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Abstract: In this paper we introduce a Hardy space by means of the stopped
dyadic maximal function on [0,00). We show that this Hardy space has an
atomic structure and identify the atoms. Then, using the Hardy norm, a Sidon
type inequality is proved for the generalized Walsh-Dirichlet kernels, the peri-
odic version of which was due to Schipp [7], [8]. Finally, we apply this inequality
to construct a sufficient condition for the integrability of Walsh-Fourier trans-
form.

Introduction

The binary ezpansion of z € [0,00) is defined as
o0
= Z iL'j2—j —1,
j=—00
where z; = 0 or 1. In case when there are two expansions of this form,
i.e. in case of dyadic rationals, we take the one that terminates in 0’s.
The sequence (z;,j € Z) is called the binary form of z. For any two
nonnegative numbers z,y their dyadic sum is defined by
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o0

(1) shy= > |z —yl27

j=—0c0
The functions
®) $y(@) = (~)TF-= (0 < 3,y < o)
are called generalized Walsh functions. It is clear that

(3) , ba(y) =y(z)  (0< 2,y <o0),

and
(4) () (y) =e(z +vy) (0 <=3,y < oo, z+y dyadic irrational).
The generalized Dirichlet kernels are defined as
t .
Diy) = [ ) ds  (0<ty<oo)
0

It is known (see [1] or [10]) that

_ 2" gy € [0, 2"”)
(5) Don(y) = {0 e
for n € Z, and
(6) IDi(y)] < g (0<y,t< o0, y #0).

Forany 0 < a <b<ocoand 1l <p<oolet LP[a,b) stand for the usual
function space with the corresponding norm.

For each f € L'[0,00) the Walsh-Fourier transform f and the
Walsh-Dirichlet integrals S;f (0 < ¢ < 0o0) are defined as :

oo 't‘\

fo=[ rowmwa. s = | i@ ©<ay <o)
0 0

Clearly,

() Sef(y) = (f + D)(y) = /Ooof(U)Dt(y+u)du (0<y < o).

The intervals of the form [£2", (k+1)2") (k € N, n € Z) are called dyadic
intervals. The collection of all dyadic intervals will be denoted by Z. Let
I.(z) (0 < z < o0, n € Z) stand for the dyadic interval containing z
whose length is 27". The length of I € 7 will be denoted by |1].




On the integrability of Walsh-Fourier transform 95

In view of (5) and (7) we have that

Son fz) =27 f (f € L'[0,00), 0 < z < o0).

In(z)
Consequently,
® lim Sov /() = £(a)

for any z at which f is continuous.
Let f € L} [0,00), i.e. let f be integrable over every finite interval.
Then define the stopped dyadic mazimal function Mf by

Mf(z) = sup 2"|/ f] (0 <z < o0).
0eIn(z) In(z) -
The corresponding Hardy space, i.e. the collection of locally integrable
functions whose stopped dyadic maximal function is integrable, will be
denoted by H. Set || f||z = [[Mf]l1 (f € H). Obviously, H C L'[0, c0).
Throughout this paper C will denote an absolute positive constant
not necessarily the same in different occurrences.

Results®

Let x4 stand for the characteristic function of A C [0, c0). Now we
introduce the concept of H-atoms. Let b € L*°[0,00). b will be called an
H-atom if either b = 2—(n_1)X[2n—-1,2n) with some n € Z (H-atom of first
type), or there exists I € Z such that 0 ¢ I, suppb C I, [,b = 0, and
| fllo < |I|7' (H-atom of second type).

We will show that H has an atomic structure. Namely, each func-
tion in H can be decomposed as a sum of H-atoms. Its advantage is
that several statements with respect to H are enough to be proved for
H-atoms. This is a real benefit since H-atoms are easier to work with.
Theorem 1. f € H if and only if there exist real numbers A, and H-
atoms by (£ € N) such that f =372 Asbe, and Y2 |\ < 00. Moreover,

£l 2= inf Y [,
£=0

where the infimum is taken over all such decompositions. (f = ;0. Aby
is understood in L'[0, 00) norm.)

In the following theorem, in the proof of which the atomic struc-
ture of H will be used, we will prove a so called Sidon type inequality for
the generalized Walsh-Dirichlet kernels. The corresponding Sidon type
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inequalities for the trigonometric and the Walsh-Dirichlet kernels are due
to Schipp, see [7] and [8]. We note that Schipp proved such inequalities
for several other systems, such as Ciesielski, UDMD systems etc. For
instance, a version for Legendre polynomials was shown by Schipp and
Szili in [9]. It is known that Sidon type inequalities have applications in
several areas. Among them are the study of convergence and approxi-
mation properties of strong means of Fourier series, and the construction
of conditions that imply integrability and L'-convergence of orthogonal
series. For the relation between Sidon type inequalities and strong con-
vergence and approximation we refer to the joint papers [4], [5] of Schipp
and the author. For integrability and L*-convergence conditions see [6]
by Moéricz and Schipp, and [2], [3] by the author. The promised result
for the generalized Walsh-Dirichlet kernels is

Theorem 2. Let f € H. Then

/0 " / " F(O)Di(y) deldy < C|| 1z

From the proof of Th. 2 we can deduce the following relation between H
and the L?[0, co0) spaces. |

Corollary. If f € L} . for some p > 1 then X[é,b)f € H!for any 0 < a <
< b < oo0.

