Mathematica Pannonica 9/2 (1998), 293–299

A GENERALIZATION OF THE CAUCHY–SCHWARTZ INEQUALITY

$\operatorname{Pavel}\mathbf{Pech}$

Umversity of South Bohemia, Pedagogical Faculty, Jeronýmova 10, 37115 České Budějovice, Czech Republic

Received: June 1998

MSC 1991: 52 A 40

Keywords: Cauchy-Schwarz inequality, angle of linear subspaces.

Abstract: A generalization of the Cauchy-Schwarz inequality for polyvectors according to Drozdov [1] is given. It leads to the definition of the angle of two vector subspaces with different dimensions.

Cauchy-Schwarz inequality, a well-known property of a scalar product in unitary vector spaces, is as follows:

If $V_1 = [{\mathbf{u}}] V'_1 = [{\mathbf{v}}]$ are two one-dimensional subspaces of a real (or complex) vector space V_n with a scalar product, then

 $|\mathbf{u} \cdot \mathbf{v}| \le |\mathbf{u}| \, |\mathbf{v}|,$

with equality if and only if $V_1 = V'_1$.

In this article we shall give a generalization of the above inequality (1). We extend this inequality on two subspaces V_r and V_s of a unitary vector space V_n , which are represented by their bases $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_r\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s\}$, respectively.

First we will deal with the case when the subspaces V_r , V_s have the same dimension. This case was investigated by N. D. Drozdov [1] and we will give a brief overview of his results [1] (Th. 1). Thereafter we shall study the case when the subspaces V_r , V_s have different dimensions. These results are given in Th. 2. Since the Cauchy-Schwarz inequality holds for two vector subspaces of arbitrary dimensions, one can introduce the angle of these subspaces similarly as is done in the one-dimensional case. Th. 3 establishes that the angle of V_r , V_s is the same as the angle of their orthogonal complements. At the end of the article a comparison with the usual definition of the angle of two subspaces using eigenvalues of a characteristic matrix is given.

Preliminaries

Let the subspaces V_r and V_s of a real (or complex) unitary vector space V_n be represented by their bases $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}, \mathbf{B} =$ $= \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s\}$, respectively. We shall call an ordered k-tuple of vectors k-vector or generally polyvector, an ordered k-tuple of linear independent vectors - complete k-vector or complete polyvector. Denote by $M = (m_{i,j}), i = 1, 2, \dots, s, j = 1, 2, \dots, r$ a real $r \times s$ matrix. Then the product $\mathbf{A}M$ of the r-vector $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$ and the matrix M is the s-vector

$$\mathbf{A}M = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\} \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1s} \\ m_{21} & m_{22} & \dots & m_{2s} \\ \dots & \dots & \dots & \dots \\ m_{r1} & m_{r2} & \dots & m_{rs} \end{pmatrix} = \\ = \left\{ \sum_j m_{j1} \mathbf{a}_j, \sum_j m_{j2} \mathbf{a}_j, \dots, \sum_j m_{js} \mathbf{a}_j \right\}.$$

The product of two polyvectors $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}, \mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s\}$ is the $r \times s$ matrix $\mathbf{A} \cdot \mathbf{B}$ defined by

$$\mathbf{A} \cdot \mathbf{B} = egin{pmatrix} \mathbf{a}_1 \cdot \mathbf{b}_1, & \mathbf{a}_1 \cdot \mathbf{b}_2, & \dots & \mathbf{a}_1 \cdot \mathbf{b}_s, \ \mathbf{a}_2 \cdot \mathbf{b}_1, & \mathbf{a}_2 \cdot \mathbf{b}_2, & \dots & \mathbf{a}_2 \cdot \mathbf{b}_s, \ \dots & \dots & \dots & \dots \ \mathbf{a}_r \cdot \mathbf{b}_1, & \mathbf{a}_r \cdot \mathbf{b}_2, & \dots & \mathbf{a}_r \cdot \mathbf{b}_s, \end{pmatrix}$$

here $\mathbf{a}_i \cdot \mathbf{b}_j$ denotes the scalar product. It is easy to show that:

- 1) $\mathbf{A} \cdot \mathbf{B} = (\mathbf{B} \cdot \mathbf{A})^T$,
- 2) $\mathbf{A} \cdot (\mathbf{B}M) = (\mathbf{A} \cdot \mathbf{B})M, \ \mathbf{A}M \cdot \mathbf{B} = M^T (\mathbf{A} \cdot \mathbf{B}).$

Case r = s

A generalization of the Cauchy-Schwarz inequality for spaces with the same dimensions is as follows:

Theorem 1 (Drozdov [1]). Let $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$, $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_r\}$ be complete r-vectors, which span subspaces V_r and V'_r of a unitary vector space V_n . Then

(2)
$$\det^{2}(\mathbf{A} \cdot \mathbf{B}) \leq \det(\mathbf{A} \cdot \mathbf{A}) \det(\mathbf{B} \cdot \mathbf{B}),$$

with equality if and only if $V_r = V'_r$.

