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Abstract: Two nontrivial applications of the mathematical program package
Mathematica is shown in the field of ordinary differential equations. The first
one is a control problem and the second one is related to the stability of poly-
nomials.

1. Introduction

Several areas of human activity required intensive calculations even
in the antiquity. Methods to make the calculations easier included the
use of tables containing helpful intermediate results (from Babylon to
Napier), the construction of mechanical, electric calculators and com-
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puters (from the abacus through the slide-rule until the personal com-
puters), and the creation of procedures invented by the greatest person-
alities of applied mathematics (from Archimedes through Newton until
Euler) which reduce the amount of the calculations and still increase the
precision.

Thus it is no wonder that mathematicians (such as A. Turing, J.
von Neumann, J. G. Kemeny or L. Kalmdr) played an important role in
the early period of computer science (until about 1950). The develop-
ment starting from the fifties however removed mathematicians from the
computer because of different reasons: unkept promises, neglect of the
demands of users (including mathematicians), unplanned design of the
tools, and first of all the low level of accomplishment.

The only exceptions were statisticians, discrete mathematicians and
part of (!) numerical mathematicians. (Computer scientists of this period
obviously attribute the fault to the mathematicians.) Even in this period
many chemists, physicists and economists used computers for numerical
calculations.

As to symbolic calculations: it was Lady Ada Lovelace, daughter of
the poet Byron who proposed in 1843 that these might be carried out by
machines. It took however more than 100 years until the idea could be
realized, because such a long time was needed for the theory and for the
technical tools to reach the appropriate level of maturity.

A typical problem in the sixties-seventies was to calculate the de-
rivative or the antiderivative of a function symbolically. This has been
solved by many authors (using the Polish form). (Let us remark in pass-
ing that the result was used e.g. to write down the sensitivity equations
and then making numerical calculations.) This was the period to write the
first theorem-proving, chess and translator programs and also the creation
of logical programming languages, only to mention a few from nonnumer-
ical applications of computers.

The speed of the computers and developments in the theory made it
possible from the beginning of the early eighties the creation and spread
of symbolic program packages (or computer algebra systems). These new
general purpose mathematical program packages (especially Axiom, De-
rive, Maple and Mathematica) opened up new prospects for teaching,
applications and research of mathematics.

The aim of the present paper is to show two nontrivial applications
of the mathematical program package Mathematica. In our first example
we show how to extend its capabilities when solving a control problem.
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The second example shows how to decide whether a polynomial is stable
or not: an important question in the theory and applications of ordinary
differential equations. Thus, both of our examples are connected to dif-
ferential equations. Further examples related to this field are to be find
~in [7].

It is almost obvious that the use of mathematical program packages
enhances the effectivity of teaching in many fields of mathematics. We
are also convinced that they can be used in research and applications,
too. However, in order to utilize all the capabilities of a mathematical
program package one has to study them thoroughly, for a longer period
of time. Our main purpose here is to present part of our experience
collected in solving these kinds of tasks.

The first example shows how to keep the temperature of a given
body within prescribed limits if Newton’s cooling law holds and if we
also have a device to heat the body whenever its temperature reaches the
lower limit. In the second example we recapitulate a less-known method
for checking the stability of polynomials. The method needs much less
calculations than the best known method by Routh and Hurwitz. The
Mathematica code we present is also able to handle cases when the coeffi-
cients of the investigated polynomial are symbols (i.e. not numbers). We
show how to solve emerging inequalities, using a function of Mathematica
based upon new theoretical developments (see e.g. [6]). We also use the
excellent graphical capabilities of Mathematica.

2. A control problem

Let us consider the following simple control problem. One has to
keep the temperatura of a body within prescribed limits in such a way
that heating is switched on if the temperature reaches the lower limit
and it is switched off if the temperature reaches the upper limit.

Suppose the process of cooling is described by Newton’s cooling
law, according to which the temperature T' as a function of ¢t obeys the
differential equation

T'(t) = —0.1(T'(¢) — 273).

(The values of parameters have arbitrarily been chosen.) Heating goes
on if the temperature is either below the lower limit or if it is between
the limits and it has been working.

Let us write down the final solution and let us comment it below.
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NDSolve[{T’[t] == -0.1%(T[t]1 - 273.) + Whichl
T[t] < 293., h = 4., T[t] > 303., h = 0.,
293. < T[t] < 303. && h == 4., 4.,

293. < T[t]l < 303. && h == 0., 0.1,
T[0.] == 273.}, T[tl, {¢, 0., 60.},
MaxSteps->Infinity, MaxStepSize->0.01]

{{T[t] -> InterpolatingFunction[{0., 60.}, <>]1[t1}}

Plot[Evaluate[{293., 303., T[t] /. %}1, {t, 0., 60.}]
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It is worth remarking that the C code of the function NDSolvel 1
is as long as 500 pages. The evaluation process can be modified by an
appropriate choice of the options. The help of the program gives possible
values of these options and how to use them. If this is not enough to
solve our problem then it is worth studying the papers [2 — 4]. Here we
only emphasize some possibilities .

