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Abstract: In this paper we introduce the concept of modulus of continuity
of complex functions defined on compact totally disconnected groups. These
groups are not necessarily Abelian groups. We use the modulus of continuity in
the estimations of the Fourier coefficients of integrable functions and functions
with bounded fluctuation. Moreover, we investigate the absolute convergence
of functions that are constant on the conjugacy classes of totally disconnected

groups.

Research supported by the Hungarian National Foundation for Scientific Research
(OTKA), grant no. ¥020334 and by the Hungarian “Miiveldési és Kozoktatdsi Mi-
nisztérium”, grant no. FKFP 0710/1997.




224 G. Gdt and R. Toledo

In [6] and [7] the authors studied the compact totally disconnected
(CTD) groups and the product system ¢ as the generalization of the sys-
tems Vilenkin and Walsh. In fact, the structure of these groups is sim-
ilar. We remark that if Gy is the discrete cyclic group of order my, k €
€ N then the CTD group G coincides with the Vilenkin group [13]. The
difference is that if the CTD group is not Abelian then the 1) system is
not bounded and can take on the value 0. For this reason, we can rarely
use the methods with which we can treat the Vilenkin groups. For a
more general case see e.g. [2, 10].

In Section 2 of this paper, according to the Vilenkin group, we intro-
duce the concept of modulus of continuity for complex functions defined
on compact totally disconnected groups. This concept is due to Fine
[4] and Morgenthaler [9] for the Walsh group. Functions of bounded
fluctuation were introduced by Onneweer and Waterman [11].

In Section 3 we use the modulus of continuity in the estimations of
the Fourier coefficients of integrable functions and functions of bounded
fluctuation. Before formulating our statements in this section, we should
remark that if the CTD group is not Abelian group then the system
1 is not bounded. This fact is important because of the norm of the
operators T, : L}(G) — C, Tnf = [5 [¥ndp is ||¥nlleo- For this reason
- if the CTD group is not Abelian group then there is an f € L'(G) such
that f(n) - 0. We should not be surprised that ||ts|ls appears in the
estimation.

In [3] Benke proved that the Lipschitz class to which a function
belongs can be identified by the best approximation characteristics of
the function by trigonometric polynomials, and that functions which are
easily approximated by trigonometric polynomials have absolutely con-
vergent Fourier series. In Section 4, according to the above work we
have some conditions under which a function has absolutely convergent
Fourier series based on the system of characters of G in case that the
function is constant on the conjugacy classes of G.

1. Preliminaries

The notations that we use in this paper are similar to those in
the books of Hewitt-Ross [8] and Schipp-Wade-Simon [13]. Let o be an
equivalence class of continuous irreducible unitary representations of a
compact group G. Denote X' the set of all such 0. X' is called the dual
object of G. Denote by d, the dimension of a representation U@, geXx

and let ugf;) (z) = (U¢,€) i, € {1, ..., d,} be the coordinate functions
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for U where £, ...,&;, is an orthonormal base in the representation
space of U). According to the Weyl-Peter’s theorem, the system of
functions /d, u(a), o€ X, i,j€{l,..,d,} is an orthonormal base for
L}@). IfGis a ﬁnlte group, then also X is finite. If X' := {0y, ..., 04},
then |G| =d2 +..+d2.

We now restrict our attention to infinite compact totally disconnected
groups. For the sake of simplicity we shall call a compact totally discon-
nected group a CTD group. It is known that these groups have a count-
able neighborhood base G = Hy D H; D ... at the identity e consisting
of open and closed normal subgroups which satisfy that for every n € N,
the factor structure H,/H,, is finite. Moreover, G is a complete direct
product of these factor structures.

