1).
Proof. Part (1). It is easy to see that
M®(z, 1) = (MO x MO (z,8) (z,t € 1?),
where

MO (z, ¢) ZX N WD) (z +t) (2, ¢ € T),

and x;s )(t) denotes the characteristic function of the interval [279,
27st1). Because of this the last sum converges in L!(I?)-norm and
also almost everywhere (see [5]), so the series (2.2) converges in L(I%)-
norm and the operator M) is bounded.
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To prove (2) first we show that M) f = Cf for every f € P*. If
f € P*, then f,Cf € Py for some N € N2. Consequently Cf can be
written in the form

ZNl 2N2) f(O 0)++f(k_ 1)
Cf)(=z) = Z d — wi(z) =
1 k2
=(1,1)
(21,2 Z)w (:U) k-1
= 5 @) S e =
k=(1,1) ki ks i=(0,0) Y I*
(2N1,272)
Dy (t)wy, ()
I k=(1,1) 1-n2
Hence by (1.23) we get for the kernel for ¢ € [27N1,1) x [27]2 1)
(Nl:NZ) (2N112N2)
we(z) ,
o Y 2w,
1 Ko
s=(1,1) k=(1,1)

Thus for f € P* we have
= [ s0M(e, 0= (MO f)(E).
IZ

This means that C coincides with M(?) on the dense set P* of L. We
will show that ¢ = M@ f satisfies (2.1) for all f € L§. To this end
consider the the functions

~ f(0,0) + -+ f(k—1
su() = (MONW,  wup=LODEHIED e
on L}. It is easy to check that both are bounded linear functionals on
L}, for all k € N? and they coincide on P*. Since P* is dense in L}(I?),
our statement is established. ¢

3. Main results

As in the one dimensional case (see [5]) we will define a class of
operators denoted by N. Each element of N is given by a sequence of
two dimensional dyadic convolution-operators ®,f = f * ¢, n € N2,
where ¢n(z) = (35 x ¢$))(z), z € I? and ¢\ (k € N) are integrable
functions. Namely, let ® € N be defined as
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(3.1) Of = > Bulxnf) (f €LL(I?),

nEN?
where x, = X,(zll) X XS}, n = (n1,n2) € N2, The convolution-operator

®,, maps the class of the Walsh-polynomials into itself and

(3.2)  (@.f, >=<f, 9)  (feP,geL*(I?),neN?),
where (f, g) fIZ t)dt is the usual inner product of f and g. For

the maximal operator of the sequence ®, (n € N?) we will use the
notation ®*f = sup |®,|.

n€eN2
Theorem 2. Let ® € N be given as above, 1 < p < oo and 1/p +

+1/p' =1. Then
(1) if the generating sequence of ¢, (n € N?) satisfies

(3.3) M := sup ||¢n]|1 < o0,
neEN?

then @ is a bounded linear operator from L' into itself, and
(3.4) 1@flln < MlIflla (f € Lg(T*).
(2) Suppose that ®* is bounded from LP' into itself:
12%glly < M*|jglly (g € LP (1%)).
Then ® is a bounded linear operator from LP into itself and
(3.5) 12fll, < M™|Ifll, (f € L7).

Proof. Using the triangle inequality, (1.26) and (3.3) we get
12F111 < D 10 f) * balls < 3 xnflllidnll <

neN2 neEN?

<M xnflli =M || f]]s,

nEN2

and (1) is proved.

Part (2): Let f € P, g € L* (I2) with Hng/ < 1 and consider the
inner product of @f and g. It follows by (3.2) that

<@f7g> = Z (@n(an)ﬂ) = Z (ana (ﬁng>
neN? . neN2

If we take the absolute value of this inner product, and apply Hélder’s
inequality we get
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(@f, ) < Y (Ixafl,@%9) = (If], 8%9) <

neN2
< I£ 11127 gllyr < M*{lgllp [ f]p-

Taking the supremum with respect to g € L ||gllpr < 11t follows that

12711, = sup { &7, 9)| : g€ L”, llglly < 1} < M*IIflly,

which proves our statement. ¢
Corollary 1. The Cesaro operator C

(1) is bounded linear operator from LP into itself if 1 < p < oo,
(2) s not bounded from L into itself.

Proof. By (2.2) the Cesaro operator belongs to N with generator se-
quence d- W), Tt is known (see [11], [12]) that the maximal operator
given by this sequence is a bounded operator from LP' to itself, 1 <
< p’ < oo and by Lemma 1 (3.3) holds, too. If we apply Th. 2 to the
Cesaro operator we get part (1).

Part (2) follows immediately from the one dimensional case (see
[5]). ¢
Theorem 3. Let ® € N an operator for which

(1) the function sequence ¢, satisfies (3.3) and
(3.6) bn(k) =0 (0<ky<2™ or0<ky<2™),neN?) or
(2) ¢n =Dz (n€N).

