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Abstract: For any pair of n-ary relational systems G, H we consider a certain
power, i.e., an n-ary relational system carried by the set of all homomorphisms
of H into G. The subsystem of the power carried by the set of all strong
homomorphisms of H into G is then taken as the power of G and H with respect
to strong homomorphisms. The obtained binary operation of exponentiation of
n-ary relational systems with respect to strong homomorphisms is studied and
the results are applied to partial algebras.

The category of relational systems of a given (finite) arity with
strong homomorphisms as morphisms does not have products in gen-
eral. Therefore this category is not cartesian closed and hence it does
not have function spaces. Thus, if we introduce an operation of expo-
nentiation for relational systems of the same arity with respect to (i.e.
carried by) strong homomorphisms, it will not have the well behaviour

~which is characteristic for function spaces. Nevertheless, it is desirable
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that the exponentiation have as decent behaviour as possible. To obtain
such an exponentiation, we will start from the cartesian closed topologi-
cal category (see [5]) of reflexive relational systems of a given arity with
usual homomorphisms as morphisms. The subobjects of powers (i.e., of
function spaces) in this category carried by the strong homomorphisms
are then considered to be powers with respect to strong homomorphisms.

By an n-ary relational system, n a natural number, we understand
a pair (X, p) where X is a set, the so called carrier of (X, p), and p C X"
is a subset. As usual when working with n-ary relations, we will not
consider the trivial case n = 1. Thus, we assume that n > 2.

Let G = (X,p), H = (Y,0) be a pair of n-ary relational sys-
tems. A map f: X — Y is said to be a homomorphism of G into H if
(%1, ...y Tn) € p implies (f(z1), ..., f(zn)) € o, a strong homomorphism if,
whenever zi,...,z,—; € X and y € Y, we have (f(z1), ..., f(Tn-1),¥) EC
if and only if there is an elemant z' € X with (z1,...,2Z,-1,2') € p
and f(z') = y. Clearly, a map f : X — Y is a strong homomorphism
of G into H if and only if f is a homomorphism of G into H having
the property that for arbitrary elements z,,...,z,.1 € X andy € Y
such that (f(z1),...,f(Zn-1),y) € o there is an element z' € X with
(z1,... ,Zn-1,2") € pand y = f(z').

We denote by Hom(G, H) the set of all homomorphisms of G into
H and by [G, H| the set of all strong homomorphisms of G into H. If
G, H are n-ary relational systems, then by an isomorphism of G onto
H we understans any bijective homomorphism of G into H for which
the inverse map is a homomorphism of H into G. We write G = H if
G and H are isomorphic, i.e., if there is an isomorphism of G onto H.
An n-ary relational system (X, p) is said to be a subsystem of an n-ary
relational system (Y,0) if X C Y and p = o N X™. Given a pair of
n-ary relational systems G, H, we write G < H if G can be embedded
into H, i.e., if there is a subsystem H’ of H such that G =& H'. We will
denote by x the direct product of n-ary relational systems, i.e., for n-ary
relational systems G = (X, p) and H = (Y, o) we have Gx H = (X XY, 1)
where 7 C (X x Y)" is given by ((z1,%1), .-, (%n, ¥a)) € 7 if and only if
(%1, .. ,2Zs) € pand (y1,...,Ys) € 0. :
Definition 1. Let G = (X, p), H = (Y, 0) be n-ary relational systems.
By the power of G and H we understand the n-ary relational system
(Hom(H, G), ) where 7 C (Hom(H, G))" is given by (fi,..., fa) € 7 if
and only if the implication (y1,...,yn) € 0 = (fi(¥1),--- , fulWn)) € p
is satisfied for any yi,... ,y, € Y. The subsystem ([H,G},7 N [H, G
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of the power (Hom(H,G), ) of G and H is called the power of G and H
with respect to strong homomorphisms.

