Mathematica Pannonica
10/2 (1999), 197-209

NEAR-RINGS WITH A SPECIAL
CONDITION ON IDEMPOTENTS

H.E. Heatherly

Department of Mathematics, University of Southwestern Louisiana,
Lafayette, Louisiana 70504, U.S.A.

J.R. Courville

Department of Mathematics, University of Southwestern Louisiana,
Lafayette, Louisiana 70504, U.S.A.

Received: April 1998
MSC 1991: 16 A 76

Keywords: Zero-symmetric near-ring, centralizer near-ring, von Neumann reg-
ular near-ring, idempotent, property Zd.

Abstract: Many of the properties enjoyed by idempotents in rings do not
carry over into the theory of near-rings. (”Near-ring” in this paper means a
left, zero-symmetric near-ring with identity.) This paper examines a subclass of
near-rings in which idempotents behave in much the same fashion as in rings.
A near-ring N has Property Zd if for each idempotent e and each element z,
(1 —e)z = z — ex. Several equivalent formulations are given in terms of right
annihilator sets and principal N-subgroups. Examples are given and processes
for constructing further examples via direct products, homomorphic images,
and sub-direct products are developed. Property Zd is shown to distinguish
between various types of near-ring building blocks, for example: near-fields,
which have Property Zd, and certain centralizer near-rings which do not. These
results are applied to 2-primitive and semisimple near-rings. If N has Property
Zd, then an idempotent e in IV is central if either of the following conditions
holds: (i) e commutes with all idempotents, (ii) e commutes with all nilpotent
elements; if every idempotent satisfies (i) (or(ii)) and N is also von Neumann
regular, then NNV is a sub-direct product of near-fields. A program analogous to
von Neumann's for regular rings can be carried out for regular near-rings with
Property Zd: every principal N-subgroup is a right ideal and a direct summand;
finitely generated N-subgroups are principal; and with an additional technical
hypothesis, the set of principal N-subgroups form a complemented, modular
lattice. This opens up the possibility of connections with continuous geometries
and certain algebras of operators.
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1. Introduction

Many of the properties enjoyed by idempotents in rings do not
carry over into the theory of near-rings. For example, the following three
properties are trivial in rings, yet need not hold in near-rings, as Example
3.1 will illustrate:

(i) e is an idempotent if and only if 1 — e is an idempotent;

(ii) the only element which annihilates both e and 1 — e is zero;

(iii) if e is an idempotent, then (1 —€)e = 0.

This paper examines a subclass of near-rings in which idempotents
behave in much the same manner as their ring counterparts. (In this pa-
per near-ring will always mean left, zero-symmetric near-ring with iden-
tity; unless otherwise specifically stated the terminology used will con-
form to that in [12].).

This is the class of all near-rings N such that (1 —e)z = z — ez,
for each z € IV and each idempotent e € N a near-ring in this class is
said to have Property Zd. In Section 2 illustrative examples and basic
results for near-rings with Property Zd are given.

It is of interest to ask what important classes of near-rings do not
enjoy Property Zd. In Section 3 the idempotents in the centralizer near-
rings, Mg ('), where G is a group of fixed-point-free (f.p.f) automor-
phisms on the group (I, +) are described explicitly in set theoretic terms
and from this it is seen that these near-rings do not have Property Zd
except in certain very special cases. Consequently we obtain results con-
cerning 2-primitive near-rings with Property Zd.

In Section 4 von Neumann regular near-rings with Property Zd are
considered. In a near-ring V of this class the set of principal N-subgroups
is closed under addition and hence very finitely generated N-subgroup
is principal; each principal N-subgroup is a right ideal (in fact an anni-
hilator) and is a right ideal direct summand. With the addition of an
extra technical hypothesis it is then shown that the set of N-subgroups
is closed under intersection. This establishes a strict analogy with the fa-
mous von Neumann result that the principal right ideals of a regular ring
form a complemented modular lattice. It is shown that regular near-rings
without Zd need not have these extraordinary properties.