Gét and Toledo [7] gave the infinite compact totally disconnected
groups in the following form: Let N denote the set of nonnegative integers
and C denote the set of complex numbers. Denote by m := (my, : k € N)
a sequence of positive integers such that m; > 2, £ € N and G}, a finite
group with order m; and with number of conjugacy classes pi, k € N.
We will use the same notation (+) for the group operation of Gy, k € N.
Denote the identity of these groups by e. Suppose that each group has
discrete topology and right and left Haar measure p; with ux(Gy) = 1.
Thus each group has similar measure which maps every singleton of Gy
to —, k € N. Let G be the compact group formed by the complete

my !
direct product of G with the product of the topologies, operations and
measures (u). Thus each z € G consist of sequences z := (z9, 1, ...),

where z, € Gy, k € N. Define by GP the set of sequences of G terminating
in €’s (i.e. the set of “finite” sequences), Ip(z) := G
L(z)={yeG:yy=x,for0<k<n} (z€G,neN)

I, := I,(e). We say that every set I,(z) is an interval. The inter-
vals I, form a countable neighborhood base at the identity of the prod-
uct topology on G. Denote by 4, the o algebra generated by the sets
I.(z) (z € G) and by E, the conditional expectation operator with re-
spect to A, (n € N).

If My := Fy :=1 and Mgy := mgMy, Pryy = pxPr k € N, then
every n € N can be uniquely expressed as

(o8]
’I’LZZTLkMk, 0<ng<mg, ng €N,
k=0

This allows one to say that the (ng,n1,...) sequence is the expansion of
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n with respect to m. In this case let n* = (ng,n1,...) € G. In Section 4
we use the expansion of n with respect to the sequence (po,p1, ... ).

Now we denote the dual object of Gf, by Z. Let {¢f : 0 < 5 < my}
be the set of all normalized coordinate functions of the group Gy and
suppose that cpg = 1. Thus for every 0 < s < my there exist o € X,
i,7 € {1,...,ds} such that

Ph(z) = Vdoul)(z)  (z€Gy)

(d, is the dimension of o). Let 9 be the product system of ¢%, namely
(@) =[] ei*(z) (€0,
k=0

where n is of the form n = > peo My and £ = (2o, 1,...). Similarly
denote by x) =1, xj, .- Xo=~" the characters of the group Gy and let
dfq be the dimension of the representation corresponding to the character
x5 Then we obtain the characters of G in the form

Xn:HXZk (Tl:Z’I’LkPk; kEN).
k=0

k=0

The system 1) = (1, n € N) is orthonormal and complete in L!(G).
In harmonic analysis it usual to use the characters of representations in
approximation. In this case we restrict the space LP(G) for the func-
tions that are constant on every conjugacy classes of G. We denote this
new space by LP(G). The system of characters x = (x»,n € N) of a
non Abelian group is not complete in L}(G), but it is orthonormal and
complete in L1(G).

For f € L'(G) we define the Fourier coefficients by

Flk) = /G fhdn (keN).

In Section 4 we denote by .A the set of functions which have abso-
lutely convergent Fourier series based on the system of characters of G.
‘The Lipschitz class of order o will be denoted by Lip(a) and is a closed
subspace of the continuous functions endowed with the norm

1 lipcey o= sup [sup (@) - f(-)ilooM:} 1o
k TEI
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2. The modulus of continuity

We introduce the concept of modulus of continuity using the anal-
ogy between the structure of CTD groups and Vilenkin groups. Let
f € I”(G),1 <p<ocoandI an interval. Then I = I,(z) for some
z € G,n € N. Denote by

o e (L PN y
wO(f,1) = sup (NU) /I Imf - £ du) , w(f D) =0 (£, 1)

hel,
the local modulus of continuity of f on I and let

Ww)(f) = sup [I7af ~ fllp,  (n€N),  wn(f) = ()

be the n-th modulus of continuity of f on L?, where 7, f (z) := f(z + h)
is the right translation operator. We remark that if we use the left trans-
lation operator, we obtain identical value for the modulus of continuity,
because the measure is both left and right translation invariant and I,
is a normal subgroup of G. Notice that w® (f) 00, n = 00 and w® ()
increases when the value of p increases.

wn(f,T) is a measure of the oscillation of f on I. Thus we say that

a function f is of p-bounded fluctuation for some 1 < p< oif
1

Mnp-1 ’ ?
cup (z (/. znuc*»v’) <oo.
neN b=0

A function is said to be of bounded fluctuation if it is of 1-bounded fluc-
tuation. In this case define the total fluctuation by:

M,—1
FU(f) :=sup ( > (A, In(k*))l)

neN

3. Estimates of the Fourier coefficients

Lemma 1. Let f € L'(G), n, k € N. If n > M, then there is a h € I

o~ —~

such that | f(n) — f(n)| > |f(n)].

