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Abstract: Recently, [18] we have introduced the rectangular (*-rectangular)
modulus of a normed space X. It is a convex function strongly related to some
known constants of X. The aim of this paper is to characterize some geometric
properties of normed spaces in terms of the rectangular modulus. We prove
that a normed space of dimension > 3 is an inner product space if and only if
the right derivative in O of the rectangular modulus is zero. The case of two-
dimensional spaces is also treated. A characterization of the uniform convexity
of X is given in terms of the *-rectangular modulus.

1. Introduction and notation

The geometry of a real linear normed space X with dim X > 2 may
be described, among others, using some moduli attached to X and their
properties. For instance, the moduli of convexity [5], and of smoothness
[11] are well known and often used in various applications.

Let us denote by B(z,r) the closed ball of X, (dimX > 2) with
center z and radius r > 0 and by B = B(0,1) the closed unit ball of
X. Let S(z,r), respectively S = S(0,1) be the corresponding spheres of
X. The symbol L will be used for Birkhoff orthogonality in the normed
space (X, || - [|), namely z L y iff ||z|| < ||z + uy|| holds for all p € R.
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For z,y € X,z # y denote L(z,y) the straight line passing through z
and y. Similarly, [z;y] will be the suitable closed segment. Recall that
the modulus of convezity of X is the function dx : [0,2] — R defined by:

5X(6):inf{1— 3$,y65,|i$—y“:5}1 56[072]7

while the modulus of smoothness of X is the function px : [0,00) =+ R
defined by:

px(r) =sup { S(lo-+ vl + o~ ol =) sy € S} or >0

The following modulus of smoothness, modified with a condition of or-
thogonality, was defined in [9] as being the function 7y : [0,00) — R

Tty

1
el =sup { (o + rul +llo = roll =D sy € S,z Ly e 20

T. Figiel [9] has proved that px and py are equivalent, more precisely
we have:
) sox(r) < Px(r) < px(r),¥r 2 0.

Now, a normed space is said to be uniformly convez if dx(g) >
> 0, Ve € (0,2] and uniformly smooth if lim~g px(7)/7 = 0, (or equiva-
lently if lim,~ 0 px (7)/7 = 0). The normed space X is said to be smooth
at g € S whenever there exists a unique f € X*||f|| = 1 such that
f(zo) = 1. If X is smooth at each point of S then we say that X is smooth,
8, p-21]. A normed space X is said to be strictly conver whenever .5 con-
tains no non-trivial line segments, [8, p.23]. A uniformly smooth space is
said to have modulus of smoothness of power type p, with p > 1 if there
exists a number C > 0 such that px(r) < C7?,¥V7 >0, [12, p.63].

K. Przeslawski and D. Yost [13], [14] have introduced the modulus
of squareness. It appears, in a natural way, in some estimates for the
Lipschitz constants of multivalued mappings in Banach spaces. They
considered a pair (z,y) of points in X with ||y]| < 1 < ||z]|. Then there
is a unique z = z(z,y) in the line segment [z;y| with ||z|| = 1. As in [14]
we put

_ o=
Y= T

and define the modulus of squareness £x : [0,1) — R by
¢x(B) = sup{w(z,y) : Iyl < B <1 <|l=l}, B €[0,1).

In [15] we have obtained the following alternative formula for {x :
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(2)
Ex(B) =sup{llz —yll : 2 € S,y € X,z Ly, min||(1 - Nz + Myl = 5},

B € [0,1). Surprisingly, from the behaviour of £x in the neighbourhood
of 1 and of 0 respectively, it is possible to characterize uniformly convex
and uniformly smooth normed spaces. The relation

3 lim (1 — =0,

© lim(1 - £)éx(6)

characterizes the uniform convexity of X, [3,13], while the relation
. €x(B) -1

4 1 =0,

(4) M B

characterizes the uniform smoothness of X, [4, 16]. On the other hand £x
is an increasing function, convex in the neighbourhood of 1, it verifies a
Day-Nordlander type inequality and characterizes inner product spaces
(i.p.s for short) [4, 17]. Recently, we have introduced the rectangular
modulus of X [18], as the function px : (0,00) —+ R

px(A) = sup{max{p, 4 (t), )\goi,z’y(t)} :t>0,z,y€ S,z Ly}, A>0,
where
A4t
|z +tyl|’

