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Abstract: This paper provides a generalization of certain classical P norm
convergence and summation theorems of the partial sums of Fourier series to
the case where the underlying orthonormal basis is not the trigonometric one,
but a rational generalization which contains the trigonometric one as a special
case. It is introduced a rational interpolation operator on nodes given on the
unit circle. By using a generalization of the Marcinkiewicz classical L? norm
convergence theorems for triginometric interpolation IP norm convergence is

proved for the discrete rational operators, too.

1. Introduction

In the area of applied mathematics a fundamental idea is that of
expressing solutions by expanding them in terms of orthogonal basis
functions, e.g., the classical Fourier analysis, classical orthogonal poly-
nomials and solutions of self-adjoint operator equations in terms of the
orthogonal eigenfunctions of the operator. More recently, for signal
processing and system theoretic problems there has been an explosion
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of interest in the development and use of wide class of new orthogonal
bases. : '

Over the last years a general theory has been developed for the
construction and analysis of rational orthonormal basis functions, of-
ten called generalized orthonormal basis functions in the engineering
literature, for the class of stable linear systems. These basis are pa-
rameterized in terms of pre-specified poles that makes it possible to
incorporate a priori information in the model structure [7], [5], [6], [12],
[11], [10]. These recently developed basis functions have been shown to
have attractive properties in several respects. The use as linear model
parametrizations in system identification problems has been shown to
be attractive, due to the fact that smartly chosen basis functions can
provide a fast rate of convergence of the corresponding series expan-
sion, leading to linear model parametrizations with a limited number

" of parameters.

These investigations motivate the interest in the examination of
the approximation properties of the rational orthonormal systems gen-
erated by a given set of poles. A generic example of such a system is
the so called Takenaka-Malmquist system, see [2], [13]. These basis
can be viewed as an extension of the trigonometric system on the unit
circle, that corresponds to the special choice when all of the poles are
located at the origin. This paper provides a generalization of certain
classical I’ norm convergence and summation theorems of the partial
sums of Fourier series to the case where the underlying orthonormal
basis is a rational one that contains the trigonometric basis as a special
case.

This paper provides a generalization of the Marcinkiewicz classi-
cal I? norm convergence theorem of the trigonometric interpolation on
equidistant nodes on the unit circle, see [14], to the rational interpola-
tion process generated by the case where the underlying orthonormal
basis is a rational one that contains the trigonometric basis as a special
case. ' A ' ‘

- The structure of the presentation is the following: after fixing
the basic notations and introducing the rational orthonormal functions
some known facts are recalled about the reproducing kernels of the sub-
spaces generated by these functions. An extension is given from H?,
i.e, the Hilbert space of square integrable functions on the unit circle
with analytic extension on the unit disc, to 1.2, the space of square
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integrable functions on the unit circle. This is followed by a section
that proves the uniform boundedness in 1P norm of the partial sum
operators and the P norm convergence of these sums. The next sec-
tion gives an extension of the classical summation properties to the
rational orthonormal basis situation, when the basis is generated by a
periodic set of poles. The second part of the paper introduces a dis-
crete rational orthonormal system on the unit circle and provides a
theorem for I” norm convergence of these rational interpolation oper-
ators.

2. Basic notations

Denote by C the set of complex numbers and let Z be the set
of integers. The open unit disc and its boundary will be denoted by
D:={z€C||z] <1} and T := {z € C||z| = 1}. By L? will be de-
noted the classical L? (T) Banach space endowed with the norm ||f||, :
= (o= 7 |f (¢it)|Pdt)?, and H? will be the Hardy space of square in-
tegrable functions on T with analytic continuation on the unit disc. Its
orthogonal complement in L? will be denoted by H?+. The scalar prod-
uct considered is the usual one, ie., < f,g >:= 5= [7_ f(e®)g(e)dt.
Throughout this paper z := e* will denote a complex number from T.

Let By, be a finite Blaschke product of order n € N := {1,2,...}
written under the form

n
Z—
= ||b;, bi(z):= —
" jI;IIJ J 1-a;z

where |o;] < 1, (j = 1,2,...,n) are given complex numbers. Let us
consider the subspace H( n) = H? © B,H?, i.e, H(B,) is the orthog-
onal complement of B, H? in H?.

Consider the set of functions ¢; associated to the set of zeros
{oj]j=1,...,n} of By defined by

d1
1-—

where d; := /1 — |a;|2.
It is clear that ¢; € H(B,), ||¢;jll2 = 1 and they form an or-
thonormal basis of H(B,,), the so—called Takenaka—Malmquist system.