We use rn(S) = {m € N : Sm = 0}, for the right annihilator
of the subset S of the near-ring N. If no ambiguity will arise, we use
simple r(S).
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2. Property Zd

The subclass which we are led to examine is called to our attention
by the following:

Proposition 2.1. Let e be an zdempotent in a near-ring N. The follow-
ing are equivalent:

(2.1.1) r(e)Nr(l—e) =0 and (1—e)e =0,

(21.2) (1 —e) =eN,

(2.1.3) (1 —e)z = —ex +x for each z € N,

(214) (1—€)z =z — ex for each z € N.

Proof. First observe that 1—e is an idempotent if and only if (1 — €) e =
= 0. Then, given (2.1.1), e €r(1 —¢) and hence eN Cr(1—e). If z €
€r(l—e),thene(z—ex)=0=(l1—¢€)(zr—ex) and z —ex € r(e) N
Nr (1 — e) = 0; hence £ = ez € eN.

Given (2.1.2),e=e? € eN =1 (1 —e) and so (1 — e) e = 0; conse-
quently 1—e is also an idempotent . For any z € N, since (1 — €) [z—(1—
—e)z] = 0, it follows that  — (1 —e)z € r(1 —e). Thus there exists
y € Nsuchthatey =z—(1—e)z;butey =e?y =efz — (1 — ) z] = ex.
Hencez — (1 —e)z=ezxor —ez+z=(1—e)z.

Given (2.1.3), we have (1 —e)e = —e2+ e = 0 and if z € r (e) N
Nr (1 —e),then 0 = (1 —e)z = —ez+z = z. The implication (2.1.4)=>
== (2.1.1) follows similarly. Noting that (2.1.1), (2.1.2), and (2.1.3)
have been shown to be equivalent, the proof is concluded by show-
ing that (2.1.1)== (2.1.4). Note that e[(—ez + z) — (z — ez)] = 0 and
(I-e)(-ez+z)~(z—ex)] = —(1—elez + (1 —e)z — [(1 — )z —
—(1-e)ez]=0—ex+z—[-ez+2—0]=0.So (—ex +1z) — (z — ex) €
€r(e)Nr(l—e)=0and hence s —ez = —ex+z= (1 —¢€)z. O

The near-rings for which (2.1.1)—(2.1.4) hold for each idempotent e
are exactly those with Property Zd. For brevity we say ” N is a near-ring
with Zd”.

Corollary 2.2. If e is an idempotent satisfying (2.1.1) through (2.1.4),
then

(221)1—-(1—-e)=eand 1 —e=—e+1,

(2.2.2) 1 — e is an idempotent satisfying (2.1.1) through (2.1.4).
Consequently, e is an idempotent satisfying (2.1.1)~(2.1.4) if and only if
1 —e is also. ‘
Proof. Since e[l — (1 —¢)—e]=0and (1—¢€)[l—(1—e) —¢] =0, it
follows that 1 — (1 —e) —e=0,or1—(1—e)=ecand 1 —e= —e + 1.

Using (1 —e)e = 0 we have that 1 — e is an idempotent. From
(2.2.1), [1 - (1 — e)]z = ex for each z € N. However, — (1 —e)z +z =
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= —(z—er)+z=er;s0[l—(1—e€)]z=—-—(1—-e)z+zand 1l —e
satisfies (2.1.3).

Conversely, if 1 — e satisfies (2.1.1)—(2.1.4), then by the previous
argument 1— (1 — e) is an idempotent satisfying them also. Using 1—e as
the idempotent in (2.2.1) we have 1—[1 — (1 —e)] = 1—e, or 14+1—e—1 =
=1—e, and hence 1 — e — 1 = —e; transposing we get e =1 — (1 —e).
Thus e satisfies (2.1.1)—(2.1.4). ¢

If N has Zd, then for each idempotent e € N, the Peirce decomposi-
tion becomes: N = eN®(1 —e) N, withr(e) = (1 —e) N,r(1 —e) =eN,
and e and 1 — e are orthogonal idempotents. Elementwise, m = em +
+ (1 — ) m, for each m € N, which does not hold for near-rings in gen-
eral. Observe that the Peirce decomposition is now a direct sum of right
ideals of N, and in particular one obtains a group direct sum instead of
just a semidirect sum. Note that if a near-ring N has a Peirce decompo-
sition as just described, for each idempotent e, then N will have Zd.