Remarks. 1) The inequality (2) enables us to define the angle of subspaces V_r and V'_r in the following way

(3)
$$\cos(V_r,V_r') = rac{|\det(\mathbf{A}\cdot\mathbf{B})|}{\sqrt{\det(\mathbf{A}\cdot\mathbf{A})}\sqrt{\det(\mathbf{B}\cdot\mathbf{B})}}.$$

2) $V_r \perp V'_r$ if and only if det $\mathbf{A} \cdot \mathbf{B} = 0$. See [1].

3) Denote by \overline{V}_r and \overline{V}'_r orthogonal complements of V_r and V'_r in V_n . Then [1]

$$\cos(\overline{V}_r,\overline{V}'_r)=\cos(V_r,V'_r).$$

Case $r \neq s$

In this paragraph we shall assume that $r \leq s$. The analogue of the Cauchy-Schwarz inequality to (1) and (2) for vector subspaces with different dimensions is described in the following:

Lemma 1. Let the subspaces V_r and V_s are represented by complete polyvectors $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}, \mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s\}$. Then

 $V_r \perp V_s \iff \operatorname{rank}(\mathbf{A} \cdot \mathbf{B}) < r.$

Proof. Let the subspaces V_r and V_s be orthogonal. Then there exist non zero vectors $\mathbf{a} \in V_r$ and $\mathbf{b} \in V_s$ such that $\mathbf{a} \perp V_s$, $\mathbf{b} \perp V_r$. Let $\mathbf{a} = \sum x_i \mathbf{a}_i$, $\mathbf{b} = \sum y_j \mathbf{b}_j$. Then

$$0 = \mathbf{a} \cdot \mathbf{b}_j = x_1 \mathbf{a}_1 \cdot \mathbf{b}_j + x_2 \mathbf{a}_2 \cdot \mathbf{b}_j + \dots + x_r \mathbf{a}_r \cdot \mathbf{b}_j \qquad j = 1, 2, \dots, s$$

$$0 = \mathbf{b} \cdot \mathbf{a}_i = y_1 \mathbf{b}_1 \cdot \mathbf{a}_i + y_2 \mathbf{b}_2 \cdot \mathbf{a}_i + \dots + y_s \mathbf{b}_s \cdot \mathbf{a}_i \qquad i = 1, 2, \dots, r$$

holds. Each of the two systems of linear equation above has non zero solution, which gives the condition $\operatorname{rank}(\mathbf{A} \cdot \mathbf{B}) < r$. The converse implication is similar. \Diamond

Corollary. $V_r \perp V_s \iff \det(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A}) = 0.$

Proof. Denote by $A \cdot B_{i_1,i_2,\ldots,i_r}$ a matrix, which consists of the columns of the matrix $\mathbf{A} \cdot \mathbf{B}$ indexed by the numbers i_1, i_2, \ldots, i_r . According to the Cauchy-Binet formula [2], [3] we get

$$\det(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A}) = \sum_{1 < i_1 < i_2 < \dots < i_r \leq s} \det^2(A \cdot B_{i_1, i_2, \dots, i_r}).$$

Hence

P. Pech

$$\det(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A}) = 0 \iff \det(A \cdot B_{i_1, i_2, \dots, i_r}) = 0$$

for arbitrary $1 \leq i_1 < i_2 < \cdots < i_r \leq s$, which is equivalent to the fact that the rank of the matrix $\mathbf{A} \cdot \mathbf{B}$ is less than r. \Diamond

Theorem 2. Let V_r and V_s be subspaces of V_n , which are represented by complete r-vector **A** and s-vector **B**, respectively. Then

(4)
$$0 \leq \det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})(\mathbf{A} \cdot \mathbf{A})^{-1}] \leq 1.$$

The equality on the left is attained if and only if the subspaces V_r and V_s are orthogonal, the equality on the right occurs if and only if $V_r \subseteq V_s$. **Proof.** First we shall investigate the right inequality in (4). For this purpose denote $\mathbf{A}' = \mathbf{B}(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})$. Because \mathbf{A}' is a complete *r*-vector then according to (2)

(5)
$$\det^{2}(\mathbf{A} \cdot \mathbf{A}') \leq \det(\mathbf{A} \cdot \mathbf{A}) \det(\mathbf{A}' \cdot \mathbf{A}')$$

holds. This is equivalent to

(6)
$$\det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})(\mathbf{A} \cdot \mathbf{A})^{-1}] \leq 1.$$

