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Abstract: The Rademacher—Menshov theorem is well known in the theory
of orthogonal series. That is, if a sequence {ax} of real numbers satisfies
Sp ,allog’ k < oo then the orthogonal series %, ardk(z) converges a.e.
Moreover, the maximal partial sum S.(z) := sup,s; | 2.x_; ar¢r(z)| belongs
to L2. Our main result states that in the case Y 5o, a7 log® k = co the maximal
sum S, does not belong to L? in general.

1. Introduction

Let {¢x(z) : £ =1,2,...} be areal-valued, orthonormal system (in
abbreviation: ONS) on a positive measure space (X, ). The celebrated
Rademacher-Menshov theorem (see, e.g. [8, Vol. 2, p. 193]) states that
if a sequence {a;} of real numbers is such that




6 F. Méricz and K. Tandori

(1.1) Zailong < 00,
k=1
then the orthogonal series
(1.2) Zakqﬁk(m)
k=1

converges p-almost everywhere (in abbreviation: a.e.), and the mazi-
mal partial sum (called the majorant of the partial sums in the Russian
literature) n
Sy(x) = sup Z%d’k(@l
n2l k=1

belongs to L2(X, ). More precisely, there exists an absolute constant C
such that for all ONS {¢x(z)} and for all sequences {ay} satisfying (1.1),
we have

09 sde={ [ Stata}" < oS atog+ 1)

In the sequel, by C,C1,C5,... we denote positive constants. As
usual, the logarithms are to the base 2, but any other base greater than
1 would do the same job.

The above convergence statement is exact. The second named au-
thor [4] proved that if the sequence {a;} of real numbers is such that
la1] > |aa| > ... and condition (1.1) is not satisfied, then there exists
an ONS {¢x(z)} on the unit interval X := (0,1) (endowed with the
Lebesgue measure) such that the orthogonal series (1.2) diverges a.e.
The ONS {¢x(z)} in the counterexample can be chosen to be uniformly
bounded. Later on, Kashin [1] proved that this ONS {¢x(z)} can be even
chosen in such a way that each ¢y (z) takes on only the values +1 and —1
on the unit interval:

(1.4) ()l =1 (k=1,2,...;2€(0,1)).

A simplified proof of this last statement was provided by the second
named author [7]. An ONS {¢x(z)} on the interval (0,1) is called sign
type if condition (1.4) is satisfied.

1/2

2. Sign type ONS

We shall prove that if condition (1.1) is not satisfied, then the
maximal partial sum S,(z) does not belong to L?>(X, 1) in general. Even
this is the case if we consider integrability LP for some p > 0 instead of
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integrability L2. This is formulated in the next theorem, which is the
main result of this paper.

Theorem 1. Let {wy : k = 1,2,...} be a nondecreasing sequence of
positive numbers for which

(2.1) klg(r)lo wi/ logk = 0.

Then there ezist a sign type ONS {¢r(z)} of step functions on the interval
(0,1) with

1

(2.2) / be()ds =0 (k=1,2,...),
0

and a sequence {ax} of real numbers such that

(2.3) Zaiw,% < 00,

while the mazimal partial sum S.(z) does not belong to LP(0,1) for any
p>0.

We recall that a function ¢(z) defined on the interval (0, 1) is said to
be a step function if there exists a partition of (0,1) into a finite number
of disjoint subintervals such that ¢(z) assumes a constant value on each
of these subintervals.

Problem 1. We do not know whether Th. 1 can be improved in such a
way that in its conclusion the a.e. convergence of the orthogonal series
(1.2) in question can also be stated.
Problem 2. Is it true or not that given an arbitrary sequence a; > ay >
> a3 > ... with ay — 0 as k — oo such that condition (1.1) is not satis-
fied, there exists a sign type (or only uniformly bounded) ONS {¢x(z)}
on (0, 1) such that S,(z) does not belong to L?(0, 1); or even more, S,(z)
does not belong to L*(0,1) for any p > 07
Problem 3. We do not know whether there exists a sign type (or only
uniformly bounded) ONS {¢¢(z)} on (0,1) which is a convergence system,
but S, (z) does not belong to L(0,1) for some {a;} € £2.

In the proof of Th. 1, we rely on an inequality proved by Kashin

[1] (see also [2, p. 258]).
Lemma 1. For each m =1,2,... there ezists a sign type ONS {¢r(z)}
of step functions on the interval ((7)1, 1) such that
mes{z € (0,1) : 15%§2Xm2|k2:; qﬁk(x)‘ > Cymlogm} > Cs.
By “mes” we denote the Lebesgue measure on the real line.
We make two comments to Lemma. 1.
(i) It follows immediately that
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Z or(z l %Clmlogm} > C).