Then ® is a bounded linear operator from the dyadic Hardy space
H into itself, and

1®fllsr < Millfllr  (F €HY)
with a constant My dependly only on M in (3.3).
To the proof of Th. 3 we need
Lemma 2. If f € L' then the following inequality is true

(3.7) > xn(f = Anh)llze < 4-[|£ s

neN2

Proof. Let us consider the following function
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gn(z) :=xn(z)(f(z) — Anf(z)) =
=xXn(Z) (f(:c) - U—l'llj/ f(s,z2)ds — ’J—;' / f(a:l,t)dt—F

+IT]1—|/f(s,t)dsdt) (eI neN?),

where
Jnl = [2~n1’2—n1+1), ']nz = [2—n2’2~nz+1), Jn = Jn1 x an'
It is easy to prove that '

/gn(s, z9)ds = /gn(ml,t)dtz 0.
Tnq Tny
From this follows that if z € J, then for m; < n; or my < ng we get
Somgn(z) = 0. If z ¢ J, then we get for all m that Symgn(z) = 0.
Furthermore, if z € J; x Jo and m > n then
Sam San (Xn.f) = XnSan f,

Sam (27 ,00) (Xnf) = XnS(@m1 2m2) [,

Som S(oo,zg)(an) = XnS(z'nl,z"z)f,
and so

|S2mgn| < Xn(|Sam f| + |S(ama 2m2) | + [S(2n1 2ma) f| + [San 1)

Taking the supremum over m we get

g;; < Adxn f*,
and so our statement is proved. ¢
Proof of the Theorem 3. Statement (1): Because P is dense in #!,
it is sufficient to prove that the Th.3 holds for f € P. Let f € P,
g € BMO, with ||g|lsmo < 1, and consider the inner product of ®f
and g. It follows by (3.2) that

(Qfag> = Z ( (an Z <an, ng>
neN2 neN2
where by (3.6) (®,9)(k) = ¢n(k)-§(k) = 0 for all 0 < k; < 2™ or
0 < kg < 2™2. Therefore (x,f,®,g9) = 0 for all n large enough, and
527 (®ng) = 0, S(271,00)(Png) = 0 and S(eo 2m2)(®ng) = 0. Conse-
quently for all h € L' and n € N?
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(Sanh, ng) = (h, S2n (Bng)) = 0,
(S(2m1,00): Bng) = (B, S(am1,00)(Png)) =0,
(8(c0,272) s @ng) = (h, S(co,2n2)(Png)) = 0.
Applying these equalities for h = x,f we get
{(Xnf, ®rg) = {(Xnf+S2n (X'n.f)_S(Z"l,oo) (xnf) _5(00,2"2)(an)7 ®n9)=
v :<Xn(f_Anf)1@ng>'
From (1.13), (1.26) it follows by Lemma 2 for X = #* that

(2£,9) < D [0n(f — Anf), Bng)] <

neN2
<C N xnlf = Anf) el @ngllBro <
neN2
<C Z X (f = Anf)llallOnllillgllBrmo <
ncN2

< AMC||fllzallgllBMmo-

If we take the supremum over those functions g for which ¢ € BMO
and ||g|lamo < 1 we will prove part (1) with M; = 4MC, where the
absolute constant C is from the Feffermann’s inequality.

Statement (2): Since ®,f = (xnf) * Da» = 0 outside the interval
Jp = [27™, 27 H1) x [2772 2772 +1) and @, f = Saa f on Jy,, thus @ is
of the form

&f = ) xnSanf.
neN2
Hence it is easy to see that
|Som @ f| < f*

for all m € N2, and so (®f)* < f*. ¢

Using Th. 3 for the Cesaro operator we get by Lemma 1 and (2.2)

Corollary 2. The Cesdro operator is bounded linear operator from H*
into itself. O

4. The two dimensional dyadic Copson operator

The Cesaro operator isn’t selfadjoint operator, so if we take the
adjoint of C we get a new operator with new statements. This adjoint
operator is called the two dimensional dyadic Copson operator.
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Theorem 4. Let X =L? (1<p<oo) or X =H' and denote X* =
=L* (1/p+1/p' = 1) or X* = BMO the dual space of X. Then
the Copson operator C* : X* — X* 45 a bounded linear operator and
satisfies

* el é(k) 2 *
(4.1) €)= > =, (neN, peX).
k=n+1 ky - ke
The boundedness of the C* follows from Cor. 1 and from Cor. 2.
Proof. The linear functionals of X have the form
(42)  (f,i¢)= _ lim E.f(t)¢(t)dt (f € X, ¢ €X")

min{n;,nz)—oco Jy2

if X = #!, and
(4.3) /f Bdt (feX,¢eX*)

if X=LP (1 < p<oo) (see [11]). Since ||Epf— fl|l, — 0 if min(ny, ny) —
— oo and 1 < p < oo, therefore (4.2) holds for X = LP too. If g, h € L,
then

(211,1—1’211.2—1)
(4.4) [ BgOnde = > gbh(s).
I k=(0,0)
From the definition of the adjoint operator, from (4.2) and (4.4) we get
o= Jm [ (SO = wn,C9) =
min(Ny,Nz)—o0 J12

‘ (2N1—1,2N2——1)

= (Cwn,¢)=  Lim Do (Cwn)TR)S(K).

min(Ny,Nz)—o0

k=(0,0)
Since by (2.1)
O, 1fk1§n1 or kzg’nz
Cory={ ;)
1°K2

therefore we get

(2N1 —1,2N2—1)

( )A(n) m1n(N1 ,Nz) Z

k=n+1

d(k)
P

Since X* C H?!, therefore by a Hardy type inequality (see [11]) we get
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~

> 2B < gl < oo
keP?

where c is an absolute constant. That is, (4.1) holds which complete

the proof of Th. 4.
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