ON ASYMPTOTICALLY CORRELATED q-MULTIPLICATIVE FUNCTIONS

Karl-Heinz Indlekofer

Fachbereich Mathematik-Informatik, Universität GH Paderborn, D-33095, Deutschland

Imre Kátai

Department of Computer Algebra, Eötvös L. University, H-1518 Budapest, Pf. 32, Hungary

Dedicated to Professor Ferenc Schipp on his 60th birthday

Received: November 1998

MSC 1991: 11 K 65

Keywords: q-multiplicative functions.

Abstract: Let $k \ge 1$, $a_1, ..., a_k \in \mathbb{N}$, $b_1, ..., b_k \in \mathbb{N}_0$, $q \ge 2$, $f_1, ..., f_k$ be such complex valued q-multiplicative functions for which

$$L(n) := \alpha_1 f_1(a_1 n + b_1) + ... + \alpha_k f_k(a_k n + b_k)$$

tends to zero for almost all n, with a suitable nontrivial choice of complex coefficients $(\alpha_1, ..., \alpha_k)$. Assume that no proper subsystem of $f_1, ..., f_k$ satisfies this condition. The following assertions are proved: If k = 1, then either f(an + b) = 0 for all $n \in \mathbb{N}$, or $f(n) \to 0$ for almost all $n \in \mathbb{N}$. If $k \ge 2$, then L(n) = 0 identically, and there is an integer R > 0 such that

$$f_1(a_1 m q^R) = \dots = f_k(a_k m q^R) \neq 0$$

holds for every $m \in \mathbb{N}_0$. If there exist i and j, $i \neq j$ such that $(a_i, q) = (a_j, q) = 1$, then

 $f_l(mq^R) = z_l^m \ (m \in \mathbb{N}_0), \ l = 1, ..., k,$ where $z_1, ..., z_k \in \mathbb{C}$, such that $z_1^{a_1} = ... = z_k^{a_k} \ (\neq 0)$.

1. Introduction

Let $q \geq 2$ be an integer and $A_q = \{0, 1, ..., q - 1\}$. We shall use the standard notations: $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{R}, \mathbb{C}$ denote the set of positive integers, nonnegative integers, integers, real-numbers, complex numbers, respectively. The q-ary expansion of some $n \in \mathbb{N}_0$ is defined as the unique sequence $\varepsilon_i(n) \in A_q$ for which

(1.1)
$$n = \sum_{j=0}^{\infty} \varepsilon_j(n) q^j$$

holds. $\varepsilon_i(n)$ are called the digits in the q-ary expansion of n.

Let \mathcal{M}_q be the set of complex-valued q-multiplicative, and \mathcal{A}_q be the set of real-valued q-additive functions. A function $f: \mathbb{N}_0 \to \mathbb{C}$ belongs to \mathcal{M}_q , if f(0) = 1 and for every $n \in \mathbb{N}_0$,

(1.2)
$$f(n) = \prod_{j=0}^{\infty} f(\varepsilon_j(n)q^j).$$
 A function $g: \mathbb{N}_0 \to \mathbb{R}$ belongs to \mathcal{A}_q , if $g(0) = 0$, and for every $n \in \mathbb{N}_0$,

(1.3)
$$g(n) = \sum_{j=0}^{\infty} g(\varepsilon_j(n)q^j).$$

Since $f(\varepsilon_j(n)q^j) = 1$, $g(\varepsilon_j(n)q^j) = 0$ for all those j for which $q^j > n$, therefore the summands on the right hand side of (1.3), and the factors on the right hand side of (1.2) are finite.

The following remarks are obvious.

- (1) If $g \in \mathcal{A}_q$, $z \in \mathbb{C}$, then $f(n) := z^{g(n)} \in \mathcal{M}_q$.
- (2) If $f \in \mathcal{M}_q$ and f takes on only positive real values, then g(n): $:= \log f(n)$ belongs to \mathcal{A}_a .
- (3) The linear function g(n) = cn belongs to A_q , $f(n) := z^n$ belongs to \mathcal{M}_q , for every $q \geq 2$.
- (4) If $f \in \mathcal{M}_q$, then $f \in \mathcal{M}_{q^k}$, and if $g \in \mathcal{A}_q$, then $g \in \mathcal{A}_{q^k}$, k = 1, 2,
- (5) Let $f_j(n) := f(nq^j), \ g_j(n) := g(nq^j), \ j = 1, 2,$ If $f \in \mathcal{M}_q$, then $f_j \in \mathcal{M}_q$, if $g \in \mathcal{A}_q$, then $g_j \in \mathcal{A}_q$.
 - (6) \mathcal{A}_q is a linear space.