_'n,l

(ii) We may assume that the ONS {¢x(z)} in Lemma 1 satisfies
condition (2.2), too. Otherwise, we could consider the functions

. {qﬁk(Qa:) if 7 € (0,1/2)

(2.4) mes{z€(0,1): max

1<n;<na<2m?2

W)=Y g 2m—1) ifze (1/2,1)
instead of ¢y (z). It is plain that {@(z)} is also an ONS satisfying con-
ditions (1.4), (2.4) as well as (2.2).
After these preliminaries, we fix a sequence {m; : s = 1,2,...} of
positive integers with the following properties:

(2.5) N, :=2) m2<2ml,,
g=1
(2.6) wi/log?k <273 if k3N, (s=1,2,...).

This choice is possible due to (2.1).
For each s > 1, Lemma 1 guarantees the existence of an ONS

{qb(s)( ):k=1,2,...,2m2} of step functions satisfying (1.4), (2.2), and
(2.7) mes(E;) > Cs,
where

Es:={z€(0,1): max Z ¢(s) I %C’lms logmg}.

1<n1<ng< <2m2

‘Clearly, each E, is a simple set, that is, Es consists of a finite number of
disjoint subintervals of (0,1).

By induction, we shall define an ONS {¢(z) : £ =1,2,...} of step
functions satisfying (1.4) and (2.2), and a sequence {H, : s = 1,2,...}
of simple sets of (0,1) such that

(2.8) mes(H;) = mes( 5)>C (s=1,2,...),
(2.9) max Zq& ! 1C’m logm, if z€H
. Ny1<n1 <ng<N, k 9 175 108 Mg 5y

_77,1

where Ny := 0. From the construction it turns out that the sets {H, :
s =1,2,...} are actually stochastically independent, but we do not use
this property in the sequel.

For s =1, we set

bu() = 0(z) (k=1,2,..., Ny:=2m?) and H, = E,
Then (2.8) and (2.9) are obviously satisfied.
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Now, let sy be a positive integer and assume that the step func-
tions ¢x(z) (k=1,2,...,Ns,) and the simple sets H; (s =1,2,... , 8)
have been defined in such a way that these functions are orthonormal

n (0,1) and conditions (1.4), (2.2), (2.8) and (2.9) are satisfied for
s =1,2,...,s0. We take a partition {I, : r = 1,2,...,p} of the in-
terval (0,1) into disjoint subintervals such that each function ¢x(z) (k =
=1,2,...,N,,) assumes a constant value on each subinterval I, (r =
=1,2,...,p).

We shall use the following notations. Given a function ¢(z) defined

n (0,1), a subinterval I := (a,b) and a subset H of (0,1), we define

9o = {¢(§:f:) ifzel

0 othervise

and define H (I )/ be the set into which H is carried over by the linear

transformation y := (b — a)z + a.
Now, we set

PNy +k(T) qu‘s"“) I;z) (k=1,2,...,2m2.)),

Hso+1 = U Eso+1(Ir)-

r=1
It is plain that the ¢p(z) (K = 1,2,...,Ns41) are step functions, or-
thonormal on (0,1), and conditions (1.4), (2.2), (2.8) and (2.9) are satis-
fied for s = sy + 1, too.

Finally, we put
25
(2.10) ap:=——— if N1 <k<N;, (s=12,...).
mg logms

First, we check the fulfillment of (2.3). Indeed, by (2.5) and (2.6), we

have Not1 52542

Zakwk Zakwﬁz Z m2 2 wy <

=1 kN M1 108 Mt

< Zaiwi + 1622_3 < oo.
k=1 s=1

Second, by (2.8) - (2.10), we have
n2
Z ak¢k($)‘ > C2° if z€ Hgy,

=71

whence, for any p > 0, it follows that

max
N;<n1<na<Nst1
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Z ‘ Tz >
max avd(z .