In our next theorem we show how the inequality in Th. 2 can be
applied for constructing a condition that guarantees the integrability of
Walsh-Fourier transform. For the case of Walsh-Fourier series see [2], [6]
and [7].

Theorem 3. Let g : [0,00) — R be absolutely continuous with

lim g(t) = 0.

t—oo

Suppose that ¢’ € H. Then there ezists f € L'[0,00) such that f = g,
and the inversion formula holds.

Proofs

Proof of Theorem 1. The proof will be deduced from the corresponding
property of the dyadic Hardy space H. The dyadic maximal function h*
of an h € L'[0,1) is defined as
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h*(z) = sup

/ h,j 0<z<1).
n20 ' J I, (z)

Then h is said to belong to H if h* € L*[0,1), and ||hllu = [ |h*]. It
is known [10] that H has an atomic structure. Namely, an a € L*[0, 1)
is called a dyadic atom if either a = Xjo,1) or there exists an I € Z for
which suppa C I C [0,1), f;a = 0, and ||allec < |Z|7. Then for any
h € H there exist real numbers p; and dyadic atoms a; (j € N) such
that h =377 pja;. Moreover,

bl ~ing "l (b€ 1),

where the infimum is taken over all dyadic decompositions of h.
Let f € L'[0,00). Clearly, if f = >_,2, A¢b; is an atomic decompo-
sition of f, i.e. the A,’s are real numbers and the b,’s are H-atoms, then

FeH and ||fllg <352, M.
In order to prove the other direction set

Tjp : L'[2F,25%1) s LM0,1), Tig(z) = g(25+2%z) (0<z<1,keZ).
Thus T}, is one-to-one and

(Tx9)*(z) = sup 2‘5’ / Tkg‘ = sup 22~ } / gl =
£>0 I(z) £>0 Iy (28 42k 1)
= sup g‘ =
Oeln(2k+2kz) In(2k 42k )

=Mg(2" +2F2) (0<z<1,ke).

ok+1

Hence Mg € L'[2*%,25+1) if and only if (Tkg) € L'[0,1), and [,
= 2% Tyg|lm-
On the other hand it is easy to see that b is an atom with supp b C
C [2F, 2¥*1) if and only if 2¢T}b is a dyadic atom. Consequently, if Tjg =
= D 70 Hja; is an atomic decomposition of Tyg then g = 372 A;b; with
Aj =2k, and b; = 2-kT 1aj is an atomic decomposition of g. Moreover,
-+1 . ') . [ee]
2k Mg = 2¥||Ty.g|lu ~ 2" inf Zj:o |p;| = inf ijo [Asl.
Let f € H. Then Mf € L'[0,0), i.e.
[o'e) 2k+1
Ifllw= > | Mf<oo.
k=—o0 "2
Since X[Q’“,Q’H'l)Mf = MX[zk’2k+l)f € L1[2’“, 2k+1) we have that X[2k72k+1)f
has an atomic decomposition

Mg =
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Xy f =D Njkbj,

§=0

where supp b, C [2F,2%1) (j € N, k € Z). Consequently,

f= 20D Disbix
k=—o00 j=0
is an atomic decomposition of f.
Moreover, taking the infimum over all such decompositions we have
ok+1 oo [o5s}
= [ M= Z / Mfr 3w Pl (7€ H). 0
2* k=—c0  j=0
Proof of Corollary. Let f € L¥ _ for some p > 1. Then f € LP[2F, 2k+1)
(k € Z). Therefore Ty (x[x or+1yf) € LP[0,1). It is known (See e & [10])
that LP[0,1) C H (p > 1). Hence, Ty (x(gr2e-+1)f) € H, i.e. f Mf <
< oo. Since Xfo 4 f € LT, for any 0 < a < b < oo, and there are n,m € Z
such that 2" < a < b < 2™ we have that

2k+1

m—1
1X[a,5) f||H—/ M (X f) = Z/ ) < o0.

Consequently, x5 f € H. O

The proof of Th. 2 will be based on the concept of atomic decom-
position and on the following two lemmas. The first one is of interest of
its own.
Lemma 1. Let 0 <t < co. Then the following decomposition holds true
for the generalized Dirichlet kernel:

Dt = wt Z tj'@bg—j—lDQ—j—l.

j=—00

Proof of Lemma 1. Let the binary form of 0 < ¢ < oo be (¢;, j € Z).
Define t®) (k € Z) as t®) =32 ¢;277-1. Then

J
(k)

0= feas 3 [ e

Suppose that #, = 1. By (1) it is clear that, 1 J z = ¢(:~1) 4 5 if
0 <z < 27%. Then we use (3) and (4) to obtain
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(k) 9—k—1 9—k—1

s Ve () dz = /0 Vite-1) 45 (Y) dT = Y-y (y) / Yo (y) dz =

0

= Pps-1) (y)%—k—l (y)¢2—k—1 (y)Dz—k—l (y) =
= Pyk) (y)%—k—l (y)D2—k—1 (y) .