The notion of the q-additive function can be extended to an arbitrary Abelian group G. Then $A_q(G)$ (the class of G-valued q-additive functions) consists of those $g: \mathbb{N}_0 \to \mathbb{G}$ for which g(0) = 0 and (1.3) holds. It is obvious furthermore that $g(n) := n\alpha$ belongs to $\mathcal{A}_q(G)$ for every choice of $\alpha \in \mathbb{G}$.

A sequence $\{x_n\}$ $n \in \mathbb{N}_0$ of real or complex numbers is said to converge in frequency (or, for almost all $n \in \mathbb{N}_0$) to some y, if

$$\frac{1}{N}\#\{n < N | |x_n - y| > \delta\} \to 0 \quad (N \to \infty)$$

for every $\delta > 0$. Similarly, if G is a topological Abelian group, and x_n is an infinite sequence in G, then we say that x_n converges to some $y \in G$, if for every open set U containing 0,

$$\frac{1}{N}\#\{n < N | x_n - y \notin U\} \to 0 \quad (N \to \infty).$$

The notion of q-additive functions was introduced by A.O. Gelfond [1]. H. Delange [2] gave necessary and sufficient conditions in order that some $u \in \mathcal{A}_q$ would have a limit distribution. Kátai [3] proved that the same conditions are both necessary and sufficient if we consider the frequencies of the values of $u \in \mathcal{A}_q$ on the set of primes. There are a lot of interesting open problems with respect to the value distribution of q-additive functions. One of the simplest is the following:

Let q = 2, $f \in \mathcal{A}_2$, and assume that

$$\limsup_{x \to \infty} \frac{1}{x} \# \{ n \le x \mid |f(3n) - f(n)| > K \} = C(K),$$

 $C(K) \to 0$ as $K \to \infty$. Is it true that

$$\sum_{j=1}^{\infty} f^2(2^j) < \infty?$$

Our papaer is the first attempt to solve such kind of problems.

2. Formulation of the problem

Let $f_j \in \mathcal{M}_q$, $a_j \in \mathbb{N}$, $b_j \in \mathbb{N}_0$, j = 1, ..., k. We say that the functions $\{f_j(a_jn+b_j)\}$ j = 1, ..., k are asymptotically correlated if there exist non-identically zero complex numbers $\alpha_1, ..., \alpha_k$ for which

(2.1)
$$L(n) := \sum_{j=1}^{k} \alpha_j f_j(a_j n + b_j)$$

tends to zero for almost all integer as $n \to \infty$.

We say that the correlation is non-reducible if no proper subset of $\{f_j(a_jn+b_j)\}$ is asymptotically correlated.

The following assertions are clear.

- (1) Assume that the functions $\{f_j(a_jn+b_j)\}(j=1,...,k)$ are correlated, and that for some $l \in \{1,...,k\}$, $f_l(a_ln+b_l) \to 0$ $(n \to \infty)$ for almost all n. Then the correlation holds, if we drop f_l .
- (2) Keeping the notations, let M be the set of those vectorials $(\alpha_1, ..., \alpha_k)$ over \mathbb{C} for which L(n) defined by (2.1) tends to zero for almost

all n. Then M is a subspace in \mathbb{C}^k . $M = \{0\}$, if $\{f_j\}$ are not correlated, dim M = 1 if and only if they are non-reducibly correlated.

Let $a_1, a_2 \in \mathbb{N}$, $f_1, f_2 \in \mathcal{M}_q$. We say that the functions $f_1(a_1n)$, $f_2(a_2n)$ belong to the same class if there is a suitable integer R for which $f_1(a_1mq^R) = f_2(a_2mq^R)$ holds for every $m \in \mathbb{N}_0$.

We shall prove the following theorems.