Multiple thousands of digits of the approximate solutions can be
calculated.

Using the option Method one can choose between well-known meth-
ods or their parameters can be fine tuned. The default value of the func-
tion NDSolvel 1 is a multistep predictor-corrector method modified By
a variable step size. ‘

A special problem in numerical solution of differential equations is
posed by stiff equations, in which components of the solution chahg‘é at
very different rates. The procedure NDSolve[ ] automatically detects..
stiff equations and solves them with a stiff Gear method, which maintains
stability without restricting stepsize.

NDSolve[ ] also handles the problem of equations with singulari-
ties.
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The above example also illustrates a further interesting capability of
NDSolvel 1. This makes it possible to solve control problems so simply
if we use Mathematica. (We propose the reader to think over how a usual
differential equation solver routine should be modified in order to solve
a problem of the above kind.) If needs a table can be constructed from
the values of the approximate solutions.

This above control problem and its generalizations can be applied
in many fields. E.g. one should like to keep the concentration level of a
drug in the blood between limits. It is easy to find other related problems
from chemical technology or production.

As a first generalization we may consider a nonlinear equation in-
stead of the Newton law. Another direction opens if one considers non-
constant limits: firstly, the limits may be explicitly defined function,
secondly they can be solutions to other ordinary differential equations.
A further generalization is obtained if one chooses a system of differen-
tial equations and requires that the trajectory be kept in a prescribed
(possibly time-dependent) set. One can also call this a pursuit problem.

3. Stability of equilibrium points

In many cases the problem of the stability of the equilibrium point
0 of the autonomous differential equation

(1) t=foz
given by a function f : RN — R¥, f(0) = 0 is reduced to the investigation

of the stability of the zero solution of the homogeneous linear differential
equation with constant coefficients

(2) 7= f'(0)y,

which is known as the first approximation of (1). For example we recall
the following result: If the zero solution of (2) is asymptotically stable
then the equilibrium point 0 of (1) is also asymptotically stable.

It is well known that the the equilibrium point 0 of (2) is asymp-
totically stable if and only if all eigenvalues of the N x N matrix f'(0)
lie in the open left half of the complex plane, i.e. all the roots of the
characteristic polynomial of the matrix f'(0) have negative real parts. In
this case the polynomial is said to be stable. In the complementary case
the polynomial is said to be unstable.

An obvious approach to the problem is to calculate the roots of
the polynomial and check if the stability condition holds or not. This
is by far the least effective method — especially in the case of symbolic
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coeflicients. Therefore, the genuine problem is: How to check the stability
condition only using the coefficients but without finding the roots to the
polynomial?

It turned out that it is not a simple problem to find such procedures.
The problem emerged at the end of the last century in connection with
the centrifugal regulator. Many people were involved in this area, the
most well known ones being Maxwell, Hermite, Routh, Stodola, Hurwitz,
Liapunov, Liénard, Chippart and Mikhajlov.

If one has an easy to use and efficient tool for drawing functions
on a computer like Mathematica, one can try to represent the graph of
the function using the Plot[ ] procedure. But there are some prob-
lems, first, we may not get the exact values of the roots graphically, and,
second, the Plot[ ] function does not show the complex roots.

In 1851, Hermite found a criterion of geometric character for the
stability of polynomials. It rediscovered and popularized among engi-
neers by Mikhailov in 1937.

We shall only consider polynomials with real coeflicients, i.e. poly-
nomials of the form

(3) p(z) =an2" +ay_ 12V -+ a1z 4 ag (z € ©),
where IV is a fixed positive integer and a, € R (n =0,1,---, N).

Let us start from the fact that polynomial (3) is an analytical func-
tion on the complex plane. As a consequence of Cauchy’s theorem it is

completely determined by its values taken on a single line of the complex
plane. Let this line be the imaginary axis. Then the range I, of the map
Rat—p(it) e C

is the image of the imaginary axis. This curve is usually called as the
amplitude-phase characteristic or Mikhailov’s hodograph of the polyno-
mial p. Certain geometric properties of I', are strongly connected with
the stability of the underlying polynomial.

The following statement is said to be the Hermite—-Mikhailov crite-
rion or the amplitude-phase criterion of stability (see [5, p. 37]).
Theorem 1. The polynomial p is stable if and only if the curve T, does
not cross the origin and turns around the origine in positive direction
(or: anticlockwise) at an angle of Nw while its parameter t changes from
—00 to +oco.