¢1(z) = ¢J(

1<j<n,

(=41
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As a starting point, let us mention the fact that for a finite
Blaschke product B, of order n, there exist a monotone increasing, in-
vertable and differentiable function f(,)(t) mapping the interval
[—7, 7) onto itself, see [9], so that
4 Bn(eit) — einﬂ(n)(t).

Denote by v(n)(t) the inverse function ,8(’;1) (t).

Let us denote the phase function of a single term by G(¢), i.e.,

bo, (€t) = €+ (), then the function B(,)(t) can be expressed as

- By(t) = %Zﬁk(t)-
k=1

For the derivatives one has, see [11]

/ 1-— |akl2
)= —————.
Since 1 — |ag| < |1 — @e™| < 1+ |ag], one can obtain the bounds
’ 1— |og] , 1+ |k
< B.(t) < ,
1+ o] < Bilt) < 1 — |ag|
and hence
1~ 1ok _ 1 G 1+ o
2 T ] S Pw® <0 T0 T
k=1 k k=1 k
It follows that the derivative of the inverse is bounded by
n ' n
n 1+|ag S ry(n) (t) S n 1—|ag| "’
k=1 T—|ag Dk=1 T+

3. Reproducing kernels for H(B,), extensions to 12

In this section some basic facts will be summarized about the
Takenaka—Malmquist system and a possible extension of this basis will
be presented to IL?. Let us recall the completeness property of this
system in the HP spaces, i.e.:
Theorem 3.1. The system {¢x

if

k € N} is complete in HP if and only

D (1 - Jou|) = oo.
k=1
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Proof. Let us consider that > .2 ,(1 — |ax]) < co. Then f(z) =
= [Tp, 1"—‘_‘5:5_,“—22 is an inner function in HP, see [4], pp. 64, and clearly
< f,¢x >= 0 for all £ € N that contradicts the completeness of the
system.

For the only if part let us suppose that the system is not complete,
i.e., there exists a nonzero function f € HP such that < [0 >=0 for
every k € N. By the Cauchy theorem follows that f has as zeros the set
{ax}. From it follows that Y p- . (1 — |ax|) < oo, see [3], pp. 53, which
is a contradiction. That proves the assertion. ¢

The reproducing kernel K(z,p), (z,4 € T) of a closed subspace
V C 1.2 is defined by

e for every u the function K (2, 1) belongs to V,
e the reproducing property, i.e., for all u € T and every

FeV f(p)=< f(Z),K(z,u) >z (LET),

where the subscript z by the scalar product indicates that the
scalar product applies to functions of z.

If an orthonormal basis is considered in the finite dimensional
subspace V say {¢;(2)|j = 1,...,n}, where n = dimV, then the re-
producing kernel is given by Ky (z,u) = Y r_, 0r(2)Bx (1), z, 1 € T,
and it is independent of the choice of the orthonormal system, see
[1]. Applied this to the subspace H(B,) one can obtain K, (z, u) =
= 11 Pk(2)Pr (1), as a reproducing kernel.

One has the following Christoffel-Darboux formula [2], pp. 320:
Lemma 3.2.

)i= Y dellBul) =+ e

Proof. For the sake of completeness a short elementary proof is given

below. By direct computation one has 1= b’;(zz),zk W) — = alk z'ﬁf’zak =

i.e., by using the definition of the functions ¢k, it follows

Or(2) P (1) = Lo gk_ sz(M H b (

_ Bk—l(z)Bk—l(u) — By(2)Bi(p)
1—2§ '

By summing up this formula results our assertion. ¢
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There are a lot of possibilities to extend an orthonormal system
from H? to L?. Let us consider the map U : H? — H*+ Uf(z) =
= 2f(2). Then the system defined by ¢_, = U¢y, (k € N) forms
an orthonormal system in H?L. A finite set {¢_x |k = 1,...,n} that

corresponds to the system of poles {i} span the subspace H(B,,) =
— M2t 6 B,H?*. Let us mention that H(B,) = B,H(B,) and the
system {@.k | #«k = Bndr} is an orthonormal basis in H(B,).