Near-rings without proper idempotents (i.e. the only idempotents
are 0 and 1) trivially have Property Zd. This includes near-fields, integral
near-rings, and local near-rings, (Maxson [9] showed that local near-rings
have no proper idempotents. He also gave various examples of local near-
rings in [10], [11]). It is worthwhile to recall that there are integral d.g.
near-rings which are neither fields nor rings.

The construction in the next example illustrates that there are near-
rings with Zd which are relatively rich in idempotents.

Example 2.3. Let R be a commutative ring with identity and let M be
the set of all formal power series over R whose lead coefficient is zero,
i.e., those of the form a;z+apz?+----- . If one defines addition pointwise
and multiplication to be composition, i.e., (z) po g = ((z)p)g, then
(M, +,) is a left zero-symmetric near-ring with identity. The subset M*
of all polynomials is a subnear-ring with the same identity element. Let
My, k = 1,2, ..., be the set of all elements of M whose coefficients up
through that of z*~! are zero. The M are ideals of M. Similarly define
the subsets M} of My; these are ideals of M*. A routine calculation shows
that the idempotents in M and M* are exactly the elements of the form
exr where e is an idempotent in R. From this point it is easy to see
that M, M*, and each of the factor near-rings M/M; and M*/M; have
Property Zd. In order for these examples to have many idempotents, just
choose R to be rich in idempotents; for example, take R to be Boolean.

From the examples given so far, and using the basic constructions
to be discussed in the remainder of this section, one can build a large
assortment of near-rings with Zd. It is worthwhile to consider the class,
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Zd, of all near-rings with Zd. We show Zd is closed under direct products,
finite direct sums, and certain other processes. Observe that the class of
all rings (with unity ) is in Zd. Since a Boolean near-ring with unity is
a ring, [14, p.300] , all such near-rings are in Zd. Of course, our main
interest is in near-rings that are not rings.
Proposition 2.4. Let ® : N — N be a surjective near-ring homomor-
phism. If N has Id and if every cyclic subsemigroup of (N,-) is finite,
then N has Id. In particular, every homomorphic image of a finite near-
ring with Zd is also a near-ring with Zd.
Proof. Let u® be any idempotent in N, with u® =# 0. Since the mul-
tiplicative semigroup generated by wu is finite, and since u cannot be
nilpotent, some power of u is a nonzero idempotent. Let e be that idem-
potent and observe that u® = e®. For any Z = 2® in NV, we then have:
(T-c®)Z=(19—ed)(zd) = (1 —€) 1) P = (z — ex) b = 2B —eDzd.
So N has Zd. ¢
Question 2.5. Is Zd closed under homomorphisms? The obstacle to
using the proof scheme used in Prop. 2.4 is that new idempotents may
be created in the image, and these might not lift.
Proposition 2.6. Let N;,i € I, be near-rings. The direct product N =
= 1IN, © € I, has Property Zd if and only if each N; has Property Td.
Proof. If each N; has Zd, then using the notation < z; >= z for the
elements in the direct product, given any idempotent e =< e; >, each e;
is an idempotent in N; and (1; — e;) z; = z; — e;z;, which implies that
(1—e)z = =z — ez and hence N has Property Zd. Conversely, if N
has 7d, note that in the pre-image of an idempotent e; under the j-th
projection mapping on N = IIN;, there is the idempotent e =< §; >,
where 6; = 0, if 4 # j, and 0; = e. Then from (1 —e)z = z — ez one
obtains (1; — e;) z; = z; — e;z;, for each z; € N;, by applying the j-th
projection. ¢

Using similar arguments involving projection mappings we obtain
the next two results.
Proposition 2.7. If N is a subdirect product of near-rings with property
Zd, and N has an identity, then N has property Zd. In particular, a finite
direct sum of near-rings with Zd has Zd itself.
Proposition 2.8. Every direct summand of an near-ring with Zd also
has Zd. ‘

Subnear-rings containing the identity of a near-ring with Zd must
have Td themselves. Of course in general Zd is not inherited by subnear-
rings.
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Proposition 2.9. Let N be a near-ring with Id.

(2.9.1) If S is a subnear-ring of N and S contains the identity for
N, then S has Zd.

