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Abstract: For fixed natural numbers 1 < a < b we consider p, ;(n) defined
as the number of pairs (u,v) € N x Z,u > |v| with (u — v)%(u + v)? = n.
Continuing on part I of this paper we prove an Q4 — result for the remainder
term in the asymptotic formula for the corresponding Dirichlet summatory

function.

1. Introduction

As in part I of this paper [11], we define for fixed natural numbers
1 < a < b, the arithmetic function

Pap(n) = #{(u,v) e NXZ :u > |[v],(u—v)*(u+v)® =n} (n €N).

To study the average order of this arithmetic function, one is interested
in the Dirichlet summatory function

(L.1) Top() = Y pap(n)
: n<z
where z is a large real variable.
For the special case a = b = 1, the question for the asymptotic
behaviour of 77 1(z) is closely related to the classical divisor problem
of Dirichlet, by the elementary formula, due to Sierpinski [13]
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(1.2) pra(n) = d(n) — 2d (g) +2d (%) ,

where d(n) denotes the divisor function and d(-) = 0 for non-integers.
Dirichlet proved that

(1.3) Z d(n) =zlogz + (2y— 1)z + A(z) ,

n<z

where vy denotes the Euler-Mascheroni constant and A(z) < z/2.
Since then the question of the exact order of the remainder term A(z)
has been called the divisor problem of Dirichlet. For an exposition of
its history and the definition of the O — and the 2 - symbols, see the
textbook of Kratzel [7]. At present, the sharpest upper bound reads

(1.4) Alz) = 0($23/73(10gm)461/147) :

due to Huxley [6]. In the opposite direction, the best results to date
are

Az) = Qy ((m log z) /4 (log log z)(3+21082)/4 .

(1.5)
-exp (—cy/loglog log = )) (¢>0),
and
(1.6)
Az) = ( *exp (¢’ (log log z)*/*(log log log x)_3/4)) (¢ >0)),

due to Hafner [4], and Corrddi and K4tai [2], respectively.
For the special case a = b = 1, (1.2), (1.3) and (1.4) together
yield,

Tia(e) = glog:c +(27 - 1)'; +01,1(z) ,
with
T T
=20 (5) 428 5)
and therefore by (1.4)
011(z) = 0(m23/73(10g w)461/147) .

Concerning lower estimates, the author proved in [9], [10], on the
basis of (1.2), Q - results for #; ;(x) which are as sharp as (1.5) resp.
(1.6).



On a formula of Sierpinski, IT 269

In [11], the author showed that for the general case (a,b) # (1,1),
there exists a formula quite analogous to (1.2), which is closely related
to the asymmetric divisor function

(1.7) dap(n) = D 1,

yopb=n

and to its corresponding Dirichlet summatory function

(18) Y dap(n) = ( ) 1/a+c( )+ Mg (z)

n<z

The corresponding formula in the general case has the form
. n n
(19)  pap(n) = das(m) = dap (57 — das (35 ) +2das (5m5) -

A thorough account on the history of the asymmetric divisor prob-
lem and a survey on results concerning upper estimates for the remain-
der term A, p(z) is given in the textbook of Kritzel [7]. The today
sharpest lower estimates were established by Hafner [5] and read

Aa,p(3) = 0y (2% (log 2)°* (log log 7)(* 082~ Daart1

-exp (—c+/logloglog x )) (c>0),

(1.10)

(1.11)
Agp(z) =Q_ (:L’O‘ exp (¢’ (loglog )2 (log log log x)“a‘l)) (¢ >0),

with
1

(1.12) o= Nath)

In [11] the author proved already an Q. - estimate for the error
term in the asymptotic expansion of (1.1), quite as sharp as (1.10). The
aim of this paper is thus an Q_- result for this error term which is as
sharp as (1.11).

Here and throughout what follows ¢y, ¢y, ... denote positive con-
stants which depend at most an a, b, which applies to all of the constants
implied in the O - and < - symbols as well.

Theorem. Forl < a < b natural numbers, and o defined as in (1.12),
we have
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_ 1 b 1/a 1 a 1/b
Top(z) = 5( (E) "+ §C (b) '’ 4+ 0, () ,
with 4
Bap(z) = Q2 (:c“ exp (c(loglog z)**(log log log x)aa*l )) :

where ¢ is a positive constant depending on a,b.