Using the formula of the reproducing kernel of H(B,) one can
obtain the reproducing kernel of H(B,) ® H(B,), i.e.,
)= > el = ()t B Dnl) = Bala)Bn(2)

k=—n,k#0 (27)% — (u2)

1 )
2

(z,u € T). Let z = e and p = €'", then one has

-tz Smn(ﬁ(n) (t) - IB('I'I) (T))

sin(t—“z—f) !

Sf: (t’ T) = Sg(.eitv eiT) =e€

- where ¢, T € [, T).
If one consider the system generated by the set of poles

1
=0, ak|k=1,...,n},
{ak oy | n}

i.e., the subspace H(B,) ® H(0) ® zH(B,), then one can obtain
(2) B (2) Bn (1) — (42) % Bn (1) Bn(2)

d{)(z, p) = : - ,
| n (2 1) 0t ()}
| D(a)(t 7_) _ sin ('I’L(ﬂ(n) (t) - ﬁ(n) (T)) + %(t - T)) -

sin(5%)
This can be considered as a generalization of the Dirichlet kernel

Do (t,7) = sin (n + %)(t —T)

sin (557)
that can be obtained when all of the poles are placed at the origin.

4. 1» norm convergence of the partial sums

This section gives a generalization of the classical I” norm con-
vergence theorem of the partial sums of the Fourier series to the partial
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sums in the rational orthonormal system {¢ | k € Z} generated by the
poles , o | k € N},
Let us denote the partial sums of the expansion of a function f in

the orthonormal system {@y |k € Z} by L. f ie., Epf =< [, A
Theorem 4.1. For f € P, 1< p< oo one has
Znfllp < ClIfll
and if Y oo 1 (1 — |og|) = oo then
nli)ngo f = Znfllp =0.

Proof. The proof follows classical lines in using the theorem of M. Riesz
about the conjugate functions, ie., for f € l?, 1<p<oo, fel?
and ||f]|, < Cpl|f||- The conjugate of a function f is defined by

~ 1 [7 T
flt) = PV—2—; /;W f(t —7)cotg §d7’,

where PV denotes the principal value of the integral. One has -
Bnf(@) = - [ 100 r)ar =

1
27r

f (7 )Siﬂ”(ﬂm)(t)—ﬁ(n)(T))cotg( 5 Dydr+

+% /_ _f(r)sinn(Biny () = By (r))dr = F1(t) + 4B ()

Tt is clear that F; = Fy. Now, by Jensen inequality one has ||Fy||, <
C||f||p and by the M. Riesz theorem ||F1||p < CCpl|fllp- It follows that
125 f1lp < C||f|lp, where C is a generic constant. Since for 3 o, (1 —

—|ak|) = oo the system {¢x | £ € N} is complete in I” by a consequence
of the Banach—Steinhaus theorem one can obtain the second part of the
assertion.

5. Summation theorems for the periodic case

Let us consider the situation, when the set of poles that generate
the orthonormal system is formed by a periodic repetition of the same
finite sequence {ay |k =1,...,d}.

If one consider the finite Blaschke product B(z) = Hk vt
and an orthonormal basis {¢; |l = 1,...,d} in the subspace H(B), then
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the system ¢;1xd = 01 B¥, k € Z form an orthonormal basis of L2.
For a proof based on the properties of the shift operator induced by the
multiplication by the inner function B on H? see [9] [10].

Let us consider for these type of systems the analogous of the
Fejér summation, ®, = L EZ 1 Zp, ie., the operator with the kernel

F@)(t,7) ZS(O‘)(t 7y (t,T € [-m,T)).

—it=T sin nd(ﬁ(t) =B(r))

For the periodic case we have sl )(t,T) =e i and
2
using the fact that
m2 Bfcosy 1
Zsmkm =—>2_2 1 “ginng
one can obtain that
P t,7) =
Lpmstge (S0 B(00) () sn §(0(0) - A1) 87,
n sin £(A(t) — B(1)) sin 5T 2

1sin 52 (6(t) — B(7))
+3 t—1 )
, 2 sin 5T
Theorem 5.1. For all f € L™ the following inequality holds
12nflloo < Cllflloos
where C > 0 1s an absolute constant and for all continuous f one has
1im || — @, flleo = 0.