Theorem 1. Let $f \in \mathcal{M}_q$, a > 0, $b \geq 0$ such that $f(an + b) \to 0$ for almost all $n \in \mathbb{N}$. Assume that there exists an $n_0 \in \mathbb{N}_0$, for which $f(an_0 + b) \neq 0$. Then $f(n) \to 0$ as $n \to \infty$, for almost all n.

The proof is an easy consequence of the following

Lemma 1. Let $f \in \mathcal{M}_q$, $\mathcal{B} = \{cq^j | f(cq^j) = 0, c \in A_q, j = 0, 1, ...\}$. If \mathcal{B} is an infinite set, then f(n) = 0 for almost all $n \in \mathbb{N}_0$.

Theorem 2. Let $k \geq 2$, and assume that the functions $f_j \in \mathcal{M}_q$ and $f_j(a_jn+b_j)$ j=1,...,k are asymptotically correlated, (2.1) holds and that the correlation is non-reducible. Then the functions $f_j(a_jn+b_j)$ belong to the same class, and $f_j(a_jmq^R) \neq 0$ for every $m \in \mathbb{N}_0$, if R is sufficiently large. Furthermore L(n) = 0 holds identically, i.e. for every $n \in \mathbb{N}_0$.

Assume additionally that at least two of $a_1, ..., a_k$ are coprime to q. Then there exist complex numbers $z_1, ..., z_k$ such that $|z_1| \ge 1$, $z_1^{a_1} = z_2^{a_2} = ... = z_k^{a_k}$, and that for a suitable large integer S, $f_j(mq^S) = z_j^m \ (m \in \mathbb{N}_0), \ j = 1, ..., k$.

To ease the proof of the first assertion we shall prove Lemma 2., the last assertion will follow from Ths. 3, 4.

Lemma 2. Let $\beta_1, ..., \beta_h$ be nonzero complex numbers, $a_j \in \mathbb{N}$, $g_j \in \mathcal{M}_q$, j = 1, ..., h, $S(n) = \beta_1 g_1(a_1 n) + ... + \beta_h g_h(a_h n)$. Assume that $g_j(n) \neq 0$ $(n \in \mathbb{N}_0, j = 1, ..., k)$, and that no two of $\{g_j(a_j n)\}$ do belong to the same class. If $S(n) \to 0$ for almost all $n \in \mathbb{N}_0$, then $g_j(n) \to 0$ for almost all n and for every j = 1, ..., k.

Theorem 3. Let G be an Abelian group, $a, b \in \mathbb{N}$ such that (ab, q) = 1, $a \neq b$. Let $u, v \in \mathcal{A}_q(G)$ be such that

$$u(a \ n) = v(b \ n) \quad (n \in \mathbb{N}_0).$$

Then there exists a suitable $R \in \mathbb{N}$, $\alpha, \beta \in G$, such that $u(q^R m) = m\alpha$, $v(q^R m) = m\beta$, furthermore $a\alpha = b\beta$.

Theorem 4. Let G be an Abelian group, $a \in \mathbb{N}$, (a,q) = 1, $u, v \in \mathcal{A}_q(G)$ such that $u(an) = v(an) \quad (n \in \mathbb{N}_0)$.

Then $\delta(n) := v(n) - u(n)$ satisfies $\delta(n) = n\beta$, where $\beta \in G$, $a\beta = 0$. The converse assertion is true as well.

3. Proof of Lemma 1 and Theorem 1

If $cq^j \in \mathcal{B}$, and $f(n) \neq 0$, then $\varepsilon_j(n) \neq cq^j$. Thus

and
$$f(n) \neq 0$$
, then $\varepsilon_j(n) \neq cq^j$. Thus $\#\{n < q^N, \ f(n) \neq 0\} = \prod_{j=0}^{N-1} \{\sum_{cq^j \notin \mathcal{B}} 1\}$

and the right hand side is $o(q^N)$ as $N \to \infty$ if \mathcal{B} is infinite.

