Mathematica Pannonica
10/1 (1999), 111-122

THE CRITICAL DETERMINANT OF
THE DOUBLE PARABOLOID AND
DIOPHANTINE APPROXIMATION
IN R* AND R4

Werner Georg Nowak

Institut fiir Mathematik und Angewandte Statistik, Universitit fir
Bodenkultur, A-1180 Wien, Austria

Dedicated to Professor Ferenc Schipp on his 60th birthday

Received: October 1998
MSC 1991: 11 H 06,11 J 13

Keywords: Critical determinant, convex bodies, paraboloid, simultaneous ap-
proximation.

Abstract: In this note the critical determinant of the double paraboloid
z? + 4% + |z| < 1 is evaluated and the critical lattices are determined. As
an application, new bounds for the simultaneous Diophantine approximation
constants in R* and r* (with respect to the Euclidean norm) are obtained.

1. Introduction

Let K be a body in R®, s > 2, starlike with respect to the origin o,
and A = AZ°® an s-dimensional lattice where A is a real non-singular
(s x s)-matrix. A is called admissible for K if the only lattice point of
A contained in the interior of K is 0. Further, the critical determinant
A(K) of the body K is defined as the infimum of all lattice constants
d(A) = |det A| where A ranges over all lattices admissible for K. Finally,
a lattice A is called critical for K, if it is admissible and satisfies d(A) =
= A(K). (Cf. throughout Gruber/Lekkerkerker [8].)
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The evaluation or estimation of critical determinants for various
special bodies K was a central problem in the classic age of the Geometry
of Numbers until the mid of this century. As one motivation, among
lots of other aspects, one might mention the following connection with
simultaneous Diophantine approximation: Let ||-||, denote any v-norm in
R*, then the s-dimensional simultaneous approximation constant (with
respect to ||-||,) 6, is defined as the supremum of all reals ¢ with the
property that, for any s-tuple x € R® — (¥, there exist infinitely many
(p, q) € Z° x N* satisfying

(1.1)

1 1
X — ‘q‘P“V < W .

By Hurwitz’ classic theorem, 6, , = V5 (independently of v of course).
According to a deep result of Davenport and Mahler [7], f52 = %\/ﬁ
For all other (s,v), the exact values of §,, are unknown with only more
or less precise bounds available: References may be found in the author’s
previous articles [10], [11]. '

By a celebrated theorem of Davenport [6] (see also [8], p. 480,
Th. 4), 8, , is equal to the critical determinant of the (s+ 1)-dimensional
star body
(12) Ks+1 : ].7,'0] (”(zlr"zIS)“y)s < 1.

For the special case of a convex, o—symmetric body K in R?®, Min-
kowski [9] already developed a method which at least in principle may
be efficient to evaluate the critical determinant A(K): He proved (cf. [8],
p. 342, Th. 3) that there always exists a critical lattice with a basis
{a, b, c}, such that either

(I) £a,+b,+c,£(a — b),£(b — ¢), &(a — ¢) lie on the boundary
0K of K, and +(a+b~c),+(a+c—b),£(b+c—a) lie outside K, or,

(I) +a,+b, £c,£(a+b), £(b+c),x(a+c) lie on K and +(a-+
+b + ¢) do not lie in the interior of K.

(In the case of strict convexity, each critical lattice is subject to one of
these conditions.) :

Equipped with this tool, one can attack the determination of A(K)
as a minimum problem with constraints, facing, however, overwhelming
technical difficulties in most special cases. This task was carried out by
Minkowski himself for the octahedron

|z + [yl + 2] <1
(A(K) = 1), by Ollerenshaw [12] for the unit sphere (A(K)
Whitworth [13], [14] for the double cone

I
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Vi + i+ 2] < 1
(A(K) = 1/6) and another body which generalizes both the cube and
the octahedron; further, by Chalk [3] for the "frustrum of a sphere”

P +2<1, |zl <a<l,
and by Ap Simon [1] for an off-centered sphere.

Concerning non-convex three-dimensional star bodies we mention
just the results of Davenport [4], [5]: For the bodies

Ki: |zyz| <1, Ky: (z*+9%) 2| <1,

one has A(K;) =7, and A(K;) = 14/23.

We conclude this section with an appeal to the work of Wolff [15]
who established a (rather elaborate) generalization of Minkowski’s con-
ditions (I), (II) to the four-dimensional case.

