WEAK COMPACTNESS AND CON-VERGENCE IN TWO-PARAMETER MARTINGALE HARDY SPACES AND THE DUAL OF THE *VMO* SPACE

Ferenc Weisz

Department of Numerical Analysis, Eötvös L. University, H–1518 Budapest, Pf. 32, Hungary

Dedicated to Professor Ferenc Schipp on his 60th birthday

Received: September 1998

MSC 1991: 60 G 42, 42 B 30

Keywords: Weak sequentially compactness, weak completeness, Hardy, BMO and VMO spaces.

Abstract: A new characterization of the two-parameter BMO spaces is given. It is proved that a set A from the two-parameter Hardy space H_1 is weakly sequentially compact if and only if the set of the maximal functions of A is uniformly integrable. We obtain that H_1 is weakly complete. Using these facts, we give a new proof for the duality between VMO and H_1 .

1. Introduction

It is known that a set from L_1 is weakly sequentially compact if and only if the set is uniformly integrable (see Dunford and Schwartz [6, p. 294]). Moreover, L_1 is weakly complete (see [6, p. 290]).

The corresponding results for one-parameter Hardy spaces can be found in Dellacherie, Meyer and Yor [5] and Long [8]. Every function from the one-parameter BMO space can be written as a sum of bounded

This research was made while the author was visiting the Humboldt University in Berlin supported by the Alexander von Humboldt Foundation.

140 F. Weisz

functions (see Garsia [7]). With the help of this characterization Long [8] proved that a set $A \subset H_1$ is weakly sequentially compact if and only if the set of the maximal functions of A is uniformly integrable. Moreover, he proved that H_1 is weakly complete.

Coifman and Weiss [4] proved for the classical Hardy spaces that the dual of VMO is H_1 . This result for one-parameter martingale spaces is due to Schipp [11]. The author [13, 15] generalized this for two-parameter martingale spaces.

In this paper we generalize these results for two-parameter Hardy and BMO spaces. First we give a new characterization of the two-parameter BMO spaces, we decompose every BMO function into a sum of infinitely many bounded functions. The bounded linear functionals of H_1 are written in a new, closed form. Then we verify that $A \subset H_1$ is weakly sequentially compact if and only if the set of the maximal functions of A is uniformly integrable. We derive that H_1 is weakly complete, i.e. if $E(f^ng)$ has a limit for all $g \in BMO$, where $f^n \in H_1$, then there exists $f \in H_1$ such that f^n converges weakly to f. We prove also a weaker form of this result: if $E(f^ng)$ has a limit for all $g \in VMO$ then there exists $f \in H_1$ such that f^n converges weakly to f.

In the last section we suppose that every σ -algebra is generated by finitely many atoms. We give a new, functional analytic proof for the fact that the dual of VMO is H_1 .

2. Preliminaries and notations

Let (Ω, \mathcal{A}, P) be a probability space and let $\mathcal{F} = (\mathcal{F}_{n,m}; n, m \in \mathbb{N})$ be a non-decreasing sequence of σ -algebras with respect to the partial ordering on \mathbb{N}^2 . Moreover, let \mathcal{A} be the σ -algebra generated by \mathcal{F} , i.e. $\mathcal{A} = \sigma(\mathcal{F})$. Introduce the following σ -algebras:

$$\mathcal{F}_{n,\infty} := \sigma(\cup_{k=0}^{\infty} \mathcal{F}_{n,k}), \qquad \mathcal{F}_{\infty,m} := \sigma(\cup_{k=0}^{\infty} \mathcal{F}_{k,m}).$$

The expectation operator and the conditional expectation operators relative to $\mathcal{F}_{n,m}$, $\mathcal{F}_{n,\infty}$ and $\mathcal{F}_{\infty,m}$ $(n,m\in\mathbb{N})$ are denoted by E, $E_{n,m}$, $E_{n,\infty}$ and $E_{\infty,m}$, respectively. We briefly write L_p instead of the real or complex $L_p(\Omega, \mathcal{A}, P)$ space while the norm (or quasinorm) of this space is defined by $||f||_p := (E|f|^p)^{1/p}$ $(0 . For simplicity, we assume that for a function <math>f \in L_1$ we have $E_{n,0}f = E_{0,n}f = 0$ $(n \in \mathbb{N})$. The space L will denote the step functions.

We suppose that the condition (F_4) introduced by Cairoli and Walsh [3] is satisfied: for arbitrary $n, m \in \mathbb{N}$ the σ -algebras $\mathcal{F}_{n,\infty}$ and $\mathcal{F}_{\infty,m}$ are conditionally independent relative to $\mathcal{F}_{n,m}$ or, equivalently,

$$(F_4)$$
 $E_{n,m}f = E_{n,\infty}(E_{\infty,m}f) = E_{\infty,m}(E_{n,\infty}f)$ $(n, m \in \mathbb{N})$ for all bounded functions f .