(2.9.2) If T is N-subgroup of N and the semigroup(T,-) has a left
identity, u, then T =1y (1 —u) and T is a right ideal direct summand
of N. Consequently, T is a normal subgroup of (N,+).

Proof. (2.9.1) This part is immediate.

(2.9.2) Observe that S = uN. (This does not depend on Zd). Then
using Property Zd we obtain S = ry (1 — ), and the rest follows imme-
diately. ¢

We next show that several ring theoretic properties of idempotents
hold for near-rings with property Zd, but that these properties do not
hold in general for zero-symmetric near-rings with identity.
Proposition 2.10. Let N be a near-ring with Property Zd and e an
idempotent in N. Then:

(2.10.1) ez =ze ifand only if (1 —e)z=z(1 —¢);

(2.10.2) if e commutes with all nilpotent elements in N,then e is
central; and

(2.10.3) if e commutes with all idempotents in N, then e is central.
Proof. (2.10.1) If ez = ze, then Property Zd implies (1 — e) z = z—ex =
=z—ze =12 (1—e). Now 1 —eis also an idempotent so that (1 —e)z =
=2z(l—e)implies[1-(1—-¢)Jz=z[l—(1—e);butl1—(1—€)=e
since NV has Zd.

(2.10.2) Let © € N. Observe that [ex (1 — €)]> = 0 = [(1 — &) ze]®.
Thus ex — eze = ex(1—e) = elex(l —¢€)] = [ex (1l —e)]e = 0 and
similarly ze — eze = 0. Hence ex = exe = ze and e is central.

(2.10.3) First we show that e+ (1 — €) ze is an idempotent for each
xz € N. Since N has Property Zd, it suffices to show that [e + (1 —
—e)ze]?> — [e + (1 — €) ze] is a right annihilator of both e and 1 — e. The
argument is a calculative one quite similar to that for rings because of
the properties of near-rings with Zd. Since 1 — e is an idempotent and
1 — (1 — e) = e, the argument is symmetrical in e and 1 — e and it then
follows that (1 — e) + ez (1 — e) is also an idempotent.

Since e[(1 —€) + ez (1 — e)]e = 0 and e commutes with the idem-
potent 1 — e + ez (1 — e), we have

O0=e[l—e)+ezx(l—¢e)=ex(l—e)=ex—exze.
So ez = eze. By (2.10.1) we see that the argument is symmetrical in e

and 1 —e; that is, (1 — e) ze = 0. So again invoking Property Zd we have
ze — exe = 0 and hence ze = exe = ex.
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Corollary 2.11. Let N be a near-ring with Id, then e € N is a central
idempotent if and only if 1 — e is a central idempotent.

Further examples showing that properties (2.10.1)~(2.10.3) do not
hold in general for zero-symmetric near-rings with identity can be found
in Clay’s tables on near-rings defined on the dlhedral group of order eight
(3, Table 3 p.256].

3. M¢(T') and 2-primitive near-rings

In this section we consider the centralizer near-rings of the form

Mg (T'), where (G, o) is a group of fixed-point free automorphisms on a
group (I', 4+) . These are well-known for the role they play in the structure
developed in terms of 2-primitive near-rings and the radical J, Here we
describe in set theoretic terms all of the idempotents in such Mg (),
and then use this to show that such near-rings are ”almost never” in Zd.
We then use the results obtained to obtain the structure of 2-primitive
near-rings with Property Zd.
Example 3.1. Recall that an idempotent e in M, (') is completely and
uniquely determined by a subset ® of I which contains zero (this subset
being the fixed points of e) and a mapping f : A — ®, where A is the
set complement of @ in I'. With this in mind we turn to the idempotents
in Mg (T).

Let G be a group of f.p.f. automorphisms on (T, +). Define ® to be
the union of the orbit {0} and at least one other orbit of G. Let A be the
complement of @ in I'. Define we = ¢ for each ¢ € ®. Given any orbit
O, C A, choose some representative A\, € O, and choose B, € ®. Then
define e on O, as (gA;) e = g8,, g € G. This will be well-defined on all
of O, because G, = O, and G is a group of f.p.f. automorphisms on
(I',+). This defines e on all of T. It is easy to see that e is an idempotent
and is in Mg (I') . Note that in order to obtain an idempotent different
from the identity G must have at least three orbits in I'.

