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Abstract: Let k > 1, a4,..., a; €N, ?11, b € Ng, g > 2, fi1,..., fr be such
complex valued g-multiplicative functions for which

L(n) := oz fi(aan + b)) + ... + ap fe(agn + by)

tends to zero for almost all n, with a suitable nontrivial choice of complex
coefficients (az, ..., o). Assume that no proper subsystem of fi, ..., fi satisfies
this condition. The following assertions are proved: If k = 1, then either f(an-+
+b) =0foralln €N, or f(n) — 0 for almost alln € N. If k > 2, then L(n) =0
identically, and there is an integer R > 0 such that

filaimg®) = ... = fu(axmg®) #0
holds for every m € Ny. If there exist 7 and 7, 7 # j such that (a;,q) = (aj,q) =
=1, then
fl(qu) = z{n (m € N0)7 l= 17 ---;k)
where z1, ..., 2y € C, such that 2{* = ... = zg* (#0).
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1. Introduction

Let ¢ > 2 be an integer and A, = {0,1,...,¢ — 1}. We shall use
the standard notations: N, Ny, Z, R, C denote the set of positive integers,
nonnegative integers, integers, real-numbers, complex numbers, respec-
tively. The q-ary ezpansion of some n € Np is defined as the unique
sequence €;(n) € Ay for which

(1.1) | n = ZEJ

holds. €;(n) are called the digits zn the g-ary expansion of n.

Let M, be the set of complex-valued g-multiplicative, and .4, be the
set, of real-valued g-additive functions. A function f : Ny — C belongs to
My, if £(0) =1 and for every n € No,

(1.2) H Flej(n

A function g : Ny — R belongs to Aq, if g( ) = 0, and for every n € Ny,

(1.3) Zg ej(n

Since f(g;(n)¢?) = 1, gle;(n )qJ) = 0 for all those j for which ¢ > n,
therefore the summands on the right hand side of (1.3), and the factors
on the right hand side of (1.2) are finite.

The following remarks are obvious.

(1) If g € Ay, z € C, then f(n) := 290 € M,.

(2) If f € Mg and f takes on only positive real values, then g(n) :
= log f(n) belongs to A,.

(3) The linear function g(n) = cn belongs to A, f(n) := 2" belongs
to M, for every ¢ > 2. :

(4) If f € M, then f € My, and if g € Ay, then g € Ay,
k=12, ..

(5) Let fi(n) := f(ng?), gj(n) = g(ng’), j =1,2,... If f € M,,
then f; € M,, if g € A, then g; € A,.

(6) A, is a linear space.

The notion of the g-additive function can be extended to an arbi-
trary Abelian group G. Then A (G) (the clhss of G-valued g-additive
functions) consists of those g : Ny — -G for which g(0) = 0 and (1.3)
holds. It is obvious furthermore that g(n) := na belongs to A,(G) for
every choice of @ € G.

A sequence {z,} n € Ny of real or complex numbers is said to
converge in frequency (or, for almost all n € Ny) to some y, if
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%#{n<N||xn—yl>5}—>0 (N = o)

for every § > 0. Similarly, if G is a topological Abelian group, and z,, is
an infinite sequence in G, then we say that =z, converges to some y € G,
if for every open set U containing 0,

—le#{n<N[xn—y§ZU};—>0’ (N = o).

The notion of g-additive functions was introduced by A.O. Gel-
fond [1]. H. Delange [2] gave necessary and sufficient conditions in order
that some u € A, would have a limit distribution. Katai [3] proved that
the same conditions are both necessary and sufficient if we consider the
frequencies of the values of u € A, on the set of primes. There are a
lot of interesting open problems with respect to the value distribution of
g-additive functions. One of the simplest is the following:

Let ¢ =2, f € A,, and assume that

lmsup %#{ n<z||f(3n) - f(n)| > K } = O(K),
C(K)—0as K — co. Is it true that

o0
D_P(2) < oo?
j=1
Our papaer is the first attempt to solve such kind of problems.

2. Formulation of the problem

Let f; € Mg, a; € N, bj € Ny, 7 = 1,...,k. We say that the
functions {f;(ajn+b;)} j=1,.., kare asymptotically correlated if there
exist non-identically zero complex numbers q;, ..., @ for which

(2.1) L(n) = Zaj filajn + b))

tends to zero for almost all inte]gei" as n — oo.