An integrable sequence $f = (f_{n,m}; n, m \in \mathbb{N})$ is said to be a martingale if

- (i) $f_{n,m}$ is $\mathcal{F}_{n,m}$ measurable for all $n, m \in \mathbb{N}$

(ii) $E_{k,l}f_{n,m} = f_{k,l}$ for all $k \leq n$ and $l \leq m$. For simplicity, we always suppose that for a martingale f we have $f_{n,0} = f_{0,n} = 0 \ (n \in \mathbb{N})$. Of course, the theorems that are to be proved later are true with a slightly modification without this condition, too.

In this paper we suppose that the stochastic basis \mathcal{F} is regular, i.e. there exists a number R > 0 such that $f_{n,m} \leq Rf_{n-1,m}, f_{n,m} \leq$ $\leq Rf_{n,m-1}$ $(n,m\in\mathbb{N})$ hold for all non-negative martingales $(f_{n,m};n,m\in\mathbb{N})$ $\in \mathbb{N}$).

The easiest example for a regular \mathcal{F} is the sequence of dyadic σ algebras where $\Omega = [0,1) \times [0,1)$, \mathcal{A} is the σ -algebra of Borel sets, P is Lebesgue measure and

$$\mathcal{F}_{n,m} := \sigma \Big\{ \Big[\frac{k}{2^n}, \frac{k+1}{2^n} \Big) \times \Big[\frac{l}{2^m}, \frac{l+1}{2^m} \Big) : 0 \le k < 2^n, 0 \le l < 2^m \Big\}.$$

The stochastic basis generated by bounded Vilenkin systems are also regular (cf. Weisz [15].

We say that a sequence $X = (X_{n,m}; n, m \in \mathbb{N})$ is uniformly integrable if

$$\lim_{y \to \infty} \sup_{n,m \in \mathbb{N}} \int_{\{|f_{n,m}| > y\}} |f_{n,m}| \, dP = 0.$$

The maximal function of a sequence $X = (X_{n,m}; n, m \in \mathbb{N})$ is denoted by

$$X^* := \sup_{n,m \in \mathbb{N}} |X_{n,m}|.$$

The martingale Hardy space H_p (0 < $p \le \infty$) denotes the space of all martingales $f = (f_{n,m}; n, m \in \mathbb{N})$ for which

$$||f||_{H_p} := ||f^*||_p < \infty.$$

It is proved in Brossard [1, 2] and Weisz [15] that, for all 0 , H_p is equivalent to the space generated by the quadratic variation, i.e. by

$$S(f) := \left(\sum_{n,m \in \mathbb{N}} |f_{n,m} - f_{n-1,m} - f_{n,m-1} + f_{n-1,m-1}|^2\right)^{1/2}.$$

Moreover, it is known that $H_p \sim L_p$ for all $1 , where <math>\sim$ denotes the equivalence of the spaces and norms.

The dual of H_1 is the BMO space (see Weisz [13, 15]) where BMO denotes the space of those functions $f \in L_2$ for which

 $F. \ Weisz$

142

$$||f||_{BMO} = \sup_{\nu} P(\nu \neq \infty)^{-1/2} ||f - f^{\nu}||_{2} < \infty.$$

Here the supremum is taken over all two-parameter stopping times and f^{ν} denotes the stopped martingale.

For an arbitrary space **Z** we denote by $\mathbf{Z}(\mathcal{F}_{n,m})$ the $\mathcal{F}_{n,m}$ measurable functions from **Z**.

3. A characterization of BMO

In this section we characterize the dual of H_1 . Let $\theta = (\theta_{n,m}; n, m \in \mathbb{N})$ be a sequence of functions such that there exist N and M for which

$$\theta_{n,m} = \theta_{N,m}$$
 for all $n \ge N$, $m \le M - 1$
 $\theta_{n,m} = \theta_{n,M}$ for all $m \ge M$, $n \le N - 1$
 $\theta_{n,m} = \theta_{N,M}$ for all $n \ge N$, $m \ge M$.

We say that a sequence θ of this type is in the space \mathcal{H} if

$$\|\theta\|_{\mathcal{H}} := \|\theta^*\|_1 < \infty.$$

Now we give the dual of \mathcal{H} .

Lemma 1. For all bounded linear functionals l of \mathcal{H} there exist sequences $(\epsilon_{n,m}; n, m \in \mathbb{N})$, $(\xi_{n,\infty}; n \in \mathbb{N})$, $(\xi_{\infty,m}; m \in \mathbb{N})$ of functions and a function ψ such that

(1)
$$||l|| \sim \left\| \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\epsilon_{n,m}| + \sum_{n=0}^{\infty} |\xi_{n,\infty}| + \sum_{m=0}^{\infty} |\xi_{\infty,m}| + |\psi| \right\|_{\infty},$$

$$l(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} E(\theta_{n,m}\epsilon_{n,m}) + \sum_{n=0}^{N-1} E\left[\theta_{n,M}(\xi_{n,\infty} + \sum_{m=M}^{\infty} \epsilon_{n,m})\right] +$$

$$+ \sum_{m=0}^{M-1} E\left[\theta_{N,m}(\xi_{\infty,m} + \sum_{n=N}^{\infty} \epsilon_{n,m})\right] +$$

$$+ E\left[\theta_{N,M}\left(\sum_{n=N}^{\infty} \sum_{m=M}^{\infty} \epsilon_{n,m} + \sum_{n=N}^{\infty} \xi_{n,\infty} + \sum_{m=M}^{\infty} \xi_{\infty,m} + \psi\right)\right].$$

Proof. It is easy to see that if l is of the form (2) then l is a bounded linear functional on \mathcal{H} and ||l|| can be estimated by the right hand side of (1).