The function ¢ ;4 is a useful ingredient in some characterizations of i.p.s
in terms of Birkhoff orthogonality. In the same paper it was also proved

that

a) px is a convex function; if H is an i.p.s then pg()\) = v1+ \%;

b) px verifies a Day-Nordlander inequality i.e.: px(A) > pg(A) =

=1+ A2, VA > 0;
c) ux(A) =+v1+ A2 for a fixed A > 0, then X -is an i.ps.
The *-rectangular modulus [18] defined by the simpler formula
#x(A) = sup {QDA,m,y(t) 1t>0,r,y€ Sz L y} ;A >0,

verifies also the properties a), b) and ¢). Moreover u% () < A+2,VA > 0.

On the other hand px (1) = p% (1) = u(X), where u(X) is the rect-
angular constant of X defined by J.L. Joly [10]. Let ux(0+) be given by
px(04+) = limy\o px(A). Then px(0+) = p%(0+) € [1,2] and px(0+)
is the known radial constant of X, denoted by k£(X), [20], which in turn
is equal to other four constants of X, denoted by MPB(X), MPB'(X),
MPB(X), 5(X), respectively. For more information on this subject see

(21, 31, [6], [7] [19]; [20].

(p)‘az:y(t) )\7-[; > 07 x7y E S)x —L y'
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2. Main results

In this paper we obtain some relations between the properties of
px,(u%) and the geometry of the normed space X. A characterization
of i.p.s of dimension > 3 is deduced from the knowledge of the right
derivative of p% in the origin. The two-dimensional case is partially
treated. A characterization of uniformly convex spaces is obtained from
the behaviour of u% at infinity.

For z,y € X let 7(z,y) be defined by:

O e Ry e B )
t\0 t >0 t
It is clear that X is smooth if and only if 7(z,y) = —7(z, —y), for any
pair (z,y) € X x X with z # 0.
Lemma A [3]. A normed space X is smooth if and only if the following
condition holds:
{(z,y) e SxS:z Ly}={(z,y) €S xS :7(z,y) =0}.

A uniformly smooth variant of Lemma A is given by
Lemma 2.1. A normed space X is uniformly smooth if and only if the
following condition holds:

a) r,ye€ S,z Ly=|lz+ty||=1+o(z,v,t),
where limp g 0(z,y,t)/t = 0, uniformly with respect to z,y € S,z L y.
Proof. i) If X is uniformly smooth and z,y € S,z L y then by Lemma A

eyl el of@,u,1

N0 t (AN
By uniform smoothness this limit is uniform with respect to z,y € S,
z L vy, and @) follows.

ii) Suppose that a) holds and that X is not uniformly smooth.
Then limpg px (t)/t = infys0 px(t)/t = a > 0. Using (1) it follows that
limpo Px (t)/t = infis0Px(t)/t > a/8. There exists then a sufficiently
small € > 0 such that py(t)/t > a/16, for all t € (0,¢). For any ¢ € (0,¢)
choose a pair (z;, ;) € S x S, z: L y; such that

= 7(z,y) = 0.

1
%(”.’Et +tyt|| + ||£I7t — tyt|| - 2) > a/32

Let 7, € {yt, —y:} be such that ||z; +17,|| = max {||z: + tys|l, |z — tyel|}
One obtains (||z; + ¢7,|| — 1)/t > a/32, for all ¢t € (0,¢). It follows that

M > a/32,t € (0,¢),

contradicting ). ¢
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The relation (4) characterizes the uniform smoothness in terms of
the squareness modulus. In the sequel we will see that similar formula
for *-rectangular modulus of X has a different interpretation.