Conversely, let e be an idempotent in Mg (T'), e # 0,1. Since e €
€ My (I') we select the set ® of fixed points of e and the complementary
set A. If v, 72 € I are equivalent with respect to the equivalence relation
induced by G on I', written ; ~ 75, then there exists g € G such that
g7 = 72 and consequently ye = (g71) e = g(m1€), or 1ae ~ yie. Given
p € D, for any g € G, (gp) e = g (pe) = gp; so gy is also a fixed point.
Thus @ is a union of orbits and A is the union of the remaining orbits.
If O is any orbit contained in A , select Ay € O. Then Me = §, € ®.
For each A € O, there exists a unique g € G such that gAg = \. Then
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Xe = (gho) e = g(Moe) = gfo. Thus all of the idempotents are uniquely
described by specifying ®, the orbits contained in the complementary set
A, and by choosing a representative element from each orbit contained
in A and its image in ®.

Proposition 3.2. If G is a group of f.n.f. automorphzsms on (T, +)
and G has ot least three orbits on I', then Mg (I') does not have Property
Id. Consequently, if |T'| > 3, then Mo (T") does not have Property Id.
Proof. Let {0}, 0;, O, be distinct orbits of G on I'. Define e as follows:
let O;U{0} = ®, the set of fixed points of e, and let A be the complement
of ® in I'; then O, C A. Choose Ay € Op and fy € O; and define
(gho)e = gBo for each g € G. Finally if O; is any other orbit of G
contained in A select a representative \; € O; and any non-zero §; € @
and define (g)g)e = gf, for each g € G. As we have seen this defines
an idempotent e in Mg (T') . Note that e # 0,1 and that ye = 0 implies
4 = 0. From the construction, Ag — Aoe # 0 and hence (Ao — Ae) e # 0.
However, if Mg (T") has Property Zd, then 0 = Xg (1 — €) e = (Ao — Age) €.

Taking G = {1r} we obtain that M, (I') does not have Property Zd
if |IT'| >3. ¢

Note that if G has only two orbits on I, then the only idempotents
are 0 and 1 and in this case Mg (I') does have Property Zd.

Example 3.3. Recall that if (I', +) is a finite simple, nonabelian group,
then My (I') = E (T') . This yields a large class of examples of d.g., near-
rings which are von Neumann regular and simple, but do not have Prop-
erty Zd. This is in sharp contrast to what happens for rings.
Proposition 3.4. Let N be a 2-primitive near-ring with d.c.c. on right
ideals. If N has Property Zd, then either N is a ring or N is a near-field.
Consequently (N,+) is commutative.

Proof. If N is not a ring, then N = Mg (T'), where G is a group of
f.p.f. automorphisms on the group (T',+),[1,2.5],[12, Th. 4.16]; also N
contains a non-zero idempotent e which is itself contained in a minimal
right ideal K. Since N = Mg (I') has Property Zd, e = 1 and hence
K =N.

If f € N and v € I — {0}, then vf = 0 implies I'f = 0; however,
the set of all f which annihilate T is a right ideal of N and hence must
be zero . So for an arbitrary f € N and an arbitrary v € I' — {0}, define
vf =B #0. Let o € I' — {0}, then there exists g € G such that g8 = o.
Soo =gB8=g(vf) = (¢97) f and f is surjective. So very element of
the multiplicative monoid N — {0} = Mg (I') — {0} has a left inverse
and consequently the monoid is a group. This establishes that NV is a
near-field; the commutativity of addition of such is well-known. ¢
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Corollary 3.5. Let N have Property Zd . If N has d.c.c. on right ideals
and J, (N) = 0, then N = A® B, where A is a semi-simple Artinian
ring and B is a finite direct sum of near-fields.

Proof. This follows immediately from 2.8, 3.4, and standard results on
semi-simple rings or near-rings. ¢

Observe that N such as given in 3.5 always have commutative ad-
ditive group. Also, if in 3.5 N is assumed to be d.g., then N is a ring,
since d.g. near-fields are skew-fields.