Let l be an arbitrary bounded linear functional on \mathcal{H} . It follows from the duality between L_1 and L_{∞} and from the linearity of l, that there exist $\epsilon_{n,m}$, $\xi_{n,m}$, $\psi_{n,m} \in L_{\infty}$ $(n,m \in \mathbb{N})$ such that

(3)
$$l(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} E(\theta_{n,m} \epsilon_{n,m}) + \sum_{n=0}^{N-1} E(\theta_{n,M} \xi_{n,M}) + \sum_{m=0}^{M-1} E(\theta_{N,m} \xi_{N,m}) + E(\theta_{N,M} \psi_{N,M}).$$

Writing $\theta_{n,m} := \operatorname{sign} \epsilon_{n,m}$ $(n \leq N-1, m \leq M-1)$, $\theta_{n,M} := \operatorname{sign} \xi_{n,M}$ $(n \leq N-1)$, $\theta_{N,m} := \operatorname{sign} \xi_{N,m}$ $(m \leq M-1)$ and $\theta_{N,M} := \operatorname{sign} \psi_{N,M}$, we can see that

(4)
$$\left\| \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} |\epsilon_{n,m}| + \sum_{n=0}^{N-1} |\xi_{n,M}| + \sum_{m=0}^{M-1} |\xi_{N,m}| + |\psi_{N,M}| \right\|_{\infty} \le \|l\|$$

for all $N, M \in \mathbb{N}$. If N = 0 then we have

(5)
$$\left\| \sum_{m=0}^{M-1} |\xi_{0,m}| + |\psi_{0,M}| \right\|_{\infty} \le \|l\|.$$

The bounded linear functional l from (3) can be rewritten in

(6)

$$l(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} E(\theta_{n,m} \epsilon_{n,m}) + \sum_{n=0}^{N-1} E(\theta_{n,M} \xi_{n,L}) + \sum_{n=0}^{N-1} \sum_{m=M}^{L-1} E(\theta_{n,M} \epsilon_{n,m}) + \sum_{m=0}^{M-1} E(\theta_{N,m} \xi_{K,m}) + \sum_{n=N}^{K-1} \sum_{m=0}^{M-1} E(\theta_{N,m} \epsilon_{n,m}) + \sum_{n=N}^{K-1} \sum_{m=M}^{L-1} E(\theta_{N,M} \epsilon_{n,m}) + \sum_{n=N}^{K-1} E(\theta_{N,M} \xi_{N,L}) + \sum_{n=N}^{L-1} E(\theta_{N,M} \xi_{N,L}) + E(\theta_{N,M} \xi_{N,L})$$

where $K \geq N$ and $L \geq M$. (3) and (6) imply

(7)
$$\xi_{n,M} = \xi_{n,L} + \sum_{m=M}^{L-1} \epsilon_{n,m},$$

(8)
$$\xi_{N,m} = \xi_{K,m} + \sum_{n=N}^{K-1} \epsilon_{n,m},$$

(9)
$$\psi_{N,M} = \psi_{K,L} + \sum_{n=N}^{K-1} \sum_{m=M}^{L-1} \epsilon_{n,m} + \sum_{n=N}^{K-1} \xi_{n,L} + \sum_{m=M}^{L-1} \xi_{K,m}.$$

We can conclude from (4) and (7) that there exists the limit $\xi_{n,\infty}$: := $\lim_{L\to\infty} \xi_{n,L}$ and

(10)
$$|\xi_{n,\infty} - \xi_{n,M}| \le \sum_{m=M}^{\infty} |\epsilon_{n,m}|.$$

Similarly,

$$|\xi_{\infty,m} - \xi_{N,m}| \le \sum_{n=N}^{\infty} |\epsilon_{n,m}|.$$

Since N and M are arbitrary, (10) and (11) hold for all $n, m \in \mathbb{N}$. We prove now that

(12)
$$\lim_{K,L\to\infty} \sum_{n=N}^{K-1} \xi_{n,L} = \sum_{n=N}^{\infty} \xi_{n,\infty}.$$