We say that the correlation is non-reducible if no proper subset of
{fi(ajn + b;)} is asymptotically correlated.

The following assertions are clear.

(1) Assume that the functions {f;(a;n + b;)}(j = 1, ..., k) are cor-
related, and that for some [ € {1,...,k}, fi(amn + b)) = 0 (n — oo) for
almost all n. Then the correlation holds, if we drop fj.

(2) Keeping the notations, let M be the set of those vectorials
(a1, ..., ax) over C for which L(n) defined by (2.1) tends to zero for almost
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all n. Then M is a subspace in C*. M = {0}, if {f;} are not correlated,
dim M =1 if and only if they are non-reducibly correlated.

Let a;,a2 € N, fi1, f2 € M,. We say that the functions f;(a1n),
fa(agn) belong to the same class if there is a suitable integer R for which
f1(aymg®) = fy(azmg®) holds for every m € N;.

We shall prove the following theorems.

Theorem 1. Let f € My, a > 0, b > 0 such that f(an +b) — 0
for almost all n € N. Assume that there ezxists an ng € Ny, for which
f(ang +b) #0. Then f(n) — 0 as n — oo, for almost all n.

The proof is an easy consequence of the following

Lemma 1. Let f € My, B={cg’|f(c’) =0, c€e A, j=0,1,..}. If
B is an infinite set, then f(n) =0 for almost all n € Ny.
Theorem 2. Let k > 2, and assume that the functions f; € M, and
filajn+0b;) 7 =1,...,k are asymptotically correlated, (2.1) holds and that
the correlation is non-reducible. Then the functions f;(a;n+b;) belong to
the same class, and f;j(a;mg®) # 0 for every m € Ny, if R is sufficiently
large. Furthermore L(n) = 0 holds identically, i.e. for everyn € Ny.

Assume additionally that at least two of ai, ..., ax are coprime to q.
Then there exist compler numbers z,...,2x such that |z;| > 1, 2* =
= 2® = ... = 2%, and that for o suitable large integer S, fj(mg®) =
=2 (meN), j=1,..,k.

To ease the proof of the first assertion we shall prove Lemma 2.,
the last assertion will follow from Ths. 3, 4.

Lemma 2. Let B, ..., Bn be nonzero complez numbers, a; € N, g; €
€ My, 5 =1,...h, S(n) = figi(an) + ... + Brgn(arn). Assume that
gi(n) #0 (n €Ny, j =1,...,k), and that no two of {g;(a;n)} do belong
to the same class. If S(n) — 0 for almost alln € Ny, then g;(n) — 0 for
almost all n and for every j =1, ..., k.

Theorem 3. Let G be an Abelian group, a,b € N such that (ab,q) = 1
a#b. Let u,v € A (G) be such that

ulan)=v(n) (nely).

Then there ezists a suitable R € N, a, 8 € G, such that u(¢®m) = ma
v(gfm) = mpB, furthermore ac = bg.

Theorem 4. Let G be an Abelian group, a € N, (a,q) =1, u,v € A,(G)
such that

?

H

u(an) =v(an) (n € Np).
Then 6(n) = v(n) —u(n) satisfies 6(n) = nB, where 8 € G, aff =0. The

converse assertion is true as well.
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3. Prbof of Lemma 1 and Theorem 1

If cg’ € B, and f(n) # 0, then ¢;(n) 7é cqj Thus

#{n<q", f(n) #£0} = H{Zl}
7=0 cqi¢gB
and the right hand side is o(¢") as N — oo if B is infinite.