(1<n<1\rs+1 kP (Z) ) >

1 s ,
> 2P ( max . mD s
B \/0 1<n1 <na<Ng+1 kz: k¢k( ) >

=N

n2
P
>27F ( max a T ‘) dr >
- /1;134-1 Ns<ni<na<Nsp1 k__zn k¢k( ) -

> 47PCP9P D mes(H,yy ) > 4 PCPC2PEHY)  (s=1,2,...).
This proves that S,(z) does not belong to L?(0, 1) for any p > 0. ¢

3. Uniformly bounded ONS

According to the Menshov-Paley theorem (see, e.g. [8, Vol. 2, p.
189]) if {¢x(z)} is a uniformly bounded ONS on a positive measure space
(X, u), say

@I <B  (k=12...;3€X),
and for some p > 2 we have

(3.1) £old) = (Y laeP?) < o0
k=1

then the orthogonal series (1.2) converges a.e. (this is an immediate
consequence of the fact that, by Hélder’s inequality, (3.1) implies (1.1)),
the maximal partial sum S,(z) belongs to LP(X, p1), and

1/
62 15d={ [ St@du@)}” < 0B g,

where the value of the constant C, depends only on p, but not on {@x(z)}
and {a}.

Given a sequence {az} of real numbers with ax — 0 as k — oo,
denote by {a}} the sequence |ai|, |az],... rearranged in a descending
order of magnitude, while deleting the terms a; equal to 0. In case
several |ay| are equal, we rearrange them in the order of increasing index
k. Now, (3.2) does hold even if £,[a*] is substituted for £,[a] on its
right-hand side. This improvement is significant, since

" b o 1/p' 1 1
L0 < Gyllally = Cp( Y lael) T, 4= =1;
1 p D
which is not true in general with £,[a] instead of £,[a*].
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It is well known that in the particular case where a; > ay >
and ar — 0 as k — oo, the cosine series

(3.3) Zak coskz =: f(z)

converges, except possibly z = 0 mod 27. Hardy and Littlewood (see,
e.g. [8, Vol. 2, p. 129]) proved that the inequality converse to (3.2) holds
for every p > 1, that is,

Lolal < Gyl fllp-

Clearly, we have || f||, < ||Ss||, for every p > 0. We note that an analo-
gous inequality holds for sine series, too.

Hence it follows immediately that if condition (1.1) is satisfied, then
the integrability statement S,(z) € L?(X, u) expressed in (1.3) is the best
possible in the sense that L? cannot be replaced by L? for any p > 2. In
fact, consider the nonincreasing sequence

a = (s+1)7227°72 if 27 <k <2 (s=0,1,...).

Then
co 2s+1
Zaklog k<z Z ar(s+1)2 Z(s+1)"2<oo,
s=0 k=211 s=0
while for every p > 2,
oo 251
95(—1+p/2)
P 2 Pos(p—2) __ .
Zakp >Zza2p Z(s+1)2p—00
§=0 k=241 5=0

Thus, in thls special case, the maximal partial sum S,(z) of series (3.3)
belongs to L*(0, 27), but does not belong to LP(0, 27) for any p > 2.

4. Nonuniformly bounded ONS

We shall see that if an ONS {¢(z)} is such that each ¢y(x) is
bounded in z € X, but they are not uniformly bounded in k =1,2,.. .,

then we cannot expect any reasonable condition in order to guarantee
that S,(z) belongs to L?(X, u) for some p > 2.
Theorem 2. Let {ay} be an arbitrary sequence of real numbers for which

(4.1) iai>0 (n=1,2,...).

Then there exists an ONS {¢x(z)} of step functions on the interval (0,1)
such that S.(z) does not belong to LP(0,1) for any p > 2.
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Clearly, condition (4.1) is equivalent to the fact that the sequence
{ax} contains infinitely many nonzero terms. So, in case Y |ax| < oo the
orthogonal series (1.2) in question converges absolutely a.e.; nevertheless,
the maximal partial sum S,(z) may not belong to L?(0, 1) for any p > 2.
In the proof, we shall make use of the norm introduced by the
second named author (see [5] and [6]) in the study of the a.e. convergence
of general orthogonal series. To this end, denote by {2 the class of all
(not necessarily bounded) ONS {¢(z)} on the interval (0,1). Given a
sequence a = {ax} of real numbers, define
2 1/2
) ) dw} / ,

lal := S%p{/ol(i?'; ax P

which may be infinite. It is proved in [6] that the orthogonal series (1.2)
converges a.e. for each {¢x(z)} € Q if and only if ||a]| < oo, in which
case S, (z) belongs to L?(0,1)
For 1 < M < N < o0, we set
a(M,N) = {0, .. ,O, apy, OGM+1y--- 5 AN, 0,0,}
By orthogonality, it is clear that

(4.2) Zak <lle@,M)|? (N=1,2,...).

