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Abstract: A new characterization of the two-parameter BM O spaces is given.
It is proved that a set A from the two-parameter Hardy space H; is weakly
sequentially compact if and only if the set of the maximal functions of A is
uniformly integrable. We obtain that H; is weakly complete. Using these facts,
we give a new proof for the duality between VMO and H;.

1. Introduction

It is known that a set from L, is weakly sequentially compact if and
only if the set is uniformly integrable (see Dunford and Schwartz [6, p.
294]). Moreover, L, is weakly complete (see [6, p. 290]).

The corresponding results for one-parameter Hardy spaces can be
found in Dellacherie, Meyer and Yor [5] and Long [8]. Every function
from the one-parameter BM O space can be written as a sum of bounded
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functions (see Garsia [7]). With the help of this characterization Long [8]
proved that a set A C H; is weakly sequentially compact if and only if
the set of the maximal functions of A is uniformly integrable. Moreover
he proved that H; is weakly complete.

Coifman and Weiss [4] proved for the classical Hardy spaces that the
dual of VMO is H;. This result for one-parameter martingale spaces is
due to Schipp [11]. The author [13, 15] generalized this for two-parameter
martingale spaces.

In this paper we generalize these results for two-parameter Hardy
and BMO spaces. First we give a new characterization of the two-
parameter BMO spaces, we decompose every BM O function into a sum
of infinitely many bounded functions. The bounded linear functionals
of H; are written in a new, closed form. Then we verify that A C H;
is weakly sequentially compact if and only if the set of the maximal
functions of A is uniformly integrable. We derive that H; is weakly
complete, i.e. if F(f™g) has a limit for all ¢ € BMO, where f™ € H,,
then there exists f € H; such that f converges weakly to f. We prove
also a weaker form of this result: if E(f"g) has a limit for all g € VMO
then there exists f € H; such that f™ converges weakly to f.

In the last section we suppose that every o-algebra is generated by
finitely many atoms. We give a new, functional analytic proof for the
fact that the dual of VMO is H;.

2. Preliminaries and notations

Let (Q, A, P) be a probability space and let F = (F, m;n,m € N)
be a non-decreasing sequence of o-algebras with respect to the partial
ordering on N?. Moreover, let A be the o-algebra generated by F, i.e.
A = o(F). Introduce the following o-algebras:

Faeo = 0(UseoFn i), Foom = 0(UpeogFie,m)-

The expectation operator and the conditional expectation operators rel-
ative 10 Fpm, Fnoo a0d Foom (n,m € N) are denoted by E, By, m, En o
and E m, respectively. We briefly write L, instead of the real or com-
plex L,(, A, P) space while the norm (or quasinorm) of this space is
defined by || f]l, :== (B|f|?)Y? (0 < p < o). For simplicity, we assume
that for a function f € Ly we have E,of = Eonf = 0 (n € N). The
space L will denote the step functions.

We suppose that the condition (Fj;) introduced by Cairoli and
Walsh [3] is satisfied: for arbitrary n,m € N the o-algebras F, o and
Foo,m are conditionally independent relative to F, ,, or, equivalently,
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(F4) En,mf = En,oo(Eoo,mf) = Eoo,m(En,oof) (n7 me N)
for all bounded functions f.

An integrable sequence f = (fnm;n,m € N) is said to be a mar-
tingale if

(i) fam is Fnm measurable for all n,m € N

(i) Exyfom= fxyforallk <nand < m.

For simplicity, we always suppose that for a martingale f we have
fno = fon =0 (n € N). Of course, the theorems that are to be proved
later are true with a slightly modification without this condition, too.

In this paper we suppose that the stochastic basis F is regular,
i.e. there exists a number R > 0 such that fom < Rfacim, fom <
< Rfnm-1 (n,m € N) hold for all non-negative martingales (f, m; 7, m €
e N).

) The easiest example for a regular F is the sequence of dyadic o-
algebras where 2 = [0,1) x [0,1), A is the o-algebra of Borel sets, P is
Lebesgue measure and

kE kE+1 I 141 n m
Fam = 0{ [3m: ) X [ o) 10 k<280 <1 <2},
The stochastic basis generated by bounded Vilenkin systems are also
regular (cf. Weisz [15].
We say that a sequence X = (X, m;n,m € N) is uniformly inte-
grable if

lim sup / | fam| dP = 0.
{Ifn.m|>y}

Y=+ n,meN
The mazimal function of a sequence X = (X, m;n, m € N) is denoted
by X* = sup |Xpml-
n,meN
The martingale Hardy space H, (0 < p < co) denotes the space of
all martingales f = (fy,m;n, m € N) for which

£, = 1£°]l, < oo.