The amplitude-phase characteristic of the polynomial

Pllz_] := 4za5 + 4244 + 823 + 5242 + 3z + 1

can be drawn using Mathematica in the following way
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ParametricPlot [{Re[pi[I*t]1], Im[p1[I*t11}, {t, -6, 6},
PlotRange->{-1.5, 1.5}, Ticks->{{1.5, 3}, {-1.5, 1.5}},
Prolog->{Text["t=1.29", {4.5, 1}]1,

Text["t=-1.20", {4.5, -1}],
PointSize[0.015],
Point [{Re[p1[1.29*I1], Im[p1[1.29%I1]1}1,
Point[{Re[p1[-1.29%I1]1, Im[pil[-1.29%I1]1}1}]

The segment of the curve suggests that the criterion is fulfilled.

Th. 1 can also be translated into the language of algebra (see e.g.
[5, p. 48] and [8], Th. 2).

Another necessary and sufficient condition for the stability problem
may be given by means of continued fractions.

It is known that some real rational functions can be written in the
following m-terminate continued fraction form:

by
4
(4) >
1+
b3z
14—
14 b,z

where b, (k = 1,2,---,m) are appropriate real numbers. It is obvious

that there exist rational functions for which such a representation does
not exist. Consider for example those which have the zero value at the
point z = 0.
Now suppose that the rational function

o Co+crz+ -+ c2f
(5) I“(Z) T d0+d1z+"'+dtzt
has a representation of the form (4). Extend the definition of the coeffi-
cients ¢ and dj in (5) in the following way:
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(6) =0 (ifn>s) and dp:=0 (ifn>1)

It may be proved ([1, p. 547]) that in this case the numbers by in (4) .
satisfy the following recursive relations:

cgfl) = dp, CSLO) = Cp (n=0,1,2,--+),
R
0
() bpp1 = =) (k=0,1,2,--+)
Co
Ut bk+1cgl_11) _ cgﬂl (k=0,1,2,--+, n=0,1,2,---).

The computation of bgy; (which in this manner is a variant of the
original Routh algorithm) starts from the first two rows of 5™ and

(the coefficients of the denominator and of the numerator) and then
proceeds as indicated in the following table:

From Ths. 12.7b, 12.7a and 12.6c of [1] we obtain the continued
fraction criterion:

Theorem 2. The polynomial (3) is stable if and only if the rational
function

[(N-1)/2]
9 a2k+1zk
(8) a;+azz+asz"+--- oo
ag + Gp2 + a42° + - - - (72

]
E (J,kak
k=0

(the Hurwitz alternant of the polynomial p) can be represented by such an
N-terminating continued fraction of the form (4), in which every number
b (k=1,2,---,n) is positive.

A possible code of this criterion follows.
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CFCriterion[polyvalue_, variable_] :=
Module[{cf = CoefficientList[polyvalue, variable],
deg, cfde, cfnu,b, s , temp = {}, m = 1},
deg = Length[cf] - 1;
sQ = !FreeQ[Number] /@ cf, False];
cfnu = Table[cf[[k1], {k, 2, deg + 1, 2}1;
cfde = Tablel[cf[[kl], {k, 1, deg + 1, 2}1;
While[((First[cfnu]l > 0 && m < deg + 1) ||
(sQ && m < deg +1)),
blm] = First[cfnul/First[cfde];
If[Lengthlcfnu] < Length[cfdel,
cfnu = Join[cfnu, {0}]

1;
temp = cfnu;
cfnu = Droplb[m] cfde - cfnu, 1];
cfde = temp;
m=m+1

1s
If[m < deg, "Unstable", If[!sf}, "Stable",
Together [Simplify[Table[blk]l, {k, 1, m-1}1111]
] 4

The above procedure uses the symbolic capabilities of Mathematica.
If the coefficients have exact numerical values (e.g. 1/2,/2,7,log?2) then
we obtain the exact result:

CFCriterionl[pilz], z]
Stable
If there are parameters involved in the coefficients of the polynomial

then the answer still contains relevant information. Let us consider the
following examples

P2[z_]1 := zad + 4*a*zAa3 + Garza2 + dxarz + 1
CFCriterion[p2[z], z]
-2 + 6 a 1 -

4:_1+6’ H
4 a a—1+6a—1+6a}

As it can be seen, in this case those expressions are provided the positivity
of which has to be checked. We can use the InequalitySolve function of

the Algebra’InequalitySolve’ package to solution the corresponding
system of inequalities:
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<<Algebra’InequalitySolve’
InequalitySolve[4*a<0 && -1+6*a>0 &&

(2-6%a)/ (-1+6%a) &% 1/(-1+6%a)>0, al
1
3
Thus the polynomial p2 is stable if and only if a > 1/3.

The theoretical problem of solving systems of (polynomial) inequal-
ities in one or more unknowns is more complicated (see e.g. [6]). In
this case we can use the Algebra’AlgebraicIlnequalities’ package of
Mathematica.

a >
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