The next lemma was proved by the second named author [5].
Lemma 2. Let a = {ax} be an arbitrary sequence of real numbers
and N a positive integer. Then there ezists a finite ONS {¢p(z) : k =
=1,2,...,N} of step functions on (0,1) such that

2 1 9
[ (i, Zam )|) de > Fgllate, M

Proof of Theorem 2. From (4.1) and (4.2) it follows that there exists
a sequence (1 =)N; < N, <...< N; < ... of integers such that

la(Nsy, Noy1 —1)|| >0 - (s=1,2,...).
Let {£; > 1} be a sequence of positive integers for which

(4.3) > 2 la(Ns, Nopr — D> < 1,
s=1
and such that for each positive integer r,
(4.4) L|(Ngy Noyy = D)2 >1 i s> M,

where M, depends only on r.
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By (4.3), we can select a sequence {I,} of disjoint subintervals of
(0,1) such that
(4.5) mes(l,) = £;%|la(Ng, Ny — 1)||2 (s =1,2,.. ).

For each s > 1, we apply Lemma 2. As a result, we obtain ONS

{qb(s)( ) k= Ng,Ny+1,...,Nyyy — 1} of step functions on (0,1) such
that

1 n 9
(s)
max E ardy’(z)]) dz >

(4.6) /" (N”S’KN“” i=n, )

1

2 glla@e N = D" (s=1,2,...).

Setting ¢x(z) = Llla(Ny, Nory — 1)”_1¢ (Is;x) (k= Ni,...,Noys —
-1; s=1,2,...), it is plain that {¢y(z) : 1,2,...} is an ONS of

step functlons on (0,1).
Let p > 2 be given. Since for an arbitrary function ¢(z) defined on
(0,1) and a subinterval I C (0,1), we have

/ |¢(; z)|Pdz = mes(] / |¢(z) |Pdz,
we can write the following:
(4.7)

/ (sup
n>1

1
_ D - P
- Zeslla(NS’Ns"'l 1)” /0 (Nssrgggc\fsﬂ

s=1

n

Zak¢k dCE = Z/ ngﬁﬁ“ Z arPr ()
k=N,
> adl (L)) do =
k=N, .
3" (o)) ds
k=N,

By Holder’s inequality (we recall that p > 2) and (4.6), we have

1 P Yl/p
d } >
{/0' (Nségg)l\cfa+1 k;..z ak¢ ( ) T -
1
> {/ ( max
0 Ns<n<Ns+1 P

; Y121
> a?@)]) as}” 2 L a(t,, Noss - 1)
N,

—d4i¥s

)pdx =

22 1
— /4 — —P
=3 (e, Nowa = D) mes(r) [ (, max

s=1

for all s = 1,2,.... Substituting this on the right-hand side of (4.7),
while taking (4.5) into account yields
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1 n
su
J; url
oo

(48) 21677 (&lla(Ns, Noss = DI 2 la(WVs, Noya — DIP =

s=1

ak¢k(l’)1)pd$ >

o

=167  #72||la(N;, Neya — D)I>

s=1
If we choose the integer r so large that p—2 > 1/r, then combining
(4.4) and (4.8) gives :

/ (ilill) Zak¢k .)pd;z; Z 16_p;£:/rila(NsaNs+l - 1)”2 = OOO

5. Concluding remarks.

Let {¢r(x)} be a sequence whose members are functions (random
variables) defined on the interval (0,1) and stochastically (totally) inde-
pendent with zero mean (i.e., condition (2.2) is satisfied). Clearly, then
{¢(z)} is an ONS on (0,1). Marcinkiewicz and Zygmund [3] proved that

in this case for every p > 1, we have
0 1/2
()
k=1

()| <[ 0], <cm
k=1 k=1

where Cy, and Cy, are positive constants, whose values depend only on
p. Furthermore, they also proved that in this case for every p > 1, we
have

52 i <2 25> o]

Now, we consider the wellknown Rademacher ONS {ry(z)}, as a
special case. From (5.1) and (5.2) it follows immediately that if ) a2 <
< 00, then the inequalities

63 co(da)" <

1

p

(5.1) Chy

sup
n>1

ZakT‘k ) < éQp (Z Cl,%) 1/2
k=1

hold for every p > 1, where Cgp is also a positive constant depending only
on p. In particular, the maximal partial sum S,(z) of the Rademacher
series Y ax7i(z) is a bounded operator from £? to L?(0,1) (both from
above and from below). It is known that inequalities (5.3) hold true even
for every p > 0 (see, e.g. [8, Vol. 1, p. 213]).
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