2. Notations and Lemmas

For a large real variable z we define P, as the set of all primes
less than or equal to z, and Q. the set of all a - th powers of square-
free integers composed only of primes from P,. We write IV for the
cardinality of P, and M = 2/Psl for the cardinality of @;. We then
have

T

N =< and M<<exp(c1 d ),
logz

log
for some positive constant c;. The largest integer in () is bounded by
e??® since for q € Q, we have

logg < Zalogp < 2az .
p<z

Let S; be the set of numbers defined by
Sy = {,u = Z quza where 7, € {0,£1} and at least two ry # 0} ,
9€Q<
and
n(z) = inf{|n®* + 2u| with n € Np and p € S} .

Our first lemma is adopted from Gangadharan [2], and provides
an upper bound for — log(n(z)), for £ — oo. :
Lemma 1. For x — oo we have

log L <L exp (cz _3:_)
n(z) logz )’
for some positive constant co.
Proof. Let h € Ny and p € 5, such that

(2.1) B2+ 2u| =n(z),  with p=) ry®.
Tq

Then each 1 # g € Q, can be expressed uniquely as a product of dis-
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tinct primes of the set P,. Inserting these expressions for the numbers
g in (2.1), we get with N as above,

77(33) = IL(L hZa’p%aa’ ce 7p?\¢fm)| )
where L(z,y,1,...,2Zn) is a polynomial whose degree in each vari-
able is less than or equal one, and whose coeflicients are all integers.
Let F' be the minimal normal extension field of @ which contains
L(1, h?, p2ee . p2%) and G = Gal(F/Q). Then G contains at most
(a + b)N*2 elements x, since the numbers h2¥, p?*® (1 < k < N) are
all algebraic integers of degree less than or equal a + b. It is clear that

(2.2) H X (L(l,hzo‘,p%‘m, e ,p%’a)) >1,
XE€EG

since the left hand side of (2.2) is the modulus of the norm of a nonzero
algebraic integer. (Note that ¢2¢,... , 422 are linearly independent over
Q, see e.g. [1].) Furthermore, for every x € G,

20 20c Z2ac
(2.3) x (L(1, r%*, pi*e, ..., p%*)) < n(z )+41¥}3‘<pr

From ( 2), (2.3) we obtain

n(m) < H X 1 h2a,pi{,aa,”_ ’p%;za ) < (1+4w2aa)(a+b)N+2 ,
XEG

x#id

which establishes Lemma 1. ¢
Lemma 2. For (u,v) € N? [et

(2.4) Ta,b(T Z ud1yb-1,

uspb=n

There exists a positive constant ¢z such that
T, xoe
> D s e @)
9€Q; 1 g
"Proof. By the definition of ., we have
Z Ta b(q > H 1+ p——1+a,a) = exp (Zlog 1_|_ p—1+aa)) >

qeEQ . p<z p<z

> exp (Zp Hex L 01 )) >exp( lmaa ) O

0g T

p<lz
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Lemma 3. For 7,5(n) defined as in (2.4), we have

Ta,b(2“+bn) = 2a_1’ra,b(2b’n) -+ 2b—17_a,b(2a,,n) —_ 2a.+b—27_a,b(n) .

Proof. Write n = 215*7y, with u odd. Then

a+b+ry a—1,b0—1 __
Tap(2°7077) = E ut T =
uopb=2a+b+r

___{ Z n Z _ Z }ua—lvb-—lz

wGyb—gatbtr yaybogatbtr gyayb_satbtr

2ju 2|v 2{u,2|v
— {20.—1 Z 4 b1 Z _ ga+b—2 Z } ulyt—1l—
uayb=204+r yapb=29a+r yaypb=2r

—_ 2a—17_a’b(2b+r) + 2b—17_a’b(2a+r) _ 2a.+b—-2,ra,b(2r)

The proof now follows from the multiplicativity of 74 5(:). ¢
As in Gangadharan [2], define for real z,

elz + 6—12

Viz)=2 (cos (%))2 = 1+—2——— .

Te(u) = H |4 (qua - —542) .

9€EQ:

and

Lemma 4. We have
(1) 0 < Tu(u) < 2M, for all u;
(2) TL(u) < M 2M e29= for all u;
(3) Tp(u) =To + Th,p + To,z + T3,z where, |

651ri/4 iug?e iu

o D €T, Taa= ) hue™,
q€Q: HES,

Ty, is the compler conjugate of Th 5 and |h,| < 1/4.