Proof. Let s = max{j € N: n; # 0} and let p be an arbitrary element
of G,. Moreover let h(p) be the element of G with expansion h(p) =
= (g,«ie,..., ¢,P, sl,...). Then h(p) € I, C I.

s
If 3+ is a normalized coordinate function of the group G, then

there exist o € X, and 4,5 € {1, ...,d, } such that
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TLs — \/_’U,(U)

Using the fact that the measure p is both right and left translation in-
variant and n < M,,; we have

o F(n) = / £ (@)nla — B)) dis(z) =
/ f(z)ps(z H‘Pl ) dp(z
- [ 1A~ p) [ ol aute) =

do

S RICNC e Hsol 27 du(z
r=1

*‘ZU /f ” ws)HQDz 1) A ().

The coordinate functlons form an orthonormal system.
S uP0) =m, [ u@)dule) =0 = 3 gpfn) =
PEG, Gs PEGs

On the other hand 'r/h(e)\f(n) = f(n) Denote by (.,.) the inner product
(for the complex numbers a + by, c + di (@ + b1, ¢ + di) = ac + bd). Thus

n)+ Y ) =0 = [F)+ Y (Tpf(n), f(n)) =0.

PEGs pEGy
pe p¥e
Then there exists p € G, p # e such that
(Tam (), Fn)) <0 = [mpf(n) - f(n)] 2 |f(n)].

This completes the proof of Lemma 1.0
Corollary 1. Let f € L}(G), n, k € N. If n > My then

()] < wi(F)nllco-

Proof. Let A be an element of G which satisfies the conditions of
Lemma 1. By the linearity of ~ we see that

|f< )| < [7af(n) = F(n)| = |mf — f(n)| =
—| [ (@) = £ ) < 1 = F il < )l
which was to be proved.¢ '
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Similarly, we prove the following statement

Corollary 2. Letn € N and s = max{j € N: n; # 0}. If f is of bounded
fluctuation, then

Fol < S gl

Proof. Let h be an element of G that satisfies the conditions of Lemma 1.
By the linearity of ™ we see that

1F(n)] < [ f(n) — Fln)| = |mof — f(n)] =
-y / (£ (z) ~ F(2))0n(@) dulz)] <

/ )~ 1) el =
Z / 1 (2) — £(0)] sl <

SZIw(f, Dl < T e,

since the sets I,(k*) (0 < k < M, — 1) are disjoints, cover the set G and
p(I;(k*)) = 35 This completes the proof of Cor. 2.0

4. Absolute convergence of functions in £7(G)

Lemma 2. Let f : G; = C, j € {0,1,...,p; — 1}, i € N. Thus there is
a h € G; such that (x] # 1)

S fa+h)xd(z) - Y f@)xd

z€G; zelG;

X@)| > |3 fe)d ()

TE€G;

Proof. Let z € G;. For simplicity we assume that the complex number
A== e f (z)x!(z) is on the first quadrant of the complex plane.
If the complex number B(h) := ) s f(z + h) X} (z) is also on the first

quadrant for some h € G;, then our statement follows for this h € G;. If
B(h) is on the fourth quadrant of the complex plane for some h € G,

then we replace h by h~!. By using the property xJ(h™!) = xI(h) we
have that B(h™!) is on the first quadrant, so we proved our statement
for h~! € G;. On the other hand,
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Yo S fethd@ = Y fe)d@-h) =

heG; :L'EG, heqG; z€G;
dd
—Zfo)Zu (z—h)= ZZf:L‘)ZZu (z)ug .(
heG; zeG; heq; z€G; r=1 s=1
=z':(zf< @) T, =0.
r,s=1 \z€G; heG;

Thus we have that there is an h € G; such that the corresponding complex
number B(h) is on the first or fourth quadrant of the complex plane.