For any pair of n-ary relational systems G, H we denote by G¥ and
G o H the power and the power with respect to strong homomorphisms,
respectively, of G and H. As usual, an n-ary relational system (X,p) is
said to be reflexive if (z1,... ,z,) € p whenever 27 =z, = ... =z, € X.
Remark 2. For n-ary relational systems the so called direct power
is often considered in the literature - see e.g. [6]. The direct power
of n-ary relational systems G = (X,p) and H = (¥, o) is the m-ary
relational system (Hom(H,G),e) where ¢ C (Hom(H,G))" is given by
(fi,--- . fa) € e if and only if (fi(y),...,fa(y)) € pforeach y € Y.
Especially, if G and H are ordered sets, then the direct power of G
and H is nothing else that the Birkhoff’s cardinal power [1],[2]. Let
(Hom(H, G),7) and (Hom(H, G),¢) be the power and the direct power
of G = (X, p) and H, respectively. Clearly, 7 C & whenever H is reflexive.
In [8] it is shown that ¢ C 7 whenever G is diagonal, i.e., whenever for any
n X n-matrix over X whose all rows and all columns belong to p it is true
that also the diagonal belongs to p. (Clearly, a binary relational system
(X, p) is diagonal if and only if p is transitive.) Hence, the power and
the direct power of n-ary relational systems G and H coincide whenever
G is diagonal and H is reflexive.

It is well known that the category of n-ary relational systems and
homomorphisms is cartesian closed - its powers are obtained from the
powers given in Def. 1 by replacing the set Hom(H, G) with the set of
all maps of H into G. The category of reflexive n-ary relational systems
and homomorphisms is also cartesian closed and, moreover, it is topo-
logical (in the sense of [5]). It means that the category has powers which
are function spaces. By [8], these powers coincide with the powers from
Def. 1. Consequently, the so called first exponential law G#*X =~ (GH)K
is satisfied whenever G, H, K are reflexive n-ary relational systems. It
can easily be seen that the law remains valid also when omitting the
requirement of reflexivity of G. (Evenmore, the first exponential law is
satisfied whenever only K is reflexive. But in this case the natural law
(GH)X = (GX)H need not be valid.) Unfortunately, for powers of (reflex-
ive) n-ary relational systems with respect to strong homomorphisms the
first exponential law is not fulfilled in general. We will find conditions
under which the weaker law G o (H x K) < (G o H) o K is satisfied.
Definition 3. An n-ary relational system (X, p) is called antitransitive
if for any z1,...,%n,y € X from (z1,... ,2,) € p, (Tn,... ,Tn,Y) € p
and (z1,...,%,-1,y) € p it follows that z, = y.
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Example 4. Clearly, a binary relational system (X, p) is antitransitive
if (z,y) € p, (y,2) € pand (z, z) € p imply y = z. For example, let R be
the set of real numbers and let p C R? be given as follows: (z,y) € p & 2
is rational and either z = y or z is irrational with z < y. Then (R, p) is
antitransitive.

Proposition 5. Let G, H be n-ary relational systems. Then

(1) G ¢ H is reflezive,

(2) G o H is antitransitive provided that G is antitransitive and H
is reflezive. ,

Proof. Let G = (X, p), H= (Y,0) and Go H = ([H,G], 7).

(1) Let f € [H,G] be an arbitrary element. As f € Hom(H,G),
there holds (f(y1),...,f(ys)) € p whenever (y1,...,yn) € 0. Hence
(fy...,f) €, ie. GoH is reflexive.

(2) Assume that G is antitransitive and H is reflexive. Let fi,...,

., fn,g € [G, H] be elements such that (fi,...,fn) € 7, (fn,--+ s fn,
g) € 7 and (f1,...,fa1,9) € 7. Then, whenever y € Y, we have
(AW, @) € o (fa®),..., ful¥),9()) € p and (fi(y),...,

s Fa1(¥),9(y)) € p. As G is antitransitive, fn(y) = g(y) for any
y € Y. Hence f, = g, so that G ¢ H is antitransitive. ¢
Theorem 6. Let G, H, K be n-ary relational systems. If G is antitran-
sitive and H, K are reflezive, then Go (H x K) < (GoH) o K.
Proof. Let G = (X,p), H = (Y,0), K = (Z,¢e) and suppose that
G is antitransitive and H, K are reflexive. Put H x K = (Y x Z, k),
Go(HxK)=(HxK,G],)\), GoH = ([H,G],7) and (Go H) o K =
= ([K,G o H), u). For an arbitrary element f € [H x K,G] let ¢(f) :
: Z — XY (where XY denotes the set of all maps of Y to X) be the map
given by o(f)(2)(y) = f(v,2). Let z € Z and (y1,... ,Yn) € o be arbi-
trary elements. Then ((yi,2),...,(Yn,2)) € K (because K is reflexive),