The sign of equality in (6) occurs if and only if the subspaces \mathbf{A} and \mathbf{A}' are equal, i.e. iff there exist a regular $r \times r$ matrix C such that $\mathbf{A} = \mathbf{A}'C$. Denoting the $s \times r$ matrix $(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})C$ of rank r by M, we get $\mathbf{A} = \mathbf{B}M$, which means that $V_r \subseteq V_s$. As to the left inequality in (4), it suffices to prove

(7)
$$0 \leq \det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A}]).$$

We can write

 $(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A}) =$

 $= [\mathbf{B}(\mathbf{B} \cdot \mathbf{B})^{-1} (\mathbf{B} \cdot \mathbf{A})] \cdot [\mathbf{B}(\mathbf{B} \cdot \mathbf{B})^{-1} (\mathbf{B} \cdot \mathbf{A})] = (\mathbf{B}M)^2,$

where $M = (\mathbf{B} \cdot \mathbf{B})^{-1} (\mathbf{B} \cdot \mathbf{A})$. From $\det(\mathbf{B}M)^2 \geq 0$ the inequality (7) follows. The sign of equality in (7) is attained iff the *r*-vector $\mathbf{B}M$ is not complete, which means that the rank of the matrix M is less than r. This occurs when the rank of the matrix $\mathbf{B} \cdot \mathbf{A}$ is less than r, which is equivalent — according to the previous Lemma — to the fact that the subspaces V_r , and V_s are orthogonal. \Diamond

Remarks. 1) As a special case of (4) for r = s we get the inequality (2).

2) The inequality (4) enables us to define the angle of vector subspaces V_r and V_s with different dimensions in the following way:

(8)
$$\cos(V_r, V_s) = \sqrt{\det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})(\mathbf{A} \cdot \mathbf{A})^{-1}]}.$$

3) It is easy to prove that the angle of subspaces V_r and V_s does not depend on choosing the bases A and B. Really, let A', B' be another bases such that $\mathbf{A}' = \mathbf{A}M, \mathbf{B}' = \mathbf{B}N$, where M, N are regular $r \times r$ and $s \times s$ matrices, respectively. Then

$$det[(\mathbf{A}' \cdot \mathbf{B}')(\mathbf{B}' \cdot \mathbf{B}')^{-1}(\mathbf{B}' \cdot \mathbf{A}')(\mathbf{A}' \cdot \mathbf{A}')] =$$

$$= det[(\mathbf{A}M \cdot \mathbf{B}N)(\mathbf{B}N \cdot \mathbf{B}N)^{-1}(\mathbf{B}N \cdot \mathbf{A}M)(\mathbf{A}M \cdot \mathbf{A}M)^{-1}] =$$

$$= det[M^{T}(\mathbf{A} \cdot \mathbf{B})NN^{-1}(\mathbf{B} \cdot \mathbf{B})^{-1}(N^{T})^{-1}N^{T}$$

$$(\mathbf{B} \cdot \mathbf{A})MM^{-1}(\mathbf{A} \cdot \mathbf{A})^{-1}(M^{T})^{-1}] =$$

$$= det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{B})^{-1}(\mathbf{B} \cdot \mathbf{A})(\mathbf{A} \cdot \mathbf{A})^{-1}].$$

4) If the polyvectors **A** and **B** form orthonormal bases in V_r and V_s respectively, then the inequality (4) has the form

$$0 \leq \det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A})] \leq 1.$$

Theorem 3. The orthogonal complements \overline{V}_{n-s} and \overline{V}_{n-r} of V_r and V_s contain the same angle as the subspaces V_r and V_s , i.e.

$$\cos(V_r,V_s)=\cos(\overline{V}_{n-s}\overline{V}_{n-r}).$$

Proof. Let V_r and V_s be represented by $\mathbf{A} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}, \mathbf{B} = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$ $= {\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_s}.$ Let r < s. Denote by $\overline{\mathbf{A}} = {\mathbf{a}_{r+1}, \mathbf{a}_{r+2}, \dots, \mathbf{a}_n}$ and $\overline{\mathbf{B}} = \{\mathbf{b}_{s+1}, \mathbf{b}_{s+2}, \dots, \mathbf{b}_n\}$ polyvectors representing the orthogonal complements \overline{V}_{n-r} and \overline{V}_{n-s} . We may suppose that the bases $\mathbf{A}, \overline{\mathbf{A}}, \mathbf{B}, \overline{\mathbf{B}}$ are orthogonal. There exist matrices K, L, M, N, such that $\mathbf{B} = \mathbf{A}K + \overline{\mathbf{A}}L$ and $\overline{\mathbf{B}} = \mathbf{A}M + \overline{\mathbf{A}}N$, which can be written in the form

$$(\mathbf{B},\overline{\mathbf{B}})=(\mathbf{A},\overline{\mathbf{A}})egin{pmatrix} K&M\ L&N \end{pmatrix}.$$