Proof. The proof of Lemma 3 is straightforward by the definition of

V(z) and Ty(u). O

To=1, Ti,=

3. Proof of the Theorem

We start from formulas (47), (48) of Krétzel [8], with a slight
change of notation: For z > 0, we have
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| As ()2 j (Aa,b(t)— %) dt =

2. Tan(n) | o T o
:c4:c1_"‘z n’lb_l(_a) sin (c5(nz)? —Z)—i-O(:z:l 2e)

=N

(3.1

n=1
where the sum converges absolutely and uniformly. on every compact
set, and cq4, c5 are explicit computable positive constants, e.g.

ab(abba)—Za by
= ———— 3 = 2 + b ab a .
“= omjagy 0 o I+

For the error term in (3.1) see Nowak [12], formula (2.18). Let
1
E(t) = Cg (00,,1, ((C7t)a+b) — —-) ,

4
with ¢g = Ef\/L:_s and c; =c3*. From (1.9), (3.1) and the substitution
T = csx*®, we get
(3.2)
T
B(T)% / B(t)tot-1dt —
0
— a+b—1/2 = Ta,b(n) _ _
=T Z Tta (s0(n, T)—s4(n, T) — sp(n, T)+25046(n, T))+
n=1 '
+O(T*+-1)
with

se(n, T) := 2°* sin (T(nz—e)za — Z-) .

For cg = max{cy,2¢;} we define

P(z) = exp (CS 102.»6) and 0, = exp (—2P(z)) .

Therefore M = o(P(z) and —logn(z) = o(P(z)), too. Next define for
fixed =z,

—c6 04, ((cru)?+?)

Yz = i‘i% ul/2+1/P(z)

We may assume that v, < oo, otherwise more than Theorem would be
true. With A = ¢g/4, we have :
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(3.3) Ngut/ 2tV PE) L A+ E(u) >0,
for all u. Let

Jy = g&tit1/2 ('ymul/z"’l/P(m) + A+ E(u))u“'“’"1 e =% T (u) du

0\8

The next lemma provides an asymptotic expansion for J;.
Lemma 5. For z — oo and a as in (1.12),

+0(V=) +0( ) -

Jo = ET{a+b+1/2)ye~ g Ta+b+1/2) 3 ;b(Q)

gEQ:

Proof. Throughout this proof, we write k =a+b+1 /2, for short. Do
deal with the first two terms of J,, we observe that, for r =a+b—1
orr=a+b—%—|—7,—(1m—),

o0
a'_,;?/ u" e %" Typ(u)du =
0

i=1,2,3

, o]
=T +7r)os 17"+ Z 0’:/ u" " %% T; p(u) du ,
0

where 1 < 7 < a+b—1/2+ 1/P(z). The part of T1,, contributes
exactly, :

e51r'i/4 : 1 o0e(1
5 U:F(l-{—’f‘)Z( T g 1+T<<O':Zq"a(+7‘)<<
qEQ: Oz g ) q€Q:
<of Y 1<osM =o0(1).
9€Qx

The contribution of T ; = T1 5 is obviously no more than this. Finally
T34 contributes

o oi3Mp ()~ ()

u§ crm-l—w 1+T<< 37 (z) <
& exp (—26P(z)+Mn3+(1+7)(—1logn(z))) K
< exp (—26P(z) + o(P(z))) = o(1) .

Next we deal with the contribution of F(u) to J;. Our first step is to
integrate by parts to introduce Fi(u) in the integral. Thus,
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since By (u) < u+*=1/2 for large u and F;(0) = 0. Inserting the series
representation (3.2) for F1(u) and integrating term by term, noting that
the series converges absolutely for every u and uniformly on compact
sets, we get '

00
— Ta,b\T —7r'l. d —a"u.
0

n=1

+ O(/ uoth=3/2 g=oau T (3)]| du),
0

since
ua.;_b..l/z%(e—azu Tm(u)) — %(uﬁ'b_l/z @ T2l TE(U))-F
+ O(ua+b—3/2 e~ %% T, (u)) ,
and
1, %

=[(e(n; 0) — e(n;a)— (n b)+2e(n; a+b))dci( otb1/2 g~ T, (u))du

)Za

(3.4) e(n;r) = 27 eu(n/?’
Estimating the contributions of the error terms, we see that

—OaU < —0zu <
/‘du T,(w)| du /;T Ty (w)] 6= du <

< 4M e oM <
< exp (Mln4 +2P(z)) + o(1) = o(0; ") ,

since k > 2, and
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o0
/ s h=3/2 = | (1) du <
0

o0
< ZM/ua.+b-—3/2 e~ dy <« 2M g (aHb-1/2)
0

< exp (2(a+ b —1/2)P(z) + o(P(z))) = 0o(0;") .