This completes the proof of the lemma.{

Lemma 3. Let f € LY(G), P, < k < Py (k,n € N). Then there is a
h, € G, and h := hpe, = (e,e,...,€e, hy,e,...) such that

[ f (k) = F(k)| 2 (k)]
Proof. Let z € G, kin—1) i= 31y ki

= fo’(a',' —h)= (f[xii(m)> Xﬁ"(x —h) =

=0
= Xk(n-1) (x)szn (:L‘ - h)
Define g : G, — C by

9(zn) = M Z (Bniif)(z )Xk(n—-l)( z) (Zn € Gn).

T0yeeeyTn—1
Thus f(k) = m;' ¥, o, g(m,’zn (2),
m(k) =m;! Z 9(za) X (z — mt Z (zn + R)X ().
zneGn anGn

Finally, Lemma 2 completes the proof of Lemma 3.0
Theorem 1. Let supm < oo, f € L2(G). If

oo Mnp—1 %
Z (Z |w(2)(f, In(k*))lz> < 00 then fe A

n=0 k=0

Remark. If f € £L2(G), m is arbitrary and
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1
M,—-1

Zmn(2|w(2)fl k*)|) <oco them feA

Proof. Let P, < k < Pn+1, a := k,. Lemma 3 guaranties that there is
an h = (e,e,...,e, hy,e,...) such that

[T f (k) = (k)] > |F (k)

By Cauchy’s inequality we have

Pop1—1 Pop1-1 % [pu—1 (a+1)Pa—1
> 1) Idks(z dk)2> [Z > k)|2} <

n[=

k=P, k=P, =0 k=aP,

Fry1—-1 z pn—1(a+1)Pr—1 7
< < > (dk)2) [Z > (o (k) — Flk )|} <

k=P, a=0 k=aPyp

) pn—1
< Mn+1\l Z |7y f — FlI3,
a=0

since dy, = [[L,d", ﬁ:;é(df"y =m; (i € N). x is an orthonormal
system, therefore we can use the Bessel’s inequality. On the other hand,
Mn—1
Vel ! = 1B =Mos 3 [ 15+ h) — flo)f i <
k‘
Mn—l '
<mn Y W (f, L))
k=0

Since p, < my, (and sequence m is bounded) we have

Ppy1—-1 Mp—1
D 1FR)de < ma, (Z w®(f, In(k*))lz)

k=P, k=0

=

Thus

1flla =Y 1FE)de < ma S | 3 W@ LR | < oo
k=0

n=0 t;€G;
i<n

[N

This completes the proof of Th. 1.0
The following statement is the generalization of a similar sta,tement
that appeared in [13].
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Theorem 2. Let f : G — C be a continuous function that is constant in
the conjugacy classes of G and suppose that there exists 1 < p < 2 such
that

Z Z lw(f, I.(£))P) 7 < 0. Then  f € A.

n=0 ¢t;€G;
1.<n

Proof. Since f € £L*(G) we have

WO, n(0) = sup M, [ (e h) = S| <

hel,

Thus

1 1
Using the inequality (Zfil |ai[2) P < (Zi\;l |ai|p) " (1 < p < 2) we have

o0}

> (3 W@ @) < oo

n=0 t;€G;
1.<n

That is, the conditions of Th. 1 is fulfilled. This completes the proof of
Th. 2.0

Corollary 3. Let m be bounded, f : G — C be a continuous func-
tion that is constant in the conjugacy classes of G and suppose that
32 o VMpwr(f) < 0o. Then f € A,

Proof. The corollary is a consequence of Th. 2 since w(f, In(t)) < wa(f)
(t € G). For this reason

i(i W@ (f, I, 2) <E\/_wn f) <o0. 0

n=0 k=0

Corollary 4. Let m be bounded and f € Lip (a) for some o > % Then
feA v
Proof. w,(f) <cM;® (n € N), thus

S V() < €3 M < o0
=0

n=0

Thus the conditions of Cor. 3 is satisfied.{
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