Le. (f(y1,2),. s fyn:2) = (@(F)(2)(W1), -, 0(f)(2)(yn)) € p. Hence
o(f)(2) € Hom(H,G). Let y1,...,Yn—1 € Y and z € X be elements

having the property that (o(f)(2)(31), ... ,©(f)(2)(yn-1),z) € p. Then
(f(y1,2),-- , f(Yn-1,2),z) € p. As f is a strong homomorphism, there
is an element (y', 2') € Y x Z such that ((y1, 2), . .- , (Yn-1,2), (¥, 2')) € K
and f(y',2) = z. Since (Y1, ,Yn-1,Y’) € 0 and (z,...,2,2') €€, we
have ((y1,2);--- s (Un—1,2), (¥, 2)) € k and ((¥',2),...,(¥,2), (¥, 7)) €
€ x (because H and K are reflexive). Now from f € Hom(H x K, G) it
follows that (f(yhz)’ v 7f(yn—17z): f(yla Z)) € p, (f(yla Z), s Jf(yl7z)a
fW',2)) € pand (f(y1,2),. ., f(Yn-1,2), f(¥,2')) € p. Thus, the anti-
transitivity of G results in f(v/,2) = f(¢,2) = z, i.e. o(f)(2)(¥) = z.
Therefore ¢(f)(z) € [H,G]. We have shown that ¢(f) maps Z into
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[H,G]. Let (21,...,2,) € € be an arbitrary element. Then for any
(yh re 7y'n.) € o we have ((ylaz1)7 T (y'n.azn)) € K, hence (f(yls Zl)a vy
- Fa 20)) = @AY )W), -+ 6 () (30)) € p. Thus (o(7) (o).
.., ©(f)(zn)) € 7. Consequently, ¢(f) € Hom(K,G ¢ H).

Let 2z1,...,2,—1 € Z and g € [H, G| be arbitrary elements with
(o(F)(z1), - y0o(f)(2n-1),9) € 7. Let y € Y be an element. Then
((P(f)(zl)(y); ce 790(f)(zn—1)(y)7g(y)) = (f(y7 zl)) v af(ya zn—l); g(y)) €
€ p. As f is a strong homomorphism, there exists an element (y',2') €
€ Y x Z with ((y,21),-..,(%,2n1), (¥, 7)) € & and f(y',2) = g().
Since (y,...,y,Y¥") € o and (21,...,2,-1,2') € €, we have ((y,21),-..,
oo, (U, Zn-1), (¥, 2)) € k and ((y,2'),...,(y,2),(¥,2") €  (because
H and K are reflexive). Hence (f(vy,21),...,f(y,201), f(y,2) € p,
(f(v,2), -, f(y,2), f(y', 2)) € p and (f(y,21), ., f(y, 20-1), F (¥, 2')) €
€ p. Now the antitransitivity of G implies f(y,2') = f(¢,2') = g(v),
ie. o(f)(Z)(y) = g(y). Therefore p(f)(z') = g. We have shown that
o(f) € [K,G o H]. Thus, ¢ maps [H x K,G| into [K,G ¢ H] and it is
evident that ¢ is an injection. ’

Let (fi,.--,fn) € Ay (Y1,---,Yn) € p and (z1,...,2,) € € be
arbitrary elements. Then ((y1,21),. .-, (Yn, 2s)) € £ and we have

(e{f)(z) (), - s o(Fn) () () = (F1(y1, 21); - - 5 Fu(Yms 20)) € p-
Thus (¢(f1)(21), .-, (fn)(2n) (Yn)) € 7, which yields (p(f1), ..., p(fn)) €
€ u. We have shown that ¢ € Hom(Go(H X K), (GoH)<K). Further, let
fi, -, fu € [H X K, G] be arbitrary elements with (o(f1), ..., o(fn)) € L,
and let (y1,21),...,(Uns2s) € k be an element. Then (y1,...,y.) € o,
(21,... ,20) € € and we have (p(f1)(21), ... ,9(fn)(2n)) € T and

(e(f)(2) (1), - - s o(Fn) () () = (filyr, 1), - - 5 (Y 20)) € p-
Hence (f1,...,fn) € A. Therefore ¢ is an embedding of G ¢ (H x K)
into (G o H) ¢ K and the proof is complete. ¢
Corollary 7. Let G, H, K be binary relational systems. If G is anti-
transitive and H, K are reflezive, then Go (H X K) 2 (Go H)¢o K.
Proof. It is sufficient to show that in the proof of Theorem 6 the
map ¢ : [H x K,G] — [K,G ¢ H] is a surjection for n = 2. To this
end, let h € [K,G o H] be an arbitrary element and put h*(y,z) =
= h(2)(y) for any y € Y and 2z € Z. Let ((y1,21), (y2,22)) € k. Then
(21,22) € €, hence (h(z1),h(2)) € 7. Thus, since (y1,42) € o, we
have (h(z1)(y1), h(22)(y2)) € p, i.e. (A*(y1,21), h* (Y2, 22)) € p. There-
fore h* € Hom(H x K,G). Let (y,2) € Y x Z and £ € X be elements
such that (h*(y, 2),z) € p. Then (h(2)(y),z) € p and, as h(z) € [G, H],
there exists ¥’ € Y such that (y,y) € o and h(z)(y’) = z. But then
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((y,2), (¢, 2)) € k and h*(v', 2) = z. Consequently, h* € [H x K,G]. As
clearly ¢(h*) = h, the proof is complete. ¢