Lemma 2.2. If the -rectangular modulus of X werifies the relation

A\0 A
then the Birkhoff orthogonality in X is symmetric.
Proof. Let A € (0,1) and z,y € S,z L y be given. It follows that
A+t a4yl
|z +tyll A+t

=0,

(p’\az/y(t) = 3 Vt > O,

and

$(3,9,0) = sup sy (B) = X (Mrgm o+ (1= gl ™" =

=X+ [l oz + (1~ po) Ayl ™

where po = po(z,y,A) € [0,1) and o is not necessarily unique. If any
po(z,y, A) is # 0, then the straight line L(z, A\y) is a support line for the
sphere S(0, ||poz + (1 — po)Ayl||) and ¥ (z,y, ) > 1. In the opposite case
¥(z,y,A) = 1. Supposing that ¥(z,y,\) =1, for all z,y € S,z L y one
obtains that u%(A) = 1 < v/1+ X%, in contradiction with the property b)
of % . This means that in order to obtain sup, ,es .1, ¥(z, ¥, A) = pi(N),
we can consider only the pairsz,y € S,z L y with any u(z,y,A) € (0,1).

A parallel to the straight line L(z, Ay) from the origin intersects
the parallel to the straight line L(0, uoz + (1 — po)Ay) from y in yo =
Yo(z,y, A). The triangle with vertices 0, uox + (1 — o) Ay, Ay is similar to
the triangle with vertices ¥, 1, 0. From this we obtain:

Aoz + (1= po) Myl ™ =yl - lly = woll %,
and

ux(X) = sup  P(z,y,My) = (inf{|ly — ol :z,y € S,z Ly}) ™
z,yeS,xly
On the other hand we have

px (0+) = sup{”tx +y||"t:t>0,z,ye Sz L y} =

= (inf{”y — x| i zyy € S,z L y})—1

where zy = zo(z,y) € L(0,z),y — 7o L z. By changing z in —z we can
suppose that 0 € [z, z] (see Fig. 1).

In general, zo(z,y) is not uniquely determined. Let zy = 2o(z,y, \)
be defined by {2} = L(y,zo) N L(0,y,). Since y — 3o L 7o we have
lv — voll < |ly — #0l||- One obtains

(6)
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1
inf{||ly — zo(z,y, \)|| : z, ¥ € S,z Ly}
)

Flg. 1

Let 21 = z(z,y,A) be given by {z1} = L(y,z0) N L(z, Ay). Since
for two nonzero collinear vectors u and v, ||u||/||v|| is independent of the
norm, we can apply the Menelaus Theorem in a two-dimensional normed
space. Consider the triangle with vertices 0, %o,y and the transversal
L(z, Ay). The relation

A ly—all 14 izl

(7) px(X) 2

T S P R
implies
1—A
ly — il = Tm Nly = zoll,
and :
1
lly — 2|l = m Ny — ol|-

Finally, suppose that (5) holds and that Birkhoff orthogonality in
X is not symmetric. Then from [17] p%(0+) > 1. Let again A € (0, 1) be
fixed. By (6) there exists a pair z',y’ € S,z' L y' such that

®) i (04) 2 g > H(04) =V,

and such that 0 € [zo(z', '), z']. It follows that

o) 1 16mE)l
ly' = 2o(, ', VIl lly' — zo(a', )
From (7), (8) and (9) we obtain:
1 1

) = 5 (04) | Ty =20y, NIy = zo(@, )
) = )
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M@, 9l _
B T )] RN G0 I
B - ' I ooyt =
A Hy —xo(m,y)H

o Il = = 2o(a, )
= - m@ vl

—A> u(04) = A2 - A —1.

We have
m Wi (A) — p (04)
AN A :
in contradiction with (5). ¢

Theorem 2.3. Let X be a real normed space, dim X > 3. The following
are equivalent:

px(A) — px(04)

px (A) — pwx (04)

=0.

1) lim)\\o

2) lim)‘\o =90.
3) X is an inner product space.
Proof. 1) = 2). Suppose that 1) is valid. This implies that
Y (A) — — ux(0
0 < lim XN — 15 (04) . sx(Y) — px(04)
AN A A0 A
and 2) follows.