To prove Th. 1, we may assume that \mathcal{B} is finite. Let s be so large that $cq^j \notin \mathcal{B}$, if $j \geq s$. We shall write a as $a_1\xi$, where $(a_1,q)=1$, and the prime divisors of ξ divide q. Let T be so large that $\xi|q^T$. Since $f(a(n_0 + q^R m) + b) \rightarrow 0$ for almost all m, and

 $f(a(n_0 + q^R m) + b) = f(an_0 + b)f(aq^R m), \text{ if } an_0 + b < q^R,$ furthermore $\xi|q^T$, therefore $f(a_1q^{T+R}n)\to 0$ for almost all n. Let H= $=\max(s,T+R), \ \varphi(n):=f(q^{T+R}n). \ ext{ Then } \varphi(a_1n) o 0 ext{ for almost all } n.$ Let $a_1 < q^M$. If $n = u + q^M v$, $0 \le u < q^M$, then choose $\widetilde{u} \in [0, a_1 - 1]$ be so that $\widetilde{u} + q^M v \equiv 0 \pmod{a_1}$, and let $S(n) := \widetilde{u} + q^M v$. It is clear that $|\varphi(n)| \le c|\varphi(S(n))|$ and every fixed value S(n) occurs at most for q^R integers. Hence we obtain that $\varphi(n) \to 0$ for almost all n, and this implies the assertion of the theorem readily. \Diamond

4. Proof of Lemma 2

The assertion is true for h=1, see Th. 1. We shall use induction on h. Assume it is true if the number of functions is less than h. Let $\xi(n) =$ $=(\beta_1g_1(a_1n),...,\beta_hg_h(a_hn))\ (n\in\mathbb{N}_0).$ If the vectorials $\overline{\xi}(n)$ belong to a one-dimensional subspace then they are parallel to $\overline{\xi}(0)$, thus $q_1(a_1n) =$ $= ... = g_h(a_h n)$ $(n \in \mathbb{N}_0)$, and so the functions belong to the same class. Assume that there is an n_0 for which $\overline{\xi}(n_0)$ is not parallel to $\overline{\xi}(0)$. Let R be so large that $(\max a_j) n_0 < q^R$. Then

$$S(n_0+mq^R) = \sum_{j=1}^h eta_j g_j(a_j n_0) g_j(a_j m q^R), \; S(mq^R) = \sum_{j=1}^h eta_j g_j(a_j m q^R), \; and \; so \; S(n_0+mq^R) - g_l(a_l n_0) S(mq^R) = \sum_{j=1}^h eta_j (g_j(a_j n_0) - g_l(a_l n_0)) g_j(a_j m q^R),$$

and this sequence tends to zero for almost all $m \to \infty$. The right hand side is non-empty. The number of the functions with nonzero coefficients is less than h. Thus $g_i(a_i m q^R) \to 0$ for almost all m, whenever j is such an index for which $g_j(a_jn_0) \neq g_l(a_ln_0)$. Since l was arbitrary, there exists such a j. Then $g_i(n) \to 0$ for almost all n, and we reduced the number of the functions. The proof is complete. \Diamond

5. Proof of Theorem 2

Assume that the conditions hold. Let $I_1, I_2, ..., I_s$ be the partition of the set $\{1, 2, ..., k\}$ according to the classification of the functions $f_i(a_i n)$. Let R be so large that $f_i(a_i m q^R) = f_i(a_i m q^R)$ for every $m \in \mathbb{N}_0$ and for every such pair f_i , f_j which belong to the same class, furthermore $f_i(a_i m q^R) \neq 0 \ (m \in \mathbb{N}_0, \ i = 1, ..., k).$

Let $L_h(n) := \sum_{i \in I_h} \alpha_i f_i(a_i n + b_i)$. Then $L(n) = \sum_{h=1}^s L_h(n)$. Assume that the indices of the functions are so chosen that $j \in I_j$ (j=1,...,s). Let $T \geq R$, $\max(a_i n + b_i) < q^T$. For such T we have that

$$L_h(n+mq^T) = L_h(n)f_h(a_hq^Tm).$$

We shall deduce that $L_h(n) = 0$ for every h = 1, ..., s, and since n was arbitrary, it holds identically. Indeed, assume indirectly that $L_h(n) \neq 0$ if $h = j_1, j_2, ..., j_t$. Then

$$\sum_{i=1}^{n} L_{j_i}(n) f_{j_i}(a_{j_i} m q^T) \to 0 \quad \text{for almost all } m.$$

We can apply Lemma 2., which implies that $f_{j_l}(a_{j_l}mq^T) \to 0$ for almost all m, which by Th. 1 implies that $f_i(n) \to 0$ for almost all n. This contradicts to the assumption that the correlation is non-reducible. Furthermore we obtain that s=1.