To prove Th. 1, we may assume that B is finite. Let s be so large
that cg’ ¢ B, if j > s. We shall write a as a,£, where (a1,q9) = 1, and
the prime divisors of £ divide ¢. Let T be so large that f g% Smce
f(a(ng + g®m) + b) — 0 for almost all m, and

f(a(ng + ¢®m) +b) = flang + ) flag®m), if ang+b < ¢~

furthermore &|g”, therefore f(ai1g7n) — 0 for almost all n. Let H =
= max(s,T+ R), p(n) := f(¢g"En). Then p(a;n) — 0 for almost all n.
Letay <g™. fn=u+qMv, 0<u < g™, then choose 7 € [0,a1 —1]
be so that ¥ + ¢“v = 0 (mod a,), and let S(n) := ¥ + ¢™v. It is clear
that |p(n)| < cle(S(n))| and every fixed value S(n) occurs at most for
¢ integers. Hence we obtain that ¢(n) — 0 for almost all n, and this
implies the assertion of the theorem readily. ¢

4. Proof of Lemma 2

The assertion is true for h = 1, see Th. 1. We shall use induction on
h. Assume it is true if the number of functions is less than h. Let £(n) =
= (Brg1(arn), ..., Brgn(arn)) (n € Ny). If the vectorials £(n) belong to a
one-dimensional subspace then they are parallel to £(0), thus g;(a;n) =
= ... = gp(arn) (n € Ny), and so the functions belong to the same class.
Assume that there is an ng for which £(ng) is not parallel to £(0). Let R
be so large that (max a;) no < g®. Then

h
S(ng 4+ mg®) = 2/3]9] (am0)9; (%mq ), S(mg™) =" Big;(a;mg™),
and so =1 j=1
S(no +mq™) — gz(azno)s(mq = Zﬁj (95(ajn0) — gi(aino))g;(a;ma™),

and this sequence tends to zero for _allmost all m — oo. The right hand
side is non-empty. The number of the functions with nonzero coefficients
is less than h. Thus g;(a;mg®) — 0 for almost all m, whenever j is such
an index for which g;(a;no) # gi(aimo). Since [ was arbitrary, there exists
such a j. Then g;(n) — 0 for almost all n, and we reduced the number
of the functions. The proof is complete. ¢
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5. Proof of Theorem 2

Assume that the conditions hold. Let Iy, I, ..., Iy be the partition of
the set {1,2, ..., k} according to the classification of the functions f;(a;n).
Let R be so large that fi(a;mq®) = f;(aymg®) for every m € Ny and
for every such pair f;, f; which belong to the same class, furthermore
fila;mg®) #£0 (m e Ny, 1 =1,...,k).

Let Ly(n) := Y e, aifi(am + b;). Then L(n) = Z;Zl Ly(n).

Assume that the indices of the functions are so chosen that j € I;
(j=1,...,5). Let T > R, max(a;n + b;) < ¢*. For such T we have that

Lu(n+mg") = Ly(n) fa(ang™m).
We shall deduce that Ly(n) = 0 for every h = 1, ..., s, and since n was
arbitrary, it holds identically. Indeed, assume indirectly that Ls(n) # 0
if h = jl,jg, ---1jt- Then

ZLJ! n) f;,(a;mg") — 0 for almost all m.

We can apply ]iemma 2., which implies that f; (a;mg’) — 0 for al-
most all m, which by Th. 1 implies that f;(n) — 0 for almost all n.
This contradicts to the assumption that the correlation is non-reducible.
Furthermore we obtain that s = 1.

To prove the last assertion we start from the relation f;(a;mg®) =
= ... = fy(axmg®) m € Ny), and from the assumption f;(a;mg®) # 0.
Then, let v;(n) = log|f;(ng®)|, arg f;(ng®) = 2mk;(n). We have that
11(a1n) = va(agn) = ... = yx(axn) and

k1(ain) (mod 1) = ka(azn) (mod 1) = ... = kg(agn) (mod 1).

Th. 3 for G = R, and for G = T = one-dimensional torus implies
the last assertion. ¢

6. Proof of Theorem 3

Assume that a < b. By changing ¢ to ¢* if necessary, we may
assume that ab < ¢. Let @Q = ¢™, where m is a suitable positive integer
which will be specified later.