From 3.2-3.5 we see where not to look for near-rings with Zd. From
another viewpoint, Property Zd distinguishes between two important
classes of simple near-rings: the near-fields, which have Zd, and cer-
tain Mg (T'), especially the My (I'), which do not. A question still to be
resolved is which Mg (I'), G a group of automorphisms on I' or more
generally a monoid of endomorphisms on I', have Property Zd.

4. Von Neumann regular near-rings with Zd

Von Neumann regular near-rings, the strict analog of von Neumann
regular rings, have been considered in some detail (see Pilz [14, p.330],
or the most recent Near-Ring Newsletter containing a full bibliography).
In this section a near-ring version of von Neumann’s theorem concerning
the lattice theoretic structure for the.principal right ideals of a regular
ring will be developed. For brevity we shall use the term regular in place
of von Neumann regular.

An N-subgroup S of a near-ring N is said to be a principal N-sub-

group if § = N, for some z € N.
Proposition 4.1. Let N has Property Id. Then N 1is reqular if and
only if every principal N-subgroup is a direct summand as a right ideal.
Proof. It is well known that even without the assumption of Property
Zd, N is regular if and only if very principal N-subgroup is generated
by an idempotent [2]. So given any principal N-subgroup eN, one uses
property Zd to write N =eN @ r (e), where eN =r (1 —¢€), as a direct
sum of right ideals. Conversely, assume every principal N-subgroup is a
direct summand as a right ideal. For any x € N, N = zN & I, where
zN and I are right ideals of N. Write 1 = zy + 2z, where y € N,z € I.
Since the sum comes from the direct sum of right ideals we have z =
= (zy + 2) z = zyz + 2. But 20 = —zyz +z € =N and 2z € I because
I is a N-subgroup. So zz = 0 and z = zyz. Thus N is regular. ¢

Observe that in a von Neumann regular near-ring with Zd very
principal N-subgroup is a right ideal and an annihilator set.
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Example 4.2. A principal N-subgroup of a regular near-ring need not
be a direct summand as a right ideal; in fact it need not even be a right
ideal. Let f € My (Z;) be defined by vf = 0if y = 0 and 4f =1
otherwise. Then M, (Zs) is a principal My (Z3) subgroup in the simple
regular near-ring M, (Z;) . However, it is not a right ideal.

Note that it is indeed right ideals which are the natural objects
to consider and not normal N-subgroups because right ideals are sub-
modules in the near-ring module Ny and hence behave correctly with
respect to /N-homomorphisms, whereas normal N-subgroups need not
do so. However, by invoking property Zd we do get some of the desired
behavior for N-subgroups, as the next results show.

Proposition 4.3. Let N be a near-ring with the property that if N =
= N1 @ Ny as a direct sum of normal N-subgroups, then N; and N,

have property Id. If N satisfies either d.c.c. on a.c.c. on N-subgroups,

then N is a finite direct sum of normal N-subgroups, each of which is a
near-ring with no proper idempotents. Furthermore, if N is reqular, then
each of the direct summands is a near-field, and tonsequently (N,+) is
commutative.

Proof. By hypothesis NV has Zd. If N has no proper idempotents we
are finished. Otherwise, there exists a proper idempotent e such that
N=eN®&(l1—e)N, and eN =ry(e),(l —e)N = ry(e). Thus eN
and (1 — e) N have Zd. Because of symmetry we can deal just with eN.
So eN has Zd and hence has a two-sided identity, which must be e.

Apply the decomposition process to the near-ring eN. Note that if R is
a right eN-subgroup direct summand for eV, then R is normal in (N, +)

also. If r € Rand n € N, then rn = (re)n = r(en) € R; so Ris a
N-subgroup. Thus the repeated use of the decomposition process must
eventually terminate under the assumption of either chain condition on
N-subgroups. Complete termination occurs when all summands have
no proper idempotents and then can no longer undergo a proper Peirce
decomposition.