To prove the last assertion we start from the relation $f_1(a_1mq^R) =$ $= ... = f_k(a_k m q^R) \ m \in \mathbb{N}_0$, and from the assumption $f_j(a_j m q^R) \neq 0$. Then, let $\gamma_j(n) = \log |f_j(nq^R)|$, $\arg f_j(nq^R) = 2\pi \kappa_j(n)$. We have that $\gamma_1(a_1n) = \gamma_2(a_2n) = ... = \gamma_k(a_kn)$ and

$$\kappa_1(a_1 n) \pmod{1} = \kappa_2(a_2 n) \pmod{1} = \dots = \kappa_k(a_k n) \pmod{1}.$$

Th. 3 for $G = \mathbb{R}$, and for G = T = one-dimensional torus implies the last assertion. \Diamond

6. Proof of Theorem 3

Assume that a < b. By changing q to q^k if necessary, we may assume that ab < q. Let $Q = q^m$, where m is a suitable positive integer which will be specified later.

Let $0 \le m_0 < a$, l_0 be the least positive integer for which $Qm_0 + l_0 \equiv$ $\equiv 0 \pmod{a}$. Let $Qm_0 + l_0 = as$. Then $0 \leq s < Q$. Let bs = hQ + r, 0 < s < q. < r < Q. We shall define the integers $u_j, k_j \ (j = 0,...,j^*)$ from the relation $r + bj = k_j Q + u_j$, $0 \le u_j < Q$, where $j^* = \left[\frac{Q}{a}\right] - 1$. Observe that $l_0 + ja < Q$ if $0 \le j \le j^*$. Consequently for every $t \in \mathbb{N}_0$,

$$u(Q(m_0 + at)) + u(l_0 + ja) = u((Qm_0 + l_0) + a(j + Qt)) =$$

$$= u(as + a(j + Qt)) = v(bs + bQt + bj) =$$

$$= v(hQ + r + bj + bQt) = v((h + bt + k_j)Q + u_j).$$

Assume that $j < j^*$, and apply this for j + 1 instead of j, as well. Then, (6.1) $u(l_0 + (j+1)a) - u(l_0 + ja) =$

$$= v((h+bt+k_j)Q + (k_{j+1}-k_j)Q + u_{j+1}) - v((h+bt+k_j)Q + u_j).$$

In the sequence $k_0, k_1, ..., k_{j^*}$, the difference $k_{\nu+1} - k_{\nu}$ is zero or one. $k_{j^*} \sim \frac{b}{a} \frac{Q}{a} > 1$ if M is large enough. Let j_1 be that value for which $k_{j_1} = 0$, $k_{j_1+1} = 1$. Let $\delta(l_0, j_1) := u(l_0 + (j_1 + 1)a) - u(l_0 + j_1a)$. From (6.1) we obtain that

(6.2)
$$\delta(l_0, j_1) = v((h+bt+1)Q + u_{j_1+1}) - v((h+bt)Q + u_{j_1}).$$

The left hand side does not depend on t. Let N > M. For every $P \in [0, q^N - 2]$ there is an integer t for which $h + bt \equiv P \pmod{q^N}$. Let $h + bt = P + q^N \lambda$. Then

$$v((h+bt+1)Q+u_{j_1+1}) = v(q^NQ\lambda) + v((P+1)Q) + v(u_{j_1+1}),$$

$$v((h+bt)Q+u_{j_1}) = v(q^NQ\lambda) + v(PQ) + v(u_{j_1}),$$

$$\delta(l_0,j) = v((P+1)Q) - v(PQ) + (v(u_{j_1+1}) - v(u_{j_1})).$$

Thus $v((P+1)Q) - v(PQ) = c = v(1 \cdot Q)$, consequently v(PQ) = Pv(Q).

Let $\varphi(n) = u(nQ)$, $\psi(n) = v(nQ)$. Then $\psi(1) = v(Q)$, $\psi(n) = n\psi(1)$. Since $\varphi(an) = \psi(bn)$, therefore $\varphi(an) = bn\psi(1)$.