Indeed, (4), (5) and (10) imply

$$\begin{split} |\sum_{n=N}^{\infty} \xi_{n,\infty} - \sum_{n=N}^{K-1} \xi_{n,L}| &\leq \sum_{n=N}^{K-1} |\xi_{n,\infty} - \xi_{n,L}| + \sum_{n=K}^{\infty} |\xi_{n,\infty}| \leq \\ &\leq \sum_{n=N}^{K-1} \sum_{m=L}^{\infty} |\epsilon_{n,m}| + \sum_{n=K}^{\infty} |\xi_{n,\infty} - \xi_{n,0}| + \sum_{n=K}^{\infty} |\xi_{n,0}| \leq \\ &\leq \sum_{n=0}^{\infty} \sum_{m=L}^{\infty} |\epsilon_{n,m}| + \sum_{n=K}^{\infty} \sum_{m=0}^{\infty} |\epsilon_{n,m}| + \sum_{n=K}^{\infty} |\xi_{n,0}| \leq \delta \end{split}$$

if K and L are large enough. Similarly,

(13)
$$\lim_{K,L\to\infty} \sum_{m=M}^{L-1} \xi_{K,m} = \sum_{m=M}^{\infty} \xi_{\infty,m}.$$

Substituting (12) and (13) in (9) we get that $\lim_{K,L\to\infty} \psi_{K,L} = \psi$ does exist and

$$\psi_{N,M} = \psi + \sum_{n=N}^{\infty} \sum_{m=M}^{\infty} \epsilon_{n,m} + \sum_{n=N}^{\infty} \xi_{n,\infty} + \sum_{m=M}^{\infty} \xi_{\infty,m}.$$

This together with (3), (7) and (8) prove (2). In the same way we can verify that

$$\lim_{K,L\to\infty}\sum_{n=N}^{K-1}|\xi_{n,L}|=\sum_{n=N}^{\infty}|\xi_{n,\infty}|,\qquad \lim_{K,L\to\infty}\sum_{m=M}^{L-1}|\xi_{K,m}|=\sum_{m=M}^{\infty}|\xi_{\infty,m}|,$$

which finishes the proof of (1). \Diamond

Now we formulate the main result of this section. Its one-parameter version can be found in Garsia [7] and Long [8].

Theorem 1. A function g is in BMO if and only if there exist functions $\epsilon_{n,m}$, $\xi_{n,\infty}$, $\xi_{\infty,m}$ and ψ $(n, m \in \mathbb{N})$ such that

(14)
$$g = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E_{n,m} \epsilon_{n,m} + \sum_{n=0}^{\infty} E_{n,\infty} \xi_{n,\infty} + \sum_{m=0}^{\infty} E_{\infty,m} \xi_{\infty,m} + \psi,$$

(15)
$$||g||_{BMO} \sim \left\| \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\epsilon_{n,m}| + \sum_{n=0}^{\infty} |\xi_{n,\infty}| + \sum_{m=0}^{\infty} |\xi_{\infty,m}| + |\psi| \right\|_{\infty}.$$

Proof. It is known that for all $g \in BMO$ there exists a bounded linear functional l on H_1 such that $||l|| \sim ||g||_{BMO}$ and

(16)
$$l_g(f) = l(f) = E(fg) \quad (f \in L_2),$$

where L_2 is dense in H_1 (see Weisz [15]). We shall use also the notation $\langle f,g\rangle := l_g(f)$ ($f \in H_1$). The subspace $\cup_{n,m\in\mathbb{N}} L_{\infty}(\mathcal{F}_{n,m})$, which is dense in H_1 , can be embedded isometrically into \mathcal{H} . If $g \in BMO$ then the bounded linear functional l given in (16) can be extended onto \mathcal{H} norm preserving. By Lemma 1 then there exist $\epsilon_{n,m}$, $\xi_{n,\infty}$, $\xi_{\infty,m}$ and ψ ($n,m \in \mathbb{N}$) such that (1) and (2) hold. Since $||l|| \sim ||g||_{BMO}$, (15) is proved. By (2),

$$E(f_{N,M}g) = l(\theta) = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} E(f_{n,m}\epsilon_{n,m}) +$$

$$+ \sum_{n=0}^{N-1} E\left[f_{n,M}(\xi_{n,\infty} + \sum_{m=M}^{\infty} \epsilon_{n,m})\right] + \sum_{m=0}^{M-1} E\left[f_{N,m}(\xi_{\infty,m} + \sum_{n=N}^{\infty} \epsilon_{n,m})\right] +$$

$$+ E\left[f_{N,M}\left(\sum_{n=N}^{\infty} \sum_{m=M}^{\infty} \epsilon_{n,m} + \sum_{n=N}^{\infty} \xi_{n,\infty} + \sum_{m=M}^{\infty} \xi_{\infty,m} + \psi\right)\right] =$$

$$= E\left[f_{N,M}\left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E_{n,m}\epsilon_{n,m}\right) + \sum_{n=0}^{\infty} E_{n,\infty}\xi_{n,\infty} + \sum_{m=0}^{\infty} E_{\infty,m}\xi_{\infty,m} + \psi\right)\right].$$

Since $f_{N,M}$ is arbitrary, (14) is proved.