2. Statement of results

2.1. The paraboloid

The objective of the present article is to take up again the pro-
gram initiated by Minkowski and to carry out the necessary hard analy-
sis for one more convex body — encouraged, as we admit frankly, by the
idea that nowadays software packages for symbolic computations should
prove helpful in overcoming the difficulties arising in the details of the
arguments. In particular, our aim is the determination of the critical
determinant and critical lattices of the convex body P which is bounded
by the two paraboloid surfaces P, ,P_ defined as

(2.1) Py z:ﬂ:(1~x2—y2),xz+y2§1.

We are able to prove the following.
Theorem 1. The critical determinant of P is given by

the critical lattices are those (up to rotations around the z-azes) generated
by the vectors

U— = U— = U
ul 12u
a= :l:(’l.l,—ﬂ) ,b— :FE ) , C= 02 y
3—-2u— 5 2w — 5 1—u

where u is any real number satisfying % <lul < 1.
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2.2. The Euclidean approximation constants in R® and R%.

While, as we said earlier, the Diophantine approximation constants
0o = /5 and oo = %\/23 are known, the hitherto sharpest bounds for
032 are due to Armitage [2] and read

275
(22) 31914 =4/ > 05,2 1.159° £ 33/* = 1.774. ..

Starting from the fact that 5, = A(Ky) where K4 is the 4- dimensional
star body

Ky : |zo (2} + 5 + a:§)3/2 <1
(cf. (1.2)), Armitage applied a method of Mordell to reduce the problem
to lower dimensions; he showed that
(2.3) A(Ky) > (A(K3)) A(KS)
where K3 is the planar domain
K- |z| (z* +y2)3/2 <1

and K7 is the three-dimensional body
(2.4) K73 (2 + %) (z® +y2+2°) < 1.
Quoting from his London Ph.D. dissertation! the result A(K3) > 1.159,
he estimated A(K?) by inscribing an ellipsoid and using that A(S3) = %,
S5 the unit sphere in R3. ‘

We are able to improve upon his lower bound for 63, by replacing
his ellipsoid by a suitable double paraboloid.

Furthermore, we apply his method to deal with 0,2 as well.
Theorem 2. Define 0, 5, the Euclidean Diophantine approzimation con-
stant in R¥, as the supremum of all reals ¢ with the property that for any

real but not all rational s-tupel (zi,...,z;) there ezist infinitely many
(p1,.-.,Ps,9) € Z° x N* satisfying

2 2
(a:l — %) + -+ (a:s - %) < ¢ Hegm2Us

Then the estimates
(2.5) By > 1.159° 1 (1 + \/§> = 1.879...
and

!The author is indebted to Professor Armitage for the courtesy of sending him a
carbon copy (!) of his 1956 thesis.
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5/9
V80
2.6 0., > | = 1.1621%%/9 = 1.3225. ..
(2.6) b2 = (6\5/5
hold true.

3. Proof of Theorem 1.

Fortunately for our purpose, Whitworth [13] has established some
simplifications of Minkowski’s conditions (I), (II) which are especially
useful in a situation where the boundary of the convex body is divided
into an upper and a lower half described by a pair of formally different
equations. In our notation, we can state his results as follows: Assuming
throughout that a critical lattice A is generated by three points a, b, c
which lie on P, it suffices to consider the following 5 cases:

(I.l)a—b,a—c,b—clieon P,,anda+b—c,b+c—a,a+c—b
are not in the interior of P.

(I1.0) a+b,a+c,b+c lie on P, and a+b+c is not in the interior
of P.

(IL.1) a4+ b,a—¢,b—c lieon P, and a+b—c is not in the interior
of P.

(IL.2) a+b,a—c,c—b lieon P, and a-+b—c is not in the interior
of P. .

(I.3) a+b,c—a,c—b lieon P, and a+b—c is not in the interior
of P.

It will in fact turn out that the critical lattices described in Th. 1
arise all from case (I.1), the other cases (II.0) — (IL.3) being essentially
void. In order to state this later in full precision, it will be necessary to
have at hand the description of 4 particular lattices A,, say: Let us put,
in the critical lattices of Th. 1, u = <%, € € {1, —1}. Choosing as a new

—\/—57
basis a* = a — b,b* = b, ¢* = ¢, we readily obtain the lattices
0 0 <2
V2
A: a=|F],b*=|-%],c*=10
(3.1) s V2 1
2 2 2

(€1,€2 € {1,—-1}).