Since the matrix $P = \begin{pmatrix} K & M \\ L & N \end{pmatrix}$ is orthogonal, then $P \cdot P^T = P^T \cdot P = I_n$, where I_n is the unit matrix. It implies

$$\begin{pmatrix} K & M \\ L & N \end{pmatrix} \begin{pmatrix} K^T & L^T \\ M^T & N^T \end{pmatrix} = \begin{pmatrix} KK^T + MM^T & KL^T + MN^T \\ LK^T + NM^T & LL^T + NN^T \end{pmatrix} = I_n$$
$$\begin{pmatrix} K^T & L^T \\ M^T & N^T \end{pmatrix} \begin{pmatrix} K & M \\ L & N \end{pmatrix} = \begin{pmatrix} K^TK + L^TL & K^TM + L^TN \\ M^TK + N^TL & M^TM + N^TN \end{pmatrix} = I_n$$
$$nd \text{ we get the relations}$$

and we get the relations

$$\begin{split} KK^{T} + MM^{T} &= I, & KL^{T} + MN^{T} &= 0, \\ LK^{T} + NM^{T} &= 0, & LL^{T} + NN^{T} &= I_{n-r}, \\ K^{T}K + L^{T}L &= I_{s}, & K^{T}M + L^{T}N &= 0, \\ M^{T}K + N^{T}L &= 0, & M^{T}M + N^{T}N &= I_{n-s}. \end{split}$$

It suffices to prove that

$$\det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A})] = \det[(\overline{\mathbf{B}} \cdot \overline{\mathbf{A}})(\overline{\mathbf{A}} \cdot \overline{\mathbf{B}})],$$

which is equivalent to

$$\det(KK^T) = \det(N^T N)$$

and according to the above relations to

(9)
$$\det(I_r - MM^T) = \det(I_{n-s} - M^TM).$$

Let $r \leq n-s$ then the matrix $M^T M$ has the same eigenvalues as the matrix MM^T and another n-s-r eigenvalues, which equal zero [3]. Denote by $\lambda_1, \lambda_2, \ldots, \lambda_r$ eigenvalues of the matrix MM^T . Then the eigenvalues of the $(n-s) \times (n-s)$ matrix $M^T M$ are the numbers $\lambda_1, \lambda_2, \ldots, \lambda_r, 0, \ldots, 0$ with n-s-r zeros and we have $\det(I_r - MM^T) = (1-\lambda_1)(1-\lambda_2) \ldots (1-\lambda_r) = \det(I_{n-s} - M^T M).$

A comparison with the definition of the angle of subspaces using characteristic numbers

Assume that the polyvectors **A**, **B** representing vector subspaces V_r and V_s form orthonormal bases. According to [4], the vector subspaces V_r , V_s , r < s contain r angles $\varphi_1, \varphi_2, \ldots, \varphi_r$ which satisfy

(10)
$$\cos \varphi_i = \sqrt{\lambda_i}, \qquad i = 1, 2, \dots, r,$$

where λ_i are characteristic numbers of the matrix $(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A})$. Hence λ_i are roots of the equation

(11)
$$\det[(\mathbf{A} \cdot \mathbf{B})(\mathbf{B} \cdot \mathbf{A}) - \lambda I] = 0.$$

From (11) we get

 $\lambda_1\lambda_2\ldots\lambda_r=\det[(\mathbf{A}\cdot\mathbf{B})(\mathbf{B}\cdot\mathbf{A})]$

and in view of (8) and (10)

 $\cos\varphi = \cos\varphi_1\cos\varphi_2\ldots\cos\varphi_r.$

Finally, we get

A generalization of the Cauchy–Schwartz inequality

$\varphi \geq \operatorname{Max}\{\varphi_1, \varphi_2, \dots, \varphi_r\}$

Acknowledgement. I thank Professor Z. Nádenik for drawing my attention to the problem.

References

- DROZDOV, N. D.: Linejnaja algebra v teorii uravnivanija izmerenij, Nedra, Moskva, 1973.
- [2] GANTMACHER, F. R.: Teorija matric, Nauka, Moskva 1988.
- [3] HORN, R. A., JOHNSON, C. R.: Matrix analysis, Cambridge Univ. Press, Cambridge, 1986.
- [4] VITNER, Č.: 0 úhlech lineárnich podprostorů v E^N, Čas. pro pěst. mat. 87 (1962), 415–422.