Proof. Proving the assertion is equivalent to show that the operators

$,, are uniformly bounded, ie., || < £, > lloo < C|lflloo- It is
known from the classical Fourier series theory that the integrals

1 (7 sin® %
tht
27 —n Sin” %

are uniformly bounded and that

Alog(n) < :21— /

™

sin &

n €N
= ) (neN)
with constants A, B > 0. Using the properties of the Lebesgue integral

and of the # function one can show that
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1T sin? 280 ~ () , 1/“@f%yamt

21 J_, sin? 48ty - B(r)) % — sin® $
and
d
Ism 2(18(751_:,5(7')) | — lzwl(eit)(P (e'rr) <
8111—2“ =1
1~ Jeqf? : 3 ’
_E:H—aﬂtl—mf”ﬂ (8 6 (7))} <116 Ie

Putting these facts together follows that
lo
/’wmaﬂur<awmmﬂu+cz“)sa

b=

ie,| < f,F (@) s | < C||f]loo, Which is the assertion of the theorem. ¢
One can introduce the generalization of the de La Valée Poussin

operators as V,, = 51;1— 2171 412k = 2%9, — ®,, that has the same
convergence properties.

Let us mention here that getting the square, [8], or the fourth
power, [2], of the absolute value of 5 as kernels leads also to uni-
formly bounded operators, but these operators cannot be associated
with simple summation processes.

6. I” norm convergence of certain rational interpo-
lation operators on the unit circle

Let us consider an orthonormal system {¢y |k =1,...,n} on the
subspace H(B,,) generated by the finite Blaschke product B Denote
the set of equidistant nodes on the unit circle by T, = {vy = 2T |k =
=0,...,n—1} and by T? = {(} = € |1 :,8(711)(%7"), k=0,...,n—
— 1}. Let us define the discrete scalar product

1
B._ — =
e DA (911(9)
- ¢eTf
Starting from the Christoffel—Darboux formula

t 1-— ein(ﬁn (t)—=Bn (7))
Z Pi(e’ e’) = 1 — eile—7) )
’ — €

one can obtain K, ((, Ck) =0if [ # k and K, ((k, (k) =

n
T .
7n(uk)




290 Z. Szabo

From it follows that for the system

{Gsk = j—;:} onehas [k, ¢i] = Ok,

for 1 < k,I < mn, i.e., the discrete orthonoi‘ma]ity holds.
One can derive the following interpolation operator:

K’rL (Z) C) y
= /(¢
)= 2 ko’ ©
¢eTn
where [ is a continuous function on T and z € T. It is easy to see using
the reproducing property of the kernel that

< Lnf, Lng >=[f,9)5.
From now on let us consider the case when the rational orthonormal
system of functions is generated by a periodic set of poles, i.e, by the finite
Blaschke product B(z) = ,‘i 1 =2 Let us denote the orthonormal
basis in H(B) by {¢: |l = 1,. d} and the orthonormal system by
biring = @1 B®, k€ Z. For these systems one can prove the following
Marcinkiewicz type theorems:
Theorem 6.1. Let f € span{p;B* |l =1,...,d, |k| <n}. Then there
exrists C1 > 0 such that for 1< p< oo one has

(2 Z v )1 < Gillfll,

and for 1 <p < o0 there exists Cz > 0 such that

Iflly < G+ z l;%—)

Proof. For the first part of the assertion let us consider the de La Valée
Poussin operators V;, and the fact that V3, f = f and ||V, || < C and by
using the Jensen inequality one can obtain: |f (k)| < |[Vanlll|fllp, L€

PGS Y
NI 17 oo [ Vanl {1 £lp,
from which follows the assertion.
The proof of the second part uses the fact that for f € ILP exists
g € L% such that [|g]l = 1 and ||f||, =< f,g >. Using the Holder
inequality and the result of the previous theorem one can obtain:
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Ifllp =< f,9 >=< £, Png >=[f, Pag]® <
| £ (Cx)IP lg(¢x)|?
(2% ﬁgﬂ B> ;%)

One can observe that for the case when B (z) = z one can reobtain
the classical Marcinkiewicz theorems.

By using these results one can prove the following I norm con-
vergence theorem:
Theorem 6.2. Ify - . (1—|ag|) = oo then for all continuous functions
f and 1 < p < oo one has

lim ||f ~ Lnfllp = 0.

Proof. As in the previous proofs, let us consider the de la Valée Poussin
operators V,, :

||f - Lnf”p < ||f - an“p + Han - Lnf”p'
Now, by the Th. 6.1. one has

Vo — Lnf||p<C'( ZlVf IBLF,;;))(QCNP)%S

S CHf - an”oo-
By using the fact that ||f =V, f|lcc = 0 and ||f =V, f||l, > 0 as n — oo
follows the assertion. ¢
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