Let 0 < mg < a, [y be the least positive integer for which @mgy+Ily =
=0 (mod a). Let @mg+1ly =as. Then 0 < s < Q. Let bs =hQ+r, 0 <
< r < @. We shall define the integers u;, k; (j = 0,...,5*) from the
relation r +bj = k;Q +u;, 0 < u; < @Q, Where g* [Q] — 1. Observe
that lp + ja < Q if O < j < j*. Consequently for every t € Ny,
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u(Q(mo + at)) + u(lo + ja) = u((@mqo + ly) + a(j + Q1)) =
= u(as +a(j + Qt)) = v(bs + bQt + bj) =
=v(hQ + 1+ b + bQt) = v((h+ bt + k;)Q + u;).
Assume that j < j*, and apply this for j + 1 instead of 7, as well. Then,
(6.1) u(lo+ (j +1)a) — u(lo + ja) =
=v((h+bt +k;)Q + (kj1 — k1)@ + vj1) — v((h + bt + ;) Q + u;).
In the sequence ko, ks, ..., k;~, the difference k,,; — k, is zero or one.
ke ~ —% > 1if M is large enough. Let j; be that value for which
kjy =0, ki1 = 1. Let 6(lp, j1) == u(lo + (j1 + 1)a) — u(lp + j1a). From
(6.1) we obtain that
(6.2) 6(lo, j1) = v((h+ bt + 1)Q + uj,11) — v((h + b1)Q + Usjy )
The left hand side does not depend on ¢. Let N > M. For every P €

€ [0,¢" — 2] there is an integer ¢ for which A+ bt = P (mod ¢V). Let
h+bt = P+ ¢"¥ ). Then

o((h -+ bt + 1)@+ tga) = 0(@"QN) + (P +1)Q) + v(ur0),
v((h+b)Q +u;) = v(g" Q) + v(PQ) + v(u,),
3(lo, §) = v((P +1)Q) — v(PQ) + (v(ujp41) — v(uy))-
Thus v((P+1)Q) —v(PQ) = ¢ = v(1-Q), consequently v(PQ) = Pu(Q).

Let o(n) = u(n@), ¥(n) = v(nQ). Then (1) = v(Q), ¥(n) =
= ny(1). Since p(an) = ¥(bn), therefore p(an) = bny(1).

Let m € Ny, N € N, 0 < Iy < a be such that ¢"m + [,
= 0 (mod a), l; = lp + ja. Then for I; < ¢" we have ¢(¢"m)
= e(a"m+1;) = e(ly) = YT — o) = SEHbY(1) - e(l)
= 1% + {70%(1) — ¢(lo + ja)}. Since the left hand side does not
depend on [;, therefore

(6.3) o(lo + ja) = w(lo) + jb(1) = p(l) + ¢(ja),
and this holds for every j € Ny, since NV can be arbitrary large.

Let n =1, +gn1, qni = ta+ Sa, where t; +15 < a, t1,%, > 0. From
(6.3) we have that :

p(n) = o(t1 + 12 + Sa) = p(t1 +t2) + ¢(Sa),
and from the g-additivity, that

p(n) = (1) + plgm) = (tr) + (t2) +P(Sa).

Hence we obtain that o(t; +t2) = ¢(t1) + ¢(ta), i-e. that @(I) = lp(1)
(I=1,...,a—1). If we choose t, = a — t;, we similarly get - )
,/

P

Il
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p(n) = p((S+1)a), ¢(n) =)+ ¢(a— 1)+ ¢(Sa),
whence
0((S +1)a) — p(Sa) = p(t1) + ¢(a — t1) = ap(1),
and the left hand side equals
B((S + 1)b) — $(Sb) = (D)
Thus ¢(ly + ja) = lyp(1) + jap(1) holds for every nonnegative integer
lo + ja. We proved the theorem. ¢

7. Proof of Theorem 4

The last assertion is obvious, we shall prove the first one. By chang-
ing g to ¢ if necessary we may assume that a < ¢g. We start from
§(an) = 0 (n € Ny). Since for every integer of form gN; there is some
[ € [0,a — 1] such that '

gN; +1=0 (mod a),
therefore 6(gNy) = 6(gNy +1) — 6(1) = —6(1). Thus the value 6(g/NV7)
depends only on ¢N; (mod a). Let dy,d; € A, be so chosen that gdy =
=ty (mod a), ¢*d; = t; (mod a), to +t1 < a, to,t1 > 0. Thus
—8(t1) — 6(te) = 6(gdo) + 6(q°dh) = 8(gdo + ¢°dr) = —6(t1 + 12,
whence
§(t)=t6(1) (t=0,1,...,a—1).

Similarly, if ¢; + 13 = a, then

0=204(t1) +6(a—t1) = (1 + (@ —1))6(1) = ad(1).
This completes the proof. ¢
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