2) = 3). By Lemma 2 and 2) we have that the Birkhoff orthogo-
nality is symmetric. Since dim X > 3, it follows (see [1, p. 143]) that X
is an i.p.s. '

3) = 1). X being an i.p.s we have px(A) = v1+ A2,V > 0, and
1) is obvious. ¢
Theorem 2.4. Let X be a two-dimensional real Banach space. If

i 2 ) =5 (04) _

AN A ’
then X is strictly convez.
Proof. Suppose that X is not strictly convex. Then, using the nota-
tion from Lemma 2, there exists a pair z”,y"” € S,z" L 9" such that
lzo(z",¥")|| > 0, and 0 € [zo(z", y"), z"]. The symmetry of orthogonality
implies that ||y" — zo(z",y")|| = 1. As in Lemma 2 we have:

pxA) = px(0+) o llzo(e”,y")||
)\ —_ ”yll _ ',L.O(xll, yn)“
One obtains that

=0,

— A= [lzo(z", ")l = A.
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px(A) — px(0+)
AN0 A

a contradiction. Now, it is well-known that a two-dimensional space
with symmetric orthogonality is strictly convex, iff it is smooth (see [1,
p.78]). So, X is uniformly smooth, uniformly convex and the Birkhoff
orthogonality in X is symmetric.Q

Therem 2.5. Let X be a two-dimensional real Banach space. We sup-
pose that the Birkhoff orthogonality in X is symmetric and that X is
smooth with the modulus of smoothness of power type p,p > (v/5 +1)/2,
then

> |lmo(z", y")|| > 0,

lim :U'X()‘) — NX(O+) —0.
AN0 A

Proof. Let x,y € S,z L y and A > 0 be fixed. We have

||z /\2y|| 1 < llz + Ayl 1‘;‘“93 Ayl —1 < Bx(N) < px(A) < CH2.
Then ||z — My|| < 1+ C1M?,VA > 0,Vz,y € S,z L y, and by Lemma
1, o(z,—y,A) < C1 W Vz,y € S,z L y,YA > 0. Moreover the function
o(z,—y, ) is increasing in (0,00). Using again the notation in Lemma
2, we observe that h = h(z,y,A) = oz + (1 — wo)dy L z — Ay, (h
is unique) and by the symmetry of orthogonality h — z L h. We have
Ih — z|] < |lz|] =1 and ||h — Ay|| < A. Let hy be the unique vector in
the line segment [z; Ay] verifying ||h; — z|] = 1. A parallel from h; to the
straight line L(0, h) intersects L(0, z) in hy. We have

I
1 [[he = hal|’
and hy — hy L x — Ay. Now, by Lemma, 1
1] i

hy — by = '
e =l = o =0 N =T =l = Tl —5, ) =3

By orthogonality and Lemma 1 it follows that:
1h =Ml < lz = hall — [l2]| = llz — bl — [lz — M| =1+

Tz — Ah h
o P ks — h1||> —1< Gl — bl <
<||$ — Ah||” IR
P
co ]

= T o =9, X) = )
But from y — yg L £ — Ay we obtain
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Y—Yo Yo
y—vll |y — voll

=|Iy—yo||-<1+o<y—y0 a:—)\y ”yOH ))S

lly = woll” |z — Ayl ly — voll
lyoll?
<lly-yw -(1+C’——— .
v =l -

The triangle with vertices 0, h, Ay is similar to the triangle with vertices
Y, Yo, 0 and this means that

1= ligll = Il = %o + 30l] = 1y — 5ol - “ ”

lyoll_ _ IR =gl _ IR = hall + [l = Myl _ A= hal] N
ly — ol IRl 12l I
lz — Ayl -1 Al o(z,~y, )
+ <G -
171 (1+o(z, ~y,A) = A)? 171l
Since M/||A]| < p%(A) £ A+ 2, for A > 0 small enough
[[oll AP