We integrate I, by parts once more and expand T(u) as in (3) of
Lemma 4, to get with

n 2a
ei(n;r) = o e(n,r),

e(n;r) as in (3.4),
I, = —i(Io(n) + I1(n) + L2(n) + Is(n)) ,
with
Ix(n) =

:/(el(n; 0)—e1(n; a)—e1(n; b)+ei(n; a + b))u "t e 7% Ty 4 (u) du
0

for 0 < k < 3. We shall show that the main term of I,, comes from
I (n). In fact, the contribution of Iy(n) is

& ,n2a |U:c _ inZal—n & n—1+a ’
that of Iy(n) is

<<,n2a Z lam _i(nZa +q2a)'—-fe & Mn~lte
9€Q<

The contribution of I3(n) is bounded by
I(n) <1 3 Jog - i(n® — )| 7" <

HES:
< { n2e3M(n(z))~*, ifn < 2max{|y|:p € Sz}
p-1ltegM else.

This max{|u| : u € Sz} is bounded by M e“* for some positive constant
c. Hence the total contribution to I is bounded by
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Ta b( M Ta,b(1)
< ¥ Mexp (—nlogn(@) +0(s* Y M)«
n<2M ec= n>2M ecT

& 3Mo_;mlogn(z) (M'ecm)a+e — O(O_m—n) .

Therefore,
I =
(o 0]
- Z Ta’lb_(::) Z /(eq(n; 0)—eq(n;a)—eq(n; b)+2eq(n;a + b)) ur"le™ =% dut
"-"1 n (IEQ:BO
+ o(a—") = '
—5 2 s (real0) =2 p(200) 2P (20 4270 2.
qEQz
o0 o0
./ua+b—1/26-—azu du+O(Z Ta, b(n Z [/ zu(nz"‘—qza) =1l g~0zu du)
0 =1 q Q:z: 0
with

eq(n; 7_) — 2ra(£)2a eiu((n/2")2°‘—q2°‘) ]

For this last error term we get a bound exactly as above for I3(n) with
M replacing the factor 3™,
Combining all contributions we get,

I'(k) _ _ _ o U

_gz—)_"wn D a7 (rap(g) — 2770 5(2%0) — 2707, 4(200)+
gEQ .

4 2—a.—b+17_a’b(2a+bq)) + O(O';K) —

1 - - -
== g0(®)oZ" D Tap(@)a ™ +0(07")
qeQy

the last assertion by Lemma 3. This completes the proof of Lemma 5. ¢
Since o, > 0 and J; > 0 by (3.3), we have

e _
P (cloga:> <D (@ <
qEQz
by Lemma 2 and Lemma 5. Thus by the definition of v, there is a
sequence u, which tends to infinity with z, such that

log ug, x%®
P(z) + clog:r) ’

since 6, (u) is bounded for bounded u, which follows for small « from

I=-—

—8a,0(u2) > u/2exp (
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=)o~ ()

and is obvious for the other values of wu.
Consider first the values of u, for which

log ug z%®
(3:5) P(z) — clog:c '
Taking logarithms on both sides, we have

T

logl - .
oglogu <<10g:c

Since y®*(log y) ~1*4* is an increasing function of y for sufficiently large
y, we have from (3.5)

ac

(loglog uy )™
(logloglogug)l—2« " logzx

from which the desired estimate follows.
Consider now thoose values of = for which
e log u,
c }
logz = P(z)

(3.6)

We may assume that
(loglog uy)*™ log ug
(log log log ug )19 P(z)’

otherwise the estimate holds obviously. Taking logarithms on both sides
gives

loglog u, < z
8108 Uz logz ’

from which the estimate fo]lowﬂs as above. This proves the Theorem. ¢
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