On the other hand, if g can be written in (14) then $\epsilon_{n,m}$, $\xi_{n,\infty}$, $\xi_{\infty,m}$ and ψ $(n, m \in \mathbb{N})$ give a bounded linear functional on \mathcal{H} and hence on the image of $\bigcup_{n,m\in\mathbb{N}} L_{\infty}(\mathcal{F}_{n,m})$. By the density this yields that $E(f_{N,M}g)$ can be extended to a bounded linear functional on H_1 . Consequently, $g \in BMO$. The proof of Th. 1 is complete. \Diamond

Theorem 2. If $g \in BMO$ then there exist $\epsilon_{n,m}$, $\xi_{n,\infty}$, $\xi_{\infty,m}$ and ψ $(n, m \in \mathbb{N})$ such that (15) hold and the corresponding bounded linear functional can be written in the form

(17)
$$\langle f, g \rangle = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(f_{n,m} \epsilon_{n,m}) + \sum_{n=0}^{\infty} E(f_{n,\infty} \xi_{n,\infty}) + \sum_{m=0}^{\infty} E(f_{\infty,m} \xi_{\infty,m}) + E(f\psi)$$

where $f \in H_1$.

Proof. We apply Th. 1. By (15) the series (14) converges also in L_1 norm. Hence, for $f \in L_{\infty}$ we have

$$\langle f, g \rangle = E(fg) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(fE_{n,m}\epsilon_{n,m}) + \sum_{n=0}^{\infty} E(fE_{n,\infty}\xi_{n,\infty}) + \sum_{m=0}^{\infty} E(fE_{\infty,m}\xi_{\infty,m}) + E(f\psi) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(f_{n,m}\epsilon_{n,m}) + \sum_{n=0}^{\infty} E(f_{n,\infty}\xi_{n,\infty}) + \sum_{m=0}^{\infty} E(f_{\infty,m}\xi_{\infty,m}) + E(f\psi).$$

In case $f \in H_1$ is arbitrary, we choose $f^k \in L_{\infty}$ such that $f^k \to f$ in H_1 norm. Then

$$\langle f, g \rangle = \lim_{k \to \infty} E(f^k g) = \lim_{k \to \infty} \left[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(f_{n,m}^k \epsilon_{n,m}) + \sum_{n=0}^{\infty} E(f_{n,\infty}^k \xi_{n,\infty}) + \sum_{m=0}^{\infty} E(f_{\infty,m}^k \xi_{\infty,m}) + E(f^k \psi) \right].$$

Since $|f_{n,m}^k - f_{n,m}| \leq (f^k - f)^*$ $(n, m \in \mathbb{N} \cup \{\infty\})$, (15) completes the proof of (17). \Diamond

4. Weak compactness and convergence in H_1

We denote the weak topology in H_1 by $\sigma(H_1, BMO)$ and the weak* topology by $\sigma(BMO, H_1)$. The following lemma can be found in Long [8, p. 61].

Lemma 2. Let A be a set of sequences $X = (X_{n,m})$ such that

$$\sup_{X \in A} E(X^*) \le C.$$

Suppose that for all measurable functions T from Ω to \mathbb{N}^2 , $A_T := \{X_T : X \in A\}$ is uniformly integrable, where $X_T := \sum_{n,m \in \mathbb{N}} X_{n,m} 1_{\{T=(n,m)\}}$. Then $A^* := \{X^* : X \in A\}$ is uniformly integrable, too.

Now we show that under some conditions the sum in (17) is uniformly.

Lemma 3. Let $g \in BMO$, $A \subset H_1$ and A^* be uniformly integrable. Then for all $\delta > 0$ there exist N_0 and M_0 such that for $N \geq N_0$ and $M \geq M_0$,

$$\sup_{f \in A} \left(\left| \sum_{\substack{n \geq N \text{ or} \\ m \geq M}} E(f_{n,m} \epsilon_{n,m}) \right| + \left| \sum_{n=N}^{\infty} E(f_{n,\infty} \xi_{n,\infty}) \right| + \left| \sum_{m=M}^{\infty} E(f_{\infty,m} \xi_{\infty,m}) \right| \right) \leq \delta,$$

where $\epsilon_{n,m}$, $\xi_{n,\infty}$ and $\xi_{\infty,m}$ appear in Th. 2.