It is proved in Brossard [1, 2] and Weisz [15] that, for all 0 < p < oo,
H, is equivalent to the space generated by the quadratic variation, i.e. by

S(f) = ( Z ’fn,m - fn—l,m - fn,m—-l + fn—-l,m—1|2)1/2-
n,meN .
Moreover, it is known that H, ~ L, for all 1 < p < oo, where ~ denotes
the equivalence of the spaces and norms.
The dual of H; is the BMO space (see Weisz [13, 15]) where BMO
denotes the space of those functions f € Ly for which
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1 £l zaro = SSPP(V £ 00) V2| f — fly < oo

Here the supremum is taken over all two-parameter stopping times and
f¥ denotes the stopped martingale.

For an arbitrary space Z we denote by Z(F, m) the F, , measurable
functions from Z. '

3. A characterization of BMO

In this section we characterize the dual of Hy. Let § = (0p m;n, m €
€ N) be a sequence of functions such that there exist N and M for which

Onm = Onm foral n>N, m<M-1
Onm = On M forall m>M, n<N-1
en,ngN,M for all TLZN, mZ]\/I

- We say that a sequence 6 of this type is in the space H if
16113 := [16*]] < oo.

Now we give the dual of H.

Lemma 1. For all bounded linear functionals | of H there ezist se-
quences (enm;n, M € N), (&r00;7 € N), (bom;m € N) of functions and
a function v such that '

W~ XY +Z|§m| = Z ooml + 91|

n=0 m=0

N-1 [o%)
1) = E(Bnmenm) + D B |fnpi(bnoo + D enm)| +
n=0

m=M

(2) + E[é)N,m(foo,m + i en,m)} +

m=0 n=N

{QNM(Z Z Enm+anoo+ z foom+¢)]

n=N m=M m=M

+
&5

Proof. It is easy to see that if [ is of the form (2) then [ is a bounded
linear functional on H and [|{|| can be estlmated by the right hand side
of (1).

Let [ be an arbitrary bounded linear functional on . It follows
from the duality between L; and L. and from the linearity of [, that
there exist €,m, &nmy Ynym € Lo (n, m € N) such that
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N—-1M-1 N—-1
1(6) = E(Onmnm) + Y E(Onpsbnr) +
n=0 m=0 n=0
(3) M

+ E(OnméNnm) + E(QN MUNM).
m
Writing 0, = sign €nm (n < N —1,m < M — 1), 6, 5 := sign En
(n <N —1), Oy :=sign Eym (m < M —1) and Oy, = sign ¥y s, we
can see that
N-1M-1

H DD lenml+ Z |&n,na] + Z |Exm)| + W;NM]H < |l

n=0 m=0

Il
o

foral NNM eN If N = O then we have

M-1
(5) | > teoml+ lwoad | < f
m=0 oo
The bounded linear functional [ from (3) can be rewritten in
(6)
N-1M-1 N-1 N-1 L-1
= Z Z E n menm + Z E(en,]VIfn,L) + Z Z E(en,MGn,m) +
n=0 m=0 n=>0 ' n=0 m=M
M-1 K-1M— K-1 L-1
=+ EengKm +Z EeNmenm +ZZE‘9NM€nm
m=0 n=N m=0 n=N m=M
K1 L—
+ E(Onnénr) + Z E(Onpérm) + E(On ux.1)
n=N m=M

where K > N and L > M. (3) and (6) imply

L-1
(7) gn,M = fn,L + Z €n,m,
m=M
K-1
(8) EN,m = €K,m + Z €n,m;
K-1 L-1
(9) d)NM wKL+ZZ€n,m+Z£nL+Z§Km
n=N m=M

We can conclude from (4) and (7) that there exists the limit &, 00 :
= th—)oo gn,L and
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(10) lgn,oo - gn,M] S

Similarly, m;M

(11) |§oo,m - gN,ml < Z len,m|-
n=N

Since N and M are arbitrary, (10) and (11) hold for all n,m € N.
We prove now that