S 2GR + Cro < 2C10P71 4+ 30 0P = 5O NPT,

lly — oll IRl

which implies that
P
L—|ly =l < lly - 90”01“7:%— <

< ly = yol| - C1 - 57 - CON*P = ||y — | - 57 - Criye-e,
The symmetry of orthogonality yields p%(0+) = 1 and:

1
. . su rz,y€ S,z L }—1
0 < Bx() = p3(04) _ p{ny—yo(z, p Y S
- A A =
+1yp2—p
< 5p0f /\)‘p i —EP. C;f+1 . )\pr—l’

with A close to 0. If p > (v/5 + 1)/2 then limy\o(u% (A) — p% (0+))/A =
=0.¢
Remark. Denoting by H an inner product space it is well-known [11]

that
2

px(1) > pu(r)=vVi+72-1= % +o(r?).

This implies that px is of power type at most 2.

Example. Let p € ((v/5 +1)/2,2) be a given number and let g be its
conjugate 1/p+ 1/q¢ = 1. In R? define the norm:
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(. gy = { (o2 +181)2 = (e A)lp for o> 0
; (|l + 18192 = ||(c, B)||¢; for B < 0.

Then (R?, || -||) is a Banach space and the Birkhoff orthogonality is sym-
metric, (see [1, p.77]). Let z1 = (ou, B1), T2 = (0, B2) be two unit vectors
with z; L zo. We have

”.’171 + )\.’L’Q“ -1 S max{“:z;l + )\IEQHP — 1, ||x1 + )\LEQHQ — 1} S
< max{Cy ), C2A?} < (C1 + Co) AP, VA € [0, 1).
The space (R?, || -||) is two-dimensional, uniformly convex and uniformly
smooth with modulus of smoothness of pover type > (v/5 + 1)/2. From
Th. 2.5 it follows that limys,o(u% (A) — % (0+)) /A = 0. However (R?, | -[])
is not a Hilbert space.

Theorem 2.6. The real normed space X is uniformly convez if and
only if

(10) Jlim (p3(A) = A) =0.

Proof. Let z,y € S,z L y and A > 1 be fixed. Denote by ho(A) =
= inf{||h(z,y, \)|| : =,y € S,z L y} where h(z,y,]) is as in Th. 2.5. In
the two-dimensional subspace X; of X, generated by z and y we consider
the ball B(0, ho())) and a support line I; to B(0, ho(})) passing through
z. Suppose that {\y} = L(0,y) Nl; is choosen such that A; > 0. Then
0 < A\ < Aand from z L y it follows:
lz — Ayl <l — Ayl <1+ A
Using formula (2) for the definition of the squareness modulus we obtain:
fx(ho()\)) <14 )\,V)\ > 0.

From p%(\) = Mho(d) > vV1+X = pi(A),A > 0, we have that
ho(A) + 1/(4)?) < 1, for all A > 1. Pick now z,y € S,z L y such
that ||h(z,y, A)|| < ho()) + 1/(4A?). For large A one obtains

£x (ha) + 553 ) 2 Ex(Ih(a s, ) 2 el 21,

implying ho()\) > £x'(A — 1) — 1/(4)?). On the other hand ho(A) <
<& (A+1), and

ML= +1) <ML =ho(N) A1 - & (A= 1)

+ .

A
Letting B(\) = £x' (A + 1), v(A) = €5 (A — 1), it follows B(A),7(A) — 1
for A — oo and
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A
(1=BM)Ex(B(O) =14+ B(N) < ey (ux(A) = A) <

< (1= YO))Ex(Y(N) + 1 —7(A) + %

Suppose that X is uniformly convex. Using formula (4) we get

A
)\1——>oo ,U,X()\) (:U'X( ) ’\) = 0.

Now, from [18] we have . ,
A (A+2) <2y (A) < AVI+ X% Tim Ay (V) =
and limy o0 (1% (A) — A) = 0. Finally, if (10) holds then
0 Jim [~ B E(B) ~ DI € im () = 3) =0,

implying limg (1 — 8)éx(8) = 0, i.e. X is uniformly convex. ¢
Corollary 2.7. The real normed space X is uniformly smooth if and
only if

Jim (uk.(A) = A) =0.
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