Proof. We prove the lemma for the first sum, only. Since

$$\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} |\epsilon_{n,m}|$$

converges to $\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\epsilon_{n,m}|$ also in measure, for all $\eta > 0$ there exist N_0 and M_0 such that for $N \geq N_0$ and $M \geq M_0$ we have

$$F_{N,M} := \left| \left\{ \omega : \sum_{\substack{n \ge N \text{ or} \\ m > M}} |\epsilon_{n,m}| > \delta/(6C) \right\} \right| \le \eta$$

where

$$C \ge \sup \Big(\sup_{f \in A} E(f^*), \Big\| \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\epsilon_{n,m}| + \sum_{n=0}^{\infty} |\xi_{n,\infty}| + \sum_{m=0}^{\infty} |\xi_{\infty,m}| + |\psi| \Big\|_{\infty} \Big).$$

By the uniform integrability of A^* , η can be chosen such that

$$\sup_{f \in A} \int_{F} f^* dP \le \delta/(6C) \quad \text{if} \quad P(F) \le \eta.$$

Thus we obtain for all $f \in A$ that

$$\Big|\sum_{\substack{n\geq N \text{ or} \\ m>M}} E(f_{n,m}\epsilon_{n,m})\Big| \leq C \int_{F_{N,M}} f^* dP + \delta/(6C) \int_{\Omega \setminus F_{N,M}} f^* dP \leq \delta/3,$$

which finishes the proof of Lemma 3. \Diamond

Lemma 4. If f^k is a weak Cauchy sequence of H_1 then for all measurable $T: \Omega \mapsto \mathbb{N}^2$, f_T^k is weakly convergent in L_1 .

Proof. For all $h \in L_{\infty}$,

$$E(f_T^k h) = E\left(\sum_{n,m \in \mathbb{N}} f_{n,m}^k h 1_{\{T=(n,m)\}}\right) = E\left(\sum_{n,m \in \mathbb{N}} f_{n,m}^k \epsilon_{n,m}\right) = \langle f^k, g \rangle$$

148 F. Weisz

where $\epsilon_{n,m} := h1_{\{T=(n,m)\}}$ and $g := \sum_{n,m\in\mathbb{N}} E_{n,m} \epsilon_{n,m} \in BMO$ by Th. 1. Since $\langle f^k, g \rangle$ converges, we conclude that f_T^k is a weak Cauchy sequence in L_1 . The weak completeness of L_1 (see Dunford, Schwartz [6, p. 290]) shows the lemma. \Diamond

Theorem 3. A set $A \subset H_1$ is weakly sequentially compact if and only if A^* is uniformly integrable.

Proof. The uniform integrability of A^* implies that A is also uniformly integrable. This means that $A \subset L_1$ is weakly sequentially compact in the topology $\sigma(L_1, L_\infty)$ (see Dunford and Schwartz [6, p. 294]). Thus for all infinite sequence from A there exist a subsequence $(f^k) \subset A$ and a function $f \in L_1$ such that $f^k \to f$ in $\sigma(L_1, L_\infty)$, i.e. $\lim_{k \to \infty} E(f^k h) = E(fh)$ for all $h \in L_\infty$. It is easy to see that also $\lim_{k \to \infty} E(f_{n,m}^k h) = E(f_{n,m}h)$ for all $n, m \in \mathbb{N} \cup \{\infty\}$ and $h \in L_\infty$. For an arbitrary $g \in BMO$, Th. 2 and Lemma 3 imply

$$\lim_{k \to \infty} \langle f^k, g \rangle = \lim_{k \to \infty} \left(\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(f_{n,m}^k \epsilon_{n,m}) + \sum_{n=0}^{\infty} E(f_{n,\infty}^k \xi_{n,\infty}) + \right.$$

$$\left. + \sum_{m=0}^{\infty} E(f_{\infty,m}^k \xi_{\infty,m}) + E(f^k \psi) \right) =$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \lim_{k \to \infty} E(f_{n,m}^k \epsilon_{n,m}) + \sum_{n=0}^{\infty} \lim_{k \to \infty} E(f_{n,\infty}^k \xi_{n,\infty}) +$$

$$+ \sum_{m=0}^{\infty} \lim_{k \to \infty} E(f_{\infty,m}^k \xi_{\infty,m}) + E(f \psi) +$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} E(f_{n,m} \epsilon_{n,m}) + \sum_{n=0}^{\infty} E(f_{n,\infty} \xi_{n,\infty}) =$$

$$+ \sum_{n=0}^{\infty} E(f_{\infty,m} \xi_{\infty,m}) + E(f \psi) = \langle f, g \rangle.$$

We only have to show that $f \in H_1$. For any measurable $T : \Omega \to \mathbb{N}^2$ the last equation implies that

$$E(|f_T|) = \sum_{n,m\in\mathbb{N}} E(f_{n,m}\epsilon_{n,m}) \le \sup_{k\in\mathbb{N}} \left| \sum_{n,m\in\mathbb{N}} E(f_{n,m}^k\epsilon_{n,m}) \right| \le$$

$$\le \sup_{k\in\mathbb{N}} \sum_{n,m\in\mathbb{N}} E((f^k)^*|\epsilon_{n,m}|) \le C,$$

where $\epsilon_{n,m} := \text{sign } f_{n,m} 1_{\{T=(n,m)\}}$. Taking the supremum over all T's we obtain $f \in H_1$.