K-1 %)
(12) K,lll/gloo Z é-n,L = Z gn,oo-
n=N n=N

Indeed, (4), (5) and (10) imply

%] K-1 K-
Izgn,oo_an,LISZIé_noo fnL|+ZI£noo|<
n=N n=N n=N n=K
K-1 oo [e'e} o0
S z 6n,m' + Z Ign,oo - gn,Ol + Z |£n,0l S
n=N m=L n=K
SZZIEnmI+ZZ|enm[+ZI‘§nO! <9é
n=0 m=L n=K m=0

if K and L are large enough. Similarly,

L—1 oo
(13) Jdm D7 em =D oo
m=M m=M

Substituting (12) and (13) in (9) we get that limg 700 wK’L/: 1) does

exist and
77bN,M = ’(:b + Z Z €n,m + Z fn,oo + Z goo,m-

n=N m=M n=N m=M

This together with (3), (7) and (8) prove (2). In the same way we can
verify that

K-—1 ore)
K}%Elm;'fmﬂ:;vlfnml, im Z|5Km|—2|§ooml

which finishes the proof of (1). ¢
Now we formulate the main result of this section. Its one-parameter
version can be found in Garsia [7] and Long [8].
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Theorem 1. A function g is in BMO if and only if there ezist functions
€n,m> Enyo0r Ecom and Y (n,m € N) such that

(14) g—ZZEnmenm+ZEnw§nw+ZEmmgmw

n=0 m=0

15) oo ~ | 323 lewml + Z 6,00l + Z ool + 14|

n=0 m=0

Proof. It is known that for all g € BMO there exists a bounded linear
functional [ on H;.such that ||!|] ~ ||g||sao and

(16) L(f)=US)=E(fg) (f € L),

where L, is dense in H; (see Weisz [15]). We shall use also the notation
(f,9) == 1,(f) (f € Hy). The subspace Uy menLoo(Fnm), which is dense
in Hy, can be embedded isometrically into #. If g € BMO then the
bounded linear functional { given in (16) can be extended onto # norm
preserving. By Lemma 1 then there exist €, m, &n,00, Eoo,m and ¥ (n,m €
€ N) such that (1) and (2) hold. Since ||| ~ ||gllzmo, (15) is proved.

By (2),

N-1M-1
E(fung) =10) =Y Y E(famenm) +
N-1 " :Lo:O M-1
+ 3 B[ fape(noo + P )] + > B frm(€ooim + Zenm )]+
n=0 =M
+E[fN,M(i 3 amt ign,oﬁ P> fm,mw)]
n=N m=M
S IIETI0 ) Y- +ZEmfm+ZEmfm+w)].
n=0 m=0

Since fy s is arbitrary, (14) is proved.

On the other hand, if g can be written in (14) then €, m, &n 005 £com
and ¢ (n,m € N) give a bounded linear functional on # and hence on
the image of Uy menLoo(Fnm). By the density this yields that E(fw arg)
can be extended to a bounded linear functional on H;. Consequently,
g € BMO. The proof of Th. 1 is complete. ¢
Theorem 2. If g € BMO then there exist €nm, &nocos Ecom and U
(n,m € N) such that (15) hold and the corresponding bounded linear
functional can be written in the form
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Y=Y E(famenm) + ZE(fmfm

(17) ) no=00 m=0
3" E(faoméboom) + E(f)
m=0

where f € H;.

Proof. We apply Th. 1. By (15) the series (14) converges also in L,
norm. Hence, for f € Ly, we have

(f,9)= ZZE f Brngménm) +ZE(fEm£m
n=0 m=0 n=|

+ " E(fBooméoom) + E(f$) = Z Z E(faménm) +
m=0 n=0 m=0
> E(faoone) + Y, Efoomboom) + E(f).
n=0 m=0

In case f € H, is arbitrary, we choose f*¥ € Ly, such that k¥ — fin Hy
norm. Then o o -

(fg) = lim E(f’°9>=k1ggo[zz 5 enm) + D B[ cofineo) +

n=0 m=0 n=
+ Z B(f% méoosm) + E(F9)]

Since | ¥, — faml| < (f* = f)* (n,m € NU {co}), (15) completes the
proof of (17). ¢

4. Weak compactness and convergence in H;

We denote the weak topology in H; by o(Hy, BMO) and the weak™*
topology by o(BMO, Hy). The following lemma can be found in Long
[8, p. 61].