Remark 8. a) A reflexive n-ary relational system (X, p) is antitransitive
if and only if for any z,y € X there holds (z,...,z,y) € p= z = v.
Especially, a reflexive binary relational system (X, p) is antitransitive if
and only if it is discrete ( i.e. if and only if p is the equality). Thus, by
Prop. 5, the relational systems G ¢ (H x K) and (G o H) ¢ K in Cor. 7
are discrete.

b) Clearly, if G, H, K are n-ary relational systems, then the first
exponential law Go (H x K) & (G o H) o K is trivially satisfied whenever
the carrier of G is a singleton.

¢) For well-behaved exponentiations also the so-called second and
third exponential laws are valid. Especially, for exponentiation of n-ary
relational systems with respect to strong homomorphisms these laws have
the forms

(1) (2 T1G) o H == T1(G: o H) and
(2) G o (2 [1H:) = TI(G o H)

(where [] and J] denote the direct product and the direct sum).
As projections of direct products of n-ary relational systems need not be
strong homomorphisms, the second exponential law (1) is not valid in
general. So, it is an open problem to find conditions under which the
law (1), or a weaker form of it, is satisfied. On the other hand, the third
exponential law (3) is valid because canonical injections into direct sums
of n-ary relational systems are strong homomorphisms.

In the rest of the paper we will deal with applications of the previous
outcomes to partial algebras.

An n-ary partial algebra (n a natural number) is an (n + 1)-ary
relational system (X, p) such that, whenever z,...,z,,y,2z € X, from
(1,... ,Zn,y) € p and (Z1,...,Zn, 2) € p it follows that y = z. Thus,
it is evident that each m-ary partial algebra is antitransitive. Reflexive
partial algebras are usually called idempotent and some authors (see e.g.
[3]) speak about closed homomorphisms istead of about strong homo-
morphisms of partial algebras.

Remark 9. An n-ary algebra is an n-ary partial algebra (X, p) with the
property that for any z1,... ,2, € X there exists an element y € Y such
that (z1,...,2s,y) € p. Let G be an n-ary algebra and H be an n-ary
partial algebra. If [H,G] # 0, then G ¢ H = G¥. This follows from the
fact that, whenever there exists a strong homomorphism of H into G,
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also H is an n-ary algebra (and hence each homomorphism of H into G
is strong).

Proposition 10. Let G be an n-ary partial algebra and H be a reflezive
(n+1)-ary relational system. Then GoH is an idempotent n-ary partial
algebra.

Proof. Let G = (X,p), H = (Y,0), Go H = ([H,G),7) and let
fl)"' 7fnag7h € [H7G] Let (fl;"' ;fnag) €T, (fl)"' afn:h) €T
and let y € ¥ be an arbitrary element. Since (y, ... ,Y) € o, we have
(fl(y)7 s 7f71(y)7 g(y)) €p and (fl(y); v 7fn(y)7 h’(y)) € p. Conse-
quently, g(y) = h(y). Hence g = h, so that G o H is a partial algebra.
The idempotency of G ¢ H follows from Prop. 5. ¢

Th. 6 and Prop. 10 result in
Corollary 11. Let G be an n-ary partial algebra and H, K be reflezive
(n+1)-ary relational systems. Then G o (H x K) and (G o H) o K are
idempotent n-ary partial algebras with G o (H x K) < (Go H) ¢ K.
Remark 12. a) By Cor. 7, if G is an unary partial algebra and H , K
are reflexive binary relational systems, then Go (H x K) and (GoH)o K
are isomorphic idempotent unary algebras.

b) The problem of the validity of the first exponential law GH*K =~
= (GH)X for powers of n-ary partial algebras with respect to homomor-
phisms is dealt with in [7] where some cartesian closed subcategories of
the category of n-ary partial algebras and homomorphisms are found.
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