Now assume that A is weakly sequentially compact in $\sigma(H_1, BMO)$. If a subsequence $(f^k) \subset H_1$ converges weakly to f, then, by Lemma 4,

$$E(f_T^k h) = \langle f^k, g \rangle \longrightarrow \langle f, g \rangle = E(f_T h),$$

where $h \in L_{\infty}$ is arbitrary. Consequently, A_T is weakly sequentially compact in $\sigma(L_1, L_{\infty})$, and so A_T is uniformly integrable. Since A is bounded in H_1 , Lemma 2 shows the uniform integrability of A^* . The proof of the theorem is complete. \Diamond

Now we can verify the weak completeness of H_1 .

Theorem 4. The space H_1 is weakly complete, i.e. if f^k is a sequence from H_1 such that $\langle f^k, g \rangle$ has a limit for all $g \in BMO$, then there exists $f \in H_1$ such that $\langle f^k, g \rangle \to \langle f, g \rangle$.

Proof. Every f^k defines a bounded linear functional on BMO with equivalent norm $||f^k||_{H_1}$. By the convergence, these functionals are pointwise bounded. The Banach-Steinhaus theorem implies that they are uniformly bounded, thus $A := \{f^k\}$ is a bounded set in H_1 . It follows from Lemma 4 that A_T is weakly sequentially compact in $\sigma(L_1, L_\infty)$. Then A_T is uniformly integrable and hence A^* is also uniformly integrable (see Lemma 2). Th. 3 yields the weak sequentially compactness of A in $\sigma(H_1, BMO)$. Thus there is a subsequence (f^{k_n}) and $f \in H_1$ such that $\langle f^{k_n}, g \rangle \to \langle f, g \rangle$ for all $g \in BMO$. The proof can be finished as usual. \Diamond

We formulate a relation between weak and strong convergence in H_1 . **Theorem 5.** Suppose that the sequence (f^k) from H_1 converges weakly to $f \in H_1$. Then the convergence holds in H_1 norm if and only if

$$\|\sup_{n\in\mathbb{N}}|E_{n,\infty}(f-f^k)|\|_1\to 0.$$

Proof. The "only if" part is clear. To prove the other part observe that $A := \{f^k\}$ is weakly sequentially compact in H_1 , hence A^* is uniformly integrable (see Th. 2). The convergence $f^k \to f$ in H_1 norm follows from the uniform integrability of A^* and from the inequality

$$P((f-f^k)^* > \delta) \le \frac{1}{\delta} \|\sup_{n \in \mathbb{N}} |E_{n,\infty}(f-f^k)|\|_1.$$

Note that this inequality was proved by the author in [15, p. 85]. \Diamond Now we verify a weaker version of Th. 4.

Theorem 6. Let **Z** be the closure of $\bigcup_{n,m\in\mathbb{N}}BMO(\mathcal{F}_{n,m})$ in BMO norm. If f^k is a sequence from H_1 such that $\langle f^k,g\rangle$ has a limit for all $g\in\mathbf{Z}$, then there exists $f\in H_1$ such that $\langle f^k,g\rangle\to\langle f,g\rangle$.

Proof. Every f^k defines a bounded linear functional on **Z**. Since

(18)
$$||f_{n,m}||_{H_1} \sim \sup_{\substack{g \in BMO(\mathcal{F}_{n,m}) \\ ||g||_{BMO} \le 1}} |\langle f_{n,m}, g \rangle|$$

for all $n, m \in \mathbb{N}$ and $\sup_{n,m \in \mathbb{N}} ||f_{n,m}||_{H_1} = ||f||_{H_1}$, we have $A := \{f^k\}$ is again a bounded set in H_1 . If $\langle f^k, g \rangle$ converges for all $g \in \mathbf{Z}$ then it converges also for all $g \in BMO(\mathcal{F}_{n,m})$. By Th. 4 there exists a function $f_{n,m} \in H_1$ $(n, m \in \mathbb{N})$ such that

(19)
$$\langle f^k, g \rangle = \langle f_{n,m}^k, g \rangle \longrightarrow \langle f_{n,m}, g \rangle \quad (g \in BMO(\mathcal{F}_{n,m})).$$

Then $\langle f^k, g \rangle = \langle f_{n+1,m}^k, g \rangle \longrightarrow \langle f_{n+1,m}, g \rangle$ $(g \in BMO(\mathcal{F}_{n+1,m}))$. Since $\langle f_{n,m}^k, g \rangle = \langle f_{n+1,m}^k, g \rangle$ for all $g \in BMO(\mathcal{F}_{n,m})$, we can see that $f_{n,m} = E_{n,m}f_{n+1,m}$. Consequently, $f := (f_{n,m})$ is a martingale. (18) and (19) imply that

(20)
$$||f_{n,m}||_{H_1} \le C \sup_{k \in \mathbb{N}} ||f_{n,m}^k||_{H_1} \le C \sup_{k \in \mathbb{N}} ||f^k||_{H_1} \le C.$$