We are now ready to carry out the details of the analysis. We assume that
a,b,c € P, form a basis of some critical lattice A of P, i.e. (w.l.o.g. by
rotational symmetry),
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a; b C1
a= aa 7b: b2 , C= 0 ,
1—a2—al 1—b b2 1—¢

the third components being > 0 throughout.
Case (I.1). The conditions a — b, a — ¢, b — ¢ € P, yield, after
obvious simplifications, the equations

1+ 2(&11)1 + azbg) = Q(b% + bg),
14 2a:¢; = 2¢2,
1+ 2b101 = 26%

Solving these for ay, as, by in terms of by, ¢; gives
1 1
3-2 — e = b _ =, b ot —_—
( ) a) = ¢ % a 2 2%, 1=0 9%,
Using this to express det(a,b,c) in terms of by, ¢; (supported, e.g., by
the software package Mathematica [16]), things miraculously simplify to

1 bzcl
_8b261 B T
Therefore, |det(a, b, c)| attains its minimal value % for byc; = £1. Since
A should be critical we conciude that by = ié%l—. Inserting this into
(3.2) (and writing u instead of ¢; for short), we obtain the lattice basis
{a,b, c} as stated in Th. 1, apart from the restriction on u. To derive
the latter, we use that the third components of a — b, a — ¢, b — ¢ must
be > 0 and that a4+ b —c,b+c—a,a+ c— b are not in the interior of
P. This leads to % < |u| €1 as asserted, thereby completing the proof
of Th. 1, as far as case (I.1) is concerned.

Case (I1.0). The conditions a+b, a+c¢, b+c € P, give

2(a1b1 + a/2b2) = — 1,

det(a,b,c) =

2(1161 - ].,
2b101 = — 1.
Solving for as, as, b1, we obtain
RN SR S R
e 261’ 2T 2b2 4b26§7 e 261 ’

Inserting this yields det(a, b, c) = 0 identically, hence a contradiction.
Case (II.1). The conditions a+b, a—c¢, b —c € P, imply

(33) 2(a1b1 + agbg) =-1 y
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(3.4) 1+ 2a1¢ = 23,
(3.5) 1+ 2bic; = 2¢2,
(3.6) max (a5 + a3, b2 +b3) < < 1.

We claim that then necessarily a + b — ¢ is in the interior of P, unless
A is just of the form A, described in (3.1). This will be clear if we verify
that

(37) 0<1—(af+ad+b2+0b3) +c2 <1—(a1+b —ec1)?— (ag+by)2.
The first inequality is evident by (3.6). The second one is equivalent to
20% +g(a1b1 + (Lzbz))—g(alcl + blcl)J <0

(3.3) (3.4), (3.5)
(%) = -2{+1<0 < >1

which remains to be proved.
On the other hand, by (3.3), Cauchy’s inequality, and (3.6),

2 = laibs + asby| < \/a% ﬂ—a%\/b% + b2 <

which establishes (*), except for the case of equality throughout. But in
this case,

(3.8) al+aj=bl+b=c=1.

By (3.4) and (3.5), we conclude that a; = b; = 0, hence, from (3.3) and
(3.8),
Cllg = b% = ——a2b2 = %

This shows that a, b, c generate one of the lattices A, described in (3.1).
Case (I1.2). The conditions a+b, a—c, c—b € P, imply

(3.9) 2(a1by + aghy) = —1,

(3.10) 1+ 2a;,¢; = 2¢3,

(3.11) 1+ 2bic; = 2(0% + b2),
(3.12) ad+ai<ca<b+b<l.

We again claim (3.7) (i.e.: a+b—c is in the interior of P), unless A is of
the form A,. The first inequality is again clear from (3.12). The second
one is equivalent to
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2c§ +?(albl + agbgz—g(alcl -+ 51012 <0

(3.9) (3.10), (3.11)
(%) = 200 +03)+1<0 < b+ >1
which remains to be proved. Again, from (3.9) and (3.12),
L =laib + ashy| < \/a§ +a§\/b§ + b% < b} + b3,

which establishes (xx), except for the case of equality throughout. But
in this case,

af—ka%:cf:b%—kbg:%.
Hence, in view of (3.10) and (3.11), a; = b; = 0 and thus, by (3.9),

(313) CL% = bg = ——a,gbg = %,
which completes the argument as before.