If N is also regular, then for any non-zero, non-identity m in a given
summand M, (of the decomposition given above) there exists a € M such
that ma and am are idempotents and mam = m. So ma = am = 1y
and hence M is a near-field. Since the additive group of a near-field is
commutative and (N, +) is the direct sum of these commutative groups,
we have (N, +) is commutative. ¢

The question is opened as to whether normal N-subgroup can be
replaced by right ideal in Prop. 4.3. In the situation where right ideal
direct summands are themselves near-rings with Zd one can show that
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eN and (1—e) N are orthogonal. In attempting to push through the
proof of 4.3 in this case the difficulty is that a right ideal direct summand
of eN need not be a right ideal of NV itself. This serves to further illustrate
the limitations on ring theoretic-like techniques in studying near-rings.
Proposition 4.4. If N is a regular near-ring with Td, then the sum of
any two principal N-subgroups of N is again a principal N-subgroup.
Proof. Without loss of generality consider e; NV, e, N where e; and ey are
idempotents. Then e;N =ry (1 —¢;),i=1,2and N = e,N @ ry(e;).
Thus e; N + es N is a right ideal and an N-subgroup. Write ey = ejeq +
+ (1 —e1) ey. For any z,y € N, e1z + epy = e17 + leres + (1 — ;) e .
Since the two terms in the bracket are from different right ideal direct
summands, [eie3 + (1 — e1)es]y = ereqy + (1 — e1)ezy and €1z + ey =
=eiex+erey+ (1—er)eay = er(ea+exy) + (1 —e1)epy. Soe;N+e,N C
C e;xN+(1—eq)eaN. Foreach z,t € N, e1z+(1—e1)ext = e1z—eeqt+eqt,
using Zd, and hence e;z + (1 — e1)est = e;(z — eyt) + eqt, or ey N +
+ (1 —e1)eaN C eyN + e, N. Hence e; N + (1 — e1)eaN = e, N + ey N.

There exists a € N such that [(1—e;)eo]a[(1—€;1)ez] = (1—e;)e, and
€y = (1 — e1)eqa is an idempotent. Then ejey = 0 and e} € r(e;). Also,
(1 —ei)eaN = €jyN,s0eyN+eyN = ey N+e,N. Let b = —eser+er+eh =
= (1 — e3) e+ €}. Then for each z,y € N, by using Zd and the fact that
elements distribute over sums from distinct right ideal direct summands
we have:

blerz + egy) = berx + beyy = [(1 — €h)es + ehlerz + [(1 — €))es +
teslesy = [(1 - e)ers + eher] + [(1 ~ ep)erehy + ehehy] = e1z + ehy.
So e;N + e, N C bN. Now for each n € N,
bn=[(1—-ey)e; +eyln= (1 —ey)ein +eyn =
= e1n — ese1n + e4n = en + eh[—ein + ).

This establishes that e;N + e, N = bN and hence ;N + e N = bN.¢O
Corollary 4.5. If N is a regular near-ring with Zd, then any finitely
generated N-subgroup is a principal N-subgroup.
Proof. This follows from 4.4 by induction on the number of generators.¢
Observe that the sum of two principal M, (I')-subgroups of M, (")
need not be a principal M (T')-subgroup; the M, (T') are regular near-
rings [2].
Proposition 4.6. Let N be a regular near-ring with Property Td. If for
each two element set S of N, ry (S) is a principal N-subgroup, then the
principal N-subgroups of N form a complemented modular lattice with
respect to addition and intersection.
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Proof. Let L(N) be the set of principal N-subgroups of N. From
4.4 it is closed under addition. Closure under intersection follows from
the hypothesis on the ry (S). So L(N) is a sublattice of the lattice
of all normal subgroups of (IV,+) and hence it is modular. That it is
complemented follows from 4.1. ¢

The condition on the r (S) is clearly a blemish to be removed. Nev-
ertheless, 4.6 raises hope that an interesting and fruitful connection be-
tween regular near-rings and lattice theory, continuous geometries, and
certain algebras of operators can be established in a manner analogous
to that for von Neumann regular rings. This might prove useful in the
development of quantum mechanics based on nonlinear operators.