Lemma 2. Let A be a set of sequences X = (Xpm) such that

sup B(X™) < C.
XeA

- Suppose that for all measurable functioins T from Q to N2, Ap = {Xr:
: X € A} is uniformly integrable, where Xr = Zn,meN XnmliT=(n,m)}-
Then A* := {X*: X € A} is uniformly integrable, too.
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Now we show that under some conditions the sum in (17) is uni-
formly.
Lemma 3. Let ¢ € BMO, A C H; and A* be uniformly integrable.
Then for all 6 > 0 there exist Ny and My such that for N > Ny and
M > MO: |

feAa

sup (| 3 Elfamenn) MZE (Fnobneo)] +

+1 Eo_o: B(fooméonim)|) <8,

where €,.m; &nco aNd Eoom appear in Th. 2.
Proof. We prove the lemma for the first sum, only. Since
N-1M-1

> 2 leaml

n=0 m=0

converges to » o> >~ le, | also in measure, for all 7 > 0 there exist
Ny and My such that for N > Ny and M > M, we have

Fxari={w: 32 leaml >8/60)}| <7
where E
Czsup(iugE 'IZZIenml+2l§nml+zlfooml+]¢||| )
€ n=0 m=0

By the uniform integrability of A*,  can be chosen such that
sup / f1dP <§/(6C) i P(F)<n.

feAJF
Thus we obtain for all f € A that

I > E(faménm) ‘ <C * dP+5/(6C)/ f*dP < §/3,

a>N or Fn O\Fn u
m>M

which finishes the proof of Lemma 3. ¢

Lemma 4. Iff’“ is a weak Cauchy sequence of Hy then for all measurable
T:Q N2, fE is weakly convergent in L1

Proof. For all h € L,

B(fhh) = B( 3 frmblg—gumy) = B( 3 Fimenm) = (%,9)

n,meN n,meN
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where €, = Al{r=(nm)} and g := En,mEN Epménm € BMO by Th. 1.
Since (f*, g) converges, we conclude that fk is a weak Cauchy sequence
in L;. The weak completeness of L; (see Dunford, Schwartz [6, p. 290])
shows the lemma. ¢

Theorem 3. A set A C H, is weakly sequentially compact if and only if
A* 1s uniformly integrable.

Proof. The uniform integrability of A* implies that A is also uniformly
integrable. This means that A C L; is weakly sequentially compact in
the topology ¢(L1, L) (see Dunford and Schwartz [6, p. 294]). Thus
for all infinite sequence from A there exist a subsequence (f*) C A and
a function f € L, such that f¥* — f in 0(L1, Leo), i-€. limg_eo E(f*h) =
= E(fh) for all h € Ly It is easy to see that also limy_,eo E(f¥ h) =
= E(fnmh) for all n,m € NU {oo} and h € L. For an arbitrary
g € BMO, Th. 2 and Lemma 3 imply

kli_)yg)(fk = hm (ZZE A m€n,m) Z cobnoo) T

n=0 m=0

- ZE méoom) +E(f’”¢)) =

=35 i Blfktn) + 3 i B e+

n=0 m=0 k=0
+ Z lim B(fo méoom) + B(f) +
m—O
= Z Z E(fn,men,m) + Z E(f”’oogn’oo) -
n=0 m=0 n=0

+ > E(foomboom) + E(f9) = (f,9).
m=0
We only have to show that f € Hy. For any measurable T : Q — N? the
last equatlon implies that

B(fel) = 3 Blfaménm) <sup| 3 Blfimenn)| <

n,meN n,meN
<sup Y E((f)leaml) < C,
keN n,meN
where €, = 8ign fnml{7—(nm)}. Taking the supremum over all T’s we
obtain f c Hl-
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Now assume that A is weakly sequentially compact in o(H;, BMO).
If a subsequence (f*) C H; converges weakly to f, then, by Lemma 4,

E(frh) = (f*,9) — (f,9) = E(frh),
where h € L, is arbitrary. Consequently, Ay is weakly sequentially
compact in o(L1, L), and so Az is uniformly integrable. Since A is
bounded in H;, Lemma 2 shows the uniform integrability of A*. The
proof of the theorem is complete. ¢
Now we can verify the weak completeness of Hj.

Theorem 4. The space Hy is weakly complete, i.e. if f* is a sequence
from Hy such that (f*,g) has a limit for all g € BMO, then there exists
f € Hy such that (f*,9) — (f,9).