By definition t—t®) = 372 ;27771 and ,_ym (y) = (—1)>5=k+1 tiv=i=1,

Hence, 9,_,x(y) = 1 for any y < 2’chl Le. v,_; is constant 1 on the
support of Dy—k-1. Therefore,

(k)
oy Vo (y) dz = Yy (Y)trtho-r-1(y) Do-e1(y) (0 <y < 00).
£k~ .
Consequently,
Dy =1y Z txWo—k-1Dg k1. O
k=—o0

Lemma 2. Let h € L2 [0,00). Then

I
0 2

271
A [ 0D dly < Ol e
0

Proof of Lemma 2. By Lemma 1 and (5) we have

/0002% /02“ h(t) Dy(y) dt|dy =

_/001
0o 2"

/2 h(t) i (y) Z trtha=k-1 () Do-r-1 ( dt.dy—

k=—n

‘ Z Yokt () Dy (y )/ﬁzn txh(t) by (£) dt'dy <

k=-n
271
l/ beh (), (¢ dt]dy

1 &,
Siﬁk;nz k 1/

Set gx(y) = sgn fOQHtkh ()y(t)dt (—n < k < 00,0 < y < o0). Then
by the Fubini theorem, the Cauchy—Schwarz 1nequahty and the Bessel
inequality we have

2k+1
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J

2k+1 2k+l

|/2n h(t)y(t dt‘dy — /02" fj’“h(t)/o ge(y)y () dy dt =
/ Xpz++nyg) (1) dt <

<(f )1/2( [ |mmsof )" <

<2 HX amyblloollxpo.2041y |2 = 272D 2|35 9 A o

fgn

k=-n

Proof of Theorem 2. Let b be an H-atom of first type, i.e. b =
= 2‘(”‘1)X[2n-1 2n) With some n € Z. Then by Lemma 2 we have

/ |/ (YD) dildy < 2l < C.

Now let b be an H-atom of second type. Then there exist £k € N and
n € Z such that

Hence

[ mon) afay <

(k-+1)27
(9)  suppb C [k2", (k+1)2%), / b=0, [Blle <2
k

277-
By definition gonyy = Ygenthy for any 0 < u < 27, Therefore, Dign gy =
= Dion + hgan Dy (0 < ¢ < 27). Hence by (9) and Lemma 2 we have

/ '/ t)Dily dtIdy—/om‘/OT b(k2™ + ) Dyon1+(y) dt’dy:

_ /O leQn(y) / o b(t) dt + iz /O i b(k2"™ + £) Dy(y) dtldy:

k2m
[e.e] 2™
:/ ‘/ (k2" + ) Du(y) dtldy < C2"||b]os < C.
0 0

Consequently, Th. 2 holds for H-atoms. The proof can be completed by
using the concept of atomic decomposition. Indeed, if f = > ;2 Agby is
an atomic decomposition of f € H then the sublinearity implies
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L1 #on e <
<3| [ uopala <o

Hence we conclude by Th. 1 that f;° ’ J° F(6)Dy(y dt‘dy <C|fllz (f €
€ H). ¢
Proof of Theorem 3. Since lim;_, g(t) = 0, and Dy = 0 we have by
integration by parts that
1 {

Im [ g(u)pu(y)du=—lim [ ¢'(u)Dy(y)du  (0<y < o).

t—o0 0 t—00 0

The existence of the limit on the r1ght side follows from ¢’ € L'[0, o0)

and from (6). Moreover, lim; [T 9 (w) Dy (y) du = o 9'(w)Dy(y) du.
Then
¢

f:0,00) >R, f(y) = lim Og(umu(y)du:— / " ¢ Daly) du

t—o0

is well defined. Th. 2 implies

| 1w [dy—/ \/ u(y) duldy < Cllglx < oo.
0

Consequently, f € L1 [O 00)

In order to see f = g we will use Fubini’s theorem, and the tech-

niques of integration by parts and differentiation of parametric integrals.
Indeed,

271

fw)=tim [ s du==tim [ 0 [ 900w de

n—r00
oo 2n
= — lim g (1) hy(u)Dy(u) du dt
oo 2"
= lim g(t) Yy (?J)Tﬁu (t) du dt
= lim () Dan(y + 1) dt

n—oo 0

= lim Song(y) (0 <y < 0).

n—o0
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Since g is continuous we conclude, see (8), that lim,_, Song(y) = g(y)
(0 < y < 00). Consequently, f = g.
Finally, the inversion formula is immediate by the definition of f. {
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