Certain paths are definitely closed, however. For convenience call
a class of near-rings sterile if all of its members are rings. Then several
classes which one might wish to investigate in relation to regular near-
rings are sterile, for example: *-regular near-rings, Baer *-near-rings,
von Neumann near algebras, and near rings of matrices over a regular
near-ring. The sterility of the first three classes follows from the fact
that a zero symmetric near-ring (not necessarily with identity) supports
an involution only if it is distributive [6], and a distributive near-ring
which has an identity is a ring. The sterility of the latter class becomes
apparent when one notes that (i) for n > 1, the set of n X n matrices
over a near-ring N (zero symmetric, but not necessarily with identity)
is itself a near-ring only if N is n-distributive [8]; and (ii) a regular n-
distributive near-ring is a ring [5]. (The phrase “matrices over a near-
ring” refers to the concept as used in [5] and [8], not to the construction
due to Meldrum and Van der Walt [13]). In a subsequent paper we
will show how the barrier erected by the involution-identity-regularity
contretemps can be circumvented to some extent to obtain near-ring
versions of certain "ring-of-operator ” type results. One method to be
used is the more general definition of involution found in [4]. Another
possible route is to use structural matrix near-rings.

It is easy to see that a subdirect product of regular near-rings with
Property Zd has Property Zd. So, in particular, a subdirect product of
near-fields is a regular near-ring with Property Zd. In the next proposi-
tion a converse is given which improves upon that found in {7, Th. 4.4].

Proposition 4.7. Let N be a regular near-ring with Property Zd, As-
sume either of the following hold:

(4.7.1) Every idempotent commutes multiplicatively with every other
idempotent,
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(4.7.2) Every idempotent commutes multiplicatively with every nilpo-
tent element.

Then:

(a) if N is subdirectly irreducible, then N is a near-field;
) N is isomorphic to a subdzrect product of near-fields and hence
s commutative;

(b
(N, +) i
(c) if N is d.g., then N is isomorphic to a subdirect product of skew

fields.

Proof. From 2.10 every idempotent of N is central. A subdirectly
irreducible regular near-ring whose idempotents are central is a near-
field [11]. Since every near-ring is isomorphic to a subdirect product of
subdirectly irreducible near-rings, (b) follows immediately. Since d.g.
near-fields are skewfields, (c) follows from (b). ¢

References

[1] BETSCH, G.: Some structure theorems on 2-primitive near-rings, in: Collo-
quia Mathematica Societatis Janos Bolyai, 6. Rings, Modules, and Radicals.
Keszthely (Hungary), 1971, 73-102.

[2] BEIDLEMAN, J.C.: A note on regular near-rings, J. Indian Math Soc. 33
(1969), 207-210.

[3] CLAY, JR.: Research in near-ring theory using a digital computer, BIT 10
(1970), 249-265.

[4] HEATHERLY, H., LEE, E. and WIEGANDT, R.: Involutions on univeral al-
gebras, in: Near-rings, Near-fields, and K-Loops, G.Saad and M. J. Thomson
(eds), Kluwer, 1997, 269-282.

[5] HEATHERLY, H. and LIGH, S.: Pseudo-distributive near-rings, Bull. Austral.
Math. Soc. 12 (1975), 449-456.

[6] JONES, P.: Distributive near-rings, M.S.Thesis, Univ. Southwestern Louisiana,
Lafayette, 1976.

[7] LIGH, S.: On regular near-rings, Math. Jap. 15 (1970), 7-13.

[8] LIGH, S.: A note on matrix near-rings, J. London Math. Soc. (2) 11 (1975),
383-389.

[9] MAXSON, C.J.: On local near-rings, Math. Z. 106 (1968), 197-205.

[10] MAXSON, C.J.: On the construction of finite local near-rings I. On non-cyclic
abelian p-groups. Quart. J. Math Oszford (2) 21 (1970), 449-457.

[11] MAXSON, C.J.: On the construction of finite local near-rings II. On non-abelion
p-groups. Quart I math. Ozford (2) 22 (1971), 294-298.

[12] MELDRUM, J.D.P.: Near-rings and their links with groups, Res. Notes in Math.
134, Longman, London, 1985.

[13] MELDRUM, J.D.P. and VAN DER WALT, A.: Matrix near-rings, Arch. Math.
47 (1986), 312-319.

[14] PILZ, G.: Near-rings, revised edition, North Holland, Amsterdam, 1983.