Case (I1.2). We employ the same reasoning as before, with a bit
more of technical complications. The conditions a+b, c—a, c—b € P,

imply

(314) 2(@1[)1 -+ a2b2) = —1,
(3.15) 1+ 2a;¢; = 2(a? + a2),
(3.16) 1+ 2byc; = 2(02 + b2),

(3.17) ¢} <min (a? + a3, b} + b3) < max (a? + a2, b? +b2) < 1.
We claim again that
0<1—(af+a3+bi+03) +c <1—(ar+b —c1)?— (ag+by)?

—

L
unless A is of the form A,. Now
(a1 + by — 01)2 + (a2 + 52)2 =
= 0,% -+ a% + b% + bg + C% +g(a1b1 + angZ—g(alcl —+ blcl)l =

~

(3.14) (3.15), (3.16)

=1—(al+a;+02+b3)+c2=1L,
hence L > 0 and it remains to show that L <1 - L <= L < L.
In view of (3.17),

(3.18) L<1—1(a?+4a2+b2402).
Again by classic inequalities and (3.14),
5= lashy + aaba < \Ja2 4+ a3 07 + B < 1(a2 + aF + B2+ ),
1

which together with (3.18) establishes L < 3, except for the case of
equality throughout. In the latter, we have again a? + a3 = b? + b2 =
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= ¢} = 3, hence, from (3.15) and (3.16), a; = b; = 0, and (3.13) follows
as before, which leads again to a critical lattice of the form A,. This
completes the proof of Th. 1. ¢

4. Proof of Theorem 2.

Using the results of Armitage reported in Section 2.2, we can start

from 632 > 1.159° A(KY)

where K7 is the three-dimensional body given by (2.4). We simply in-
scribe into K} a double paraboloid P{® bounded by two paraboloid sur-
faces PELQ), P defined as

’Pia) . z=Za (1—x2—y2) , T4 y? < 1,
where o = 1 + /2. Since
A(KG) > A(PY) = aA(P) = §(1 +V2),
assertion (2.5) of Th. 2 is immediate.

It remains, however, to justify the choice of a: By rotational sym-
metry around the z-axes, a discussion in a (r,z)-plane suffices. The

equations of 8K} and P{*) then read
Co: T*(r*+2°)=1 and Cy: z=a(l—-r?),

respectively. These curves obviously intersect at (+1,0). Eliminating 72
(and dividing by z), we obtain

1
2t — <a+—>z+2=0.
o

If the parabola C; touches the curve C; (from below) this equation must
have a double root. The relevant condition gives
ot —6a®+1=0.
This has the positive solutions & = /2 £ 1; of these, only o = 1 + /2
leads to real (r, z)-pairs, namely (£v/v/2 — 1,/2).
We illustrate the matter by the following picture which shows (in

front view) the non-convex body Kj together with our inscribed double
paraboloid P{®) and Armitage’s ellipsoid

4 4 1
o — P —=22 <2
VRV RV

The improvement we obtained is strongly suggested by this configuration
(though £ is not actually contained in P(®),
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Fig. 1: The bodies K3, P(®, and £ in front view

We proceed to establish the bound (2.6) for 6, 2. Again, this is equal
to A(Ks) where K : |zo| (z2 + - -+ 22)* < 1. We remark parentheti-
cally that the obvious idea to inscribe into K5 a 5-dimensional ellipsoid
yields A(K5) > 1.2352... which was refined only by about 10~ in [10].
By Th. 2 of Armitage [2],

(41) A(K) > (AKD)™ (AET)™,

where ‘

Kp: (@24 +0) (@B+a2+22)° <1, K3 o] (2 + 92 +22)° < 1.
We estimate A(K7) by inscribing a 4-dimensional ellipsoid. For arbitrary
A > 0, the mean inequality implies

(03@2 +-+ ) (23 + 23 +3D)°)
1 3
<% <2)\3x% + (2)\3 + 3\5> (73 + 73 + xi)) :
Therefore, the ellipsoid