Proof. Every f* defines a bounded linear functional on BMO with
equivalent norm || f¥||z,. By the convergence, these functionals are point-
wise bounded. The Banach-Steinhaus theorem implies that they are uni-
formly bounded, thus A := {f*} is a bounded set in H;. It follows from
Lemma 4 that Ar is weakly sequentially compact in o(L;, Ls,). Then
Ar is uniformly integrable and hence A* is also uniformly integrable (see
Lemma 2). Th. 3 yields the weak sequentially compactness of A in
o(H;, BMO). Thus there is a subsequence (f*+) and f € H; such that
(f*,9) — (f,g) forallg € BMO. The proof can be finished as usual. ¢

We formulate a relation between weak and strong convergence in Hj.

Theorem 5. Suppose that the sequence (f*) from Hy converges weakly
to f € Hy. Then the convergence holds in Hy norm if and only if

5up | B oo(f = f*)ll11 = 0.

Proof. The “only if” part is clear. To prove the other part observe that
A = {f*} is weakly sequentially compact in Hy, hence A* is uniformly
integrable (see Th. 2). The convergence f* — f in H; norm follows from
the uniform integrability of A* and from the inequality

P((F = 14" > 6) < 5ll5up | Bnua(f — 14
neEN

Note that this inequality was proved by the author in [15, p. 85]. ¢
Now we verify a weaker version of Th. 4.

Theorem 6. Let Z be the closure of Up men BMO(Fy ) in BMO norm.

If f* is a sequence from Hy such that (f*,g) has a limit for all g €Z,

then there ezists f € Hy such that (f¥,g9) — (f,9).
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Proof. Every f* defines a bounded linear functional on Z. Since

(18) | famllm ~  sup  |(fam, 9)l
geBM T,m)
: llsliBrro <t
for all n,m € N and sup, ey || famllm = || fllm, we have A := {f*}

is again a bounded set in H;. If (f,g) converges for all g € Z then it
converges also for all g € BMO(F, ). By Th. 4 there exists a function
fnm € Hi (n,m € N) such that

(19) (%, 9) = (fam 9) — (fam9) (9 € BMO(Fnm))-

Then <fk’g> = <frlf+l,m’g> — (fn+1,mag> (g € BMO(]:n-f—l,m))- Since
(fk g = (fk,1m»g) for all g € BMO(Fnm), we can see that fam =
= Enmfat1,m. Consequently, f := (fnm) is a martingale. (18) and (19)
imply that

(20) | frsmllz < Csup || fxmlle, < Csupllfllm <C.
keN keN

Thus f € H;. For g € Z we can choose gy € UpmenBMO(Fpm) such
that ||g — gollsmo < 6. Then

(F,9) — (5, ) < I(F, 9) = (F, 90)| + [{Fs o) — (F¥, g0)| +
+ (5 90) — (fE g < e
if k is large enough. The proof of the theorem is complete. ¢

5. The dual of VMO

In this section we suppose that every o-algebra F, ., is generated
by finitely many atoms. Let VMO denote the closure of Un,menL(Fr,m)
in the BMO norm. Recall that L(F,,) denotes the 7, measurable
step functions.

Theorem 7. The dual of VMO is H,.

Proof. It follows from the duality between H; and BMO that every
g € VMO defines a bounded linear functional l;(g) := (f,g) on VMO
with ||I¢|| < C|| fll -

To prove the other side let [ € VMO* be an arbitrary bounded
linear functional. By the Banach-Alaoglu theorem

Y= {k e VMO : ||k < |lI[|}
is compact with respect to the weak*, i.e. the o(VMO*,V MO) topology
(see e.g. Dunford and Schwartz [6, p. 424]). Since VMO is separable,
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the weak™ topology on Y is metrizable (cf. [6, p. 426]). The nat-
ural embedding of H; into VMO* is dense in VMO* with respect to
o(BMO*, BMO) (cf. [6, p. 425]). Hence H; NY is dense in ¥ with
respect to o(VMO*, VMO). From this it follows that there exists a se-
quence (f*) € HiNY such that f* — [ in the o(VMO*, V MO) topology.
In other words, (f*,g) — {I,g) for all g € VMO. By Th. 6 there exists
f € Hy such that (f*,g) — (f,g) for all g € VMO. Hence [ = f.
Moreover, (20) implies that || f||z, < C||l||, which completes the proof. ¢
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