Let $m \in \mathbb{N}_0$, $N \in \mathbb{N}$, $0 \le l_0 < a$ be such that $q^N m + l_0 \equiv 0 \pmod{a}$, $l_j = l_0 + ja$. Then for $l_j < q^N$ we have $\varphi(q^N m) = \varphi(q^N m + l_j) - \varphi(l_j) = \psi(\frac{q^N m + l_j}{a}b) - \varphi(l_j) = \frac{q^N m + l_j}{a}b\psi(1) - \varphi(l_j) = \frac{q^N m + l_0}{a} + \{jb\psi(1) - \varphi(l_0 + ja)\}$. Since the left hand side does not depend on l_j , therefore

(6.3)
$$\varphi(l_0 + ja) = \varphi(l_0) + jb\psi(1) = \varphi(l_0) + \varphi(ja),$$

and this holds for every $j \in \mathbb{N}_0$, since N can be arbitrary large.

Let $n = t_1 + qn_1$, $qn_1 = t_2 + Sa$, where $t_1 + t_2 < a$, $t_1, t_2 > 0$. From (6.3) we have that

$$\varphi(n) = \varphi(t_1 + t_2 + Sa) = \varphi(t_1 + t_2) + \varphi(Sa),$$

and from the q-additivity, that

$$\varphi(n) = \varphi(t_1) + \varphi(qn_1) = \varphi(t_1) + \varphi(t_2) + \varphi(Sa).$$

Hence we obtain that $\varphi(t_1 + t_2) = \varphi(t_1) + \varphi(t_2)$, i.e. that $\varphi(l) = l\varphi(1)$ $(l = 1, \ldots, a - 1)$. If we choose $t_2 = a - t_1$, we similarly get

$$\varphi(n) = \varphi((S+1)a), \quad \varphi(n) = \varphi(t_1) + \varphi(a-t_1) + \varphi(Sa),$$

whence

$$\varphi((S+1)a) - \varphi(Sa) = \varphi(t_1) + \varphi(a-t_1) = a\varphi(1),$$

and the left hand side equals

$$\psi((S+1)b) - \psi(Sb) = b\psi(1).$$

Thus $\varphi(l_0 + ja) = l_0\varphi(1) + ja\varphi(1)$ holds for every nonnegative integer $l_0 + ja$. We proved the theorem. \Diamond

7. Proof of Theorem 4

The last assertion is obvious, we shall prove the first one. By changing q to q^k if necessary we may assume that a < q. We start from $\delta(an) = 0$ $(n \in \mathbb{N}_0)$. Since for every integer of form qN_1 there is some $l \in [0, a-1]$ such that

$$qN_1 + l \equiv 0 \pmod{a}$$
,

therefore $\delta(qN_1) = \delta(qN_1 + l) - \delta(l) = -\delta(l)$. Thus the value $\delta(qN_1)$ depends only on $qN_1 \pmod{a}$. Let $d_0, d_1 \in A_q$ be so chosen that $qd_0 \equiv t_0 \pmod{a}$, $q^2d_1 \equiv t_1 \pmod{a}$, $t_0 + t_1 < a$, $t_0, t_1 > 0$. Thus

$$-\delta(t_1) - \delta(t_2) = \delta(qd_0) + \delta(q^2d_1) = \delta(qd_0 + q^2d_1) = -\delta(t_1 + t_2),$$

whence

$$\delta(t) = t\delta(1) \ (t = 0, 1, ..., a - 1).$$

Similarly, if $t_1 + t_2 = a$, then

$$0 = \delta(t_1) + \delta(a - t_1) = (t_1 + (a - t_1))\delta(1) = a\delta(1).$$

This completes the proof. ◊

References

- [1] GELFOND, A.O.: Sur les nombres qui ont des propriétés additives et multiplicatives données, *Acta Arithm.* 13 (1968), 259–265.
- [2] DELANGE, H.: Sur les fonctions q-additives ou q-multiplicatives, Acta Arithm. 21 (1972), 285–298.
- [3] KÁTAI, I.: Distribution of q-additive functions, Probability theory and applications, eds. J. Galambos and I. Kátai, Kluwer, 1992, 302–318.