Thus $f \in H_1$. For $g \in \mathbf{Z}$ we can choose $g_0 \in \bigcup_{n,m \in \mathbb{N}} BMO(\mathcal{F}_{n,m})$ such that $\|g - g_0\|_{BMO} \leq \delta$. Then

$$|\langle f, g \rangle - \langle f^k, g \rangle| \le |\langle f, g \rangle - \langle f, g_0 \rangle| + |\langle f, g_0 \rangle - \langle f^k, g_0 \rangle| + |\langle f^k, g_0 \rangle - \langle f^k, g \rangle| \le \epsilon$$

if k is large enough. The proof of the theorem is complete. \Diamond

5. The dual of VMO

In this section we suppose that every σ -algebra $\mathcal{F}_{n,m}$ is generated by finitely many atoms. Let VMO denote the closure of $\bigcup_{n,m\in\mathbb{N}} L(\mathcal{F}_{n,m})$ in the BMO norm. Recall that $L(\mathcal{F}_{n,m})$ denotes the $\mathcal{F}_{n,m}$ measurable step functions.

Theorem 7. The dual of VMO is H_1 .

Proof. It follows from the duality between H_1 and BMO that every $g \in VMO$ defines a bounded linear functional $l_f(g) := \langle f, g \rangle$ on VMO with $||l_f|| \leq C||f||_{H_1}$.

To prove the other side let $l \in VMO^*$ be an arbitrary bounded linear functional. By the Banach-Alaoglu theorem

$$Y := \{k \in VMO^* : ||k|| \le ||l||\}$$

is compact with respect to the weak*, i.e. the $\sigma(VMO^*, VMO)$ topology (see e.g. Dunford and Schwartz [6, p. 424]). Since VMO is separable,

the weak* topology on Y is metrizable (cf. [6, p. 426]). The natural embedding of H_1 into VMO^* is dense in VMO^* with respect to $\sigma(BMO^*, BMO)$ (cf. [6, p. 425]). Hence $H_1 \cap Y$ is dense in Y with respect to $\sigma(VMO^*, VMO)$. From this it follows that there exists a sequence $(f^k) \subset H_1 \cap Y$ such that $f^k \to l$ in the $\sigma(VMO^*, VMO)$ topology. In other words, $\langle f^k, g \rangle \to \langle l, g \rangle$ for all $g \in VMO$. By Th. 6 there exists $f \in H_1$ such that $\langle f^k, g \rangle \to \langle f, g \rangle$ for all $g \in VMO$. Hence l = f. Moreover, (20) implies that $||f||_{H_1} \leq C||l||$, which completes the proof. \Diamond

References

- [1] BROSSARD, J.: Comparaison des "normes" L_p du processes croissant et de la variable maximale pour les martingales régulières à deux indices. Théorème local correspondant, Annals of Prob. 8 (1980), 1183-1188.
- [2] BROSSARD, J.: Régularité des martingales à deux indices et inégalités de normes, in: Processes Aléatoires à Deux Indices, Lecture Notes in Math., Springer, Berlin, 863 (1981), 91–121.
- [3] CAIROLI, R. and WALSH, J.B.: Stochastic integrals in the plane, *Acta Math.* 134 (1975), 111–183.
- [4] COIFMAN R.R. and WEISS, G.: Extensions of Hardy spaces and their use in analysis, *Bull. Amer. Math. Soc.* 83 (1977), 569–645.
- [5] DELLACHERIE, A., MEYER, P.A. and YOR, M.: Sur certains propriétés de espaces de Banach H_1 et BMO, in: Sem. Prob. XII, Lecture Notes in Math. **649** (1978), 98–113.
- [6] DUNFORD, N. and SCHWARTZ, J.T.: Linear operators 1, John Wiley, New York, 1988.
- [7] GARSIA, A.M.: Martingale inequalities. Seminar Notes on Recent Progress, Math. Lecture Note, Benjamin, New York, 1973.
- [8] LONG, R.: Martingale spaces and inequalities, Peking University Press and Vieweg Publishing, 1993.
- [9] NEVEU, J.: Discrete-parameter martingales, North-Holland, 1971.
- [10] SCHIPP, F.: Multiple Walsh analysis, in: Theory and applications of Gibbs derivatives, (eds. P.L. Butzer and R.S. Stankovic), Mathematical Institute, Beograd, 1989, 73–90.
- [11] SCHIPP, F.: The dual space of martingale VMO space, in: Proc. Third Pannonian Symp. Math. Stat. 1982, 305–315.
- [12] SCHIPP, F., WADE, W.R., SIMON, P. and Pál, J.: Walsh series: An introduction to dyadic harmonic analysis, Akadémiai Kiadó, Budapest, 1990.
- [13] WEISZ, F.: On duality problems of two-parameter martingale Hardy spaces, Bull. Sc. math. 114 (1990), 395–410.
- [14] WEISZ, F.: Martingale Hardy spaces for 0 , Probab. Th. Rel. Fields 84 (1990), 361–376.
- [15] WEISZ, F.: Martingale Hardy spaces and their applications in Fourier-analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.