2
£ a2y <—A3 + i) (2422420 <1

1/5

5 5 5A?
is contained in K. Since the critical determinant of the 4-dimensional

unit sphere S is equal to 1 (see Wolff [15], or [8], p. 410), it follows that

A(KD) 2 AEW) = (20 (230 + )°) A =

1 5 (2, 3\
2V 21\5 5\ )
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This expression attains its maximum value 2% for )\ — {’/%. Con-
sequently,

612
V80
4.2 A(K}) > ——.
(42) (D) > o
It remains to estimate the critical determinant of K2*. Since K3* is
a body of revolution with respect to the z-axes, we inscribe a double
paraboloid (with a parameter ¢ > 0 remaining at our disposition)

|
Pl : lxl+a(y2+z2) <1.

Discussing the situation in (the right half of) the (z,7)-plane, we obtain

curves \ 2
Ci: z(z®+r%)" =1, C: z=1-——
q
which obviously intersect at (z,7) = (1,0). After eliminating 7, a routine
numerical calculation (supported, e.g., again by Mathematica [16]) shows
that there is no other point of intersection if we choose? g = 2.3242.

Hence, for this value of g, Pq) is contained in K3*, and it follows that
A(K) > A(Py) = 52’- — 1.1621.

Together with (4.1) and (4.2) this completes the proof of assertion (2.6)
of Th. 2. ¢

Fig. 2 shows how marvelously the paraboloid fits into the (non-
convex) body K3*.

T~
A \\
1
z
-1 1
~1
—
\\\//

Fig. 2: The bodies K3* and P, (¢ = 2.3242) in front view

?In fact, the supremum of all ¢’s for which this is true is 2.32422 ... and arises as
a root of a quintic polynomial.




122 W. G. Nowak:The critical determinant of the double paraboloid

References

[1] AP SIMON, H.: A method of finding the critical lattices of spheres containing
the origin, Quart. J. Math. 3/2 (1952), 91-93.

[2] ARMITAGE, J.V.: On a method of Mordell in the geometry of numbers, Math-
ematika 2 (1955), 132-140. :

[3] CHALK, J.H.H.: On the frustrum of a sphere, Ann. Math. 52 (1950), 199-216.

[4) DAVENPORT, H.: On the product of three homogeneous linear forms (I1),
Proc. London Math. Soc. 44/2 (1938), 412-431.

[5] DAVENPORT, H.: On the product of three homogeneous linear forms (I11),
Proc. London Math. Soc. 45/2 (1939), 98-125.

[6] DAVENPORT, H.: On a theorem of Furtwingler, J. London Math. Soc. 30
(1955), 185-195.

[7] DAVENPORT, H., and MAHLER, K.: Simultaneous Diophantine approxima-
tion, Duke Math. J. 13 (1946), 105-111.

[8] GRUBER, P.M., and LEKKERKERKER, C.G.: Geometry of numbers, North
Holland, Amsterdam-New York-Oxford-Tokyo, 1987.

[9] MINKOWSKI, H.: Dichteste gitterformige Lagerung kongruenter Korper,
Nachr. Kon. Ges. Wiss. Gittingen 1904 (1904), 311-355.

[10] NOWAK, W.G.: On simultaneous Diophantine approximation, Rend. Circ.
Math. Palermo, II. Ser., 33 (1984), 456-460.

[11] NOWAK, W.G.: A remark concerning the s-dimensional simultaneous Diophan-
tine approximation constants, Proceedings of the Austrian-Hungarian-Slovake
Number Theory Colloguium, Graz-Mariatrost, 1992, Grazer Math. Ber. 318
(1993), 105-110.

[12] OLLERENSHAW, K.: The critical lattices of a sphere, J. London Math. Soc.
23 (1949), 297-299.

[13] WHITWORTH, J.V.: The critical lattices of the double cone, Proc. London
Math. Soc. (2) 53 (1951), 422-443.

[14] WHITWORTH, J.V.: On the densest packing of sections of a cube, Annali
Mat. Pura Appl. (4) 27 (1948), 29-37.

[15] WOLFF, K.H.: Uber kritische Gitter im vierdimensionalen Raum (R4). Monats-
hefte Math. 58 (1954), 38-56. '

[16) WOLFRAM, S.: Mathematica, Version 3.0. Wolfram Research, Inc., Cham-
paign, 1993.





