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Abstract: I Kitai proved that if I is the set of integers in some imaginary
quadratic extension field the @ € I is a base of .a number system with an
appropriate digit set iff @ # 0, |a] # 1, |1 — a| # 1. In this paper we attempt to
arrive at a similar result in real quadratic extension fields of rational numbers.

1. Introduction

For an algebraic number S, let Q(8) be the number field that we
can get by adjoining 8 to @, and let I be the set of integers in Q(8). Let
a € I and E, (C I) be a complete residue system mod containing 0, i.e.
such a collection of fy =0, fi1, ..., fi_1 € I for which for every y € I there
exists a unique f € E, such that v = ay, + f with a suitable v, € I. Let
J : I — I be defined by J(v) = ;. Let us name this transition v — ;.
J* denotes the k — fold iterate of J. We say that (o, E,) is a number
system in I if each v € I can be written as a finite sum
(1.1) Y=e +ea+ - +ead”, (€€ E, i=0,1,...,k)

The uniqueness of the representation follows from the fact that F, is a
complete residue system mod a. | '

The following questions are natural. (I) For a given o find such a
digit system E,, if any, for which (o, E,) is a number system. (II) For a
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given o and digit set E, = {0,1,...,|N(a)| — 1} decide whether E, is a
complete residue system mod a and (a, E,) is a number system or not.

(IT) was solved for quadratic extension fields in [2], [3], [4] and [6].
In these it was shown that only very special numbers « can be served as
bases with such special digit set.

With respect to problem (I) G. Steidl observed in [5] that in the
case of Gaussian integers a good strategy for choosing an appropriate
digit set is to take one for which f € E,max|f| is close to the minimum.
Later I. Kdtai [1] proved that if I is the set of integers in some imaginary
quadratic extension field then « € I is a base of a number system with
an appropriate digit set, iff @ # 0,|a| # 1,|1 — a| # 1. The concept of
number systems can also be generalized as the group of lattices of the k-
dimensional Euclidean space. In [8] an effective algorithm was presented
to decide whether the system (M, A) is a number system or not for a
given invertible expanding linear operator M and a given digit set A.

The case of real quadratic extension fields seems to be complicated
due to the fact that the modules of the eigenvalues of the mapping corre-
sponding to v — ary are different. We shall concentrate our attention on
the real quadratic extension of rational numbers denoted by Q(v/D). Let
D > 1 be a square-free integer, and I be the set of integers in Q(+/D). For
some 3 € Q(v/D) let B be the algebraic conjugate of 8. One can observe
easily that if o € I is a base of a number system in Q(\/B) with a suitable
digit set then (a) a # 0, (b) & # unit, (¢) 1-a # unit, (d) |a| > 1, |a| > 1.
The assertions (a) and (b) are obvious. Assume that 1 — o = e=unit and
(a, E,) is a number system. Let f € E,, f # 0,7 = f€6, where § = €.
Then v = f-+ary and v # 0, consequently v cannot be expanded as (1.1).
Assume that |a| < land (@, F,) is a number system. Then the set of
v having the finite representation (1.1) is bounded, while the whole set
I is not bounded, which is a contradiction. Let us observe finally that
(a, Ey) is a number system if and only if (Zi, Fa) is a number system,
where E, consists of the set of the algebraic conjugates of the elements
of E,. This implies that |@| > 1 is also necessary.

In [7] was proved that if |a| > 2, |@&| > 2, then there exists an E, for
which («, E,) is a number system. The digit set was explicitly computed.

Furthermore, let us assume that |e|, |@| > 1. Then for each v € I
the path v, J(v), J2(7), ... is ultimately periodic. We say that 7 € I is a
periodic element, if there exists a positive integer k such that J*(m) = 7.
Let P be the set of periodic elements, and G(P) be the directed graph
getting by directing an edge from 7 to J(7) for every m € P. It is clear
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that G(P) is a disjoint union of directed circles. Furthermore, (o, E,) is a
number system if and only if P = {0}. Another interesting problem is to
find such a coeflicient system F, for which G(P) has a simple structure.

2. Formulation of our results

Let D > 1 be a square-free integer, Q(\/ﬁ) be the extension field
generated by v/D, I be the set of the integers of Q(vD). We classify the
possible D-s according to ,

Case (A): D #1 (mod4), Case (B): D =1 (mod4).

It is known that{1,+/D} in Case (A), {1, @} in Case (B) are integral

bases in I. Let € = %1, § = %1 and for some o € Q(vD) let d =
= N(a) = o@.

2.1. Choice of the digit set E&?

In Case (A) let & = a + bv/D. Then let E&® be the sets of those
f=k+IVD, k,| € Z for which f&a = (k+Iv/D)(a—bvD) = (ka—blD)+
+(la—kb)v/ D=r+sv/D satisfiy the following conditions: if (g, §) = (1, 1),

‘then r, s € (—|d|/2,]d|/2], if (¢,8) = (—1,—1), then r, s € [—|d|/2, |d|/2),
if (¢,6) = (—1,1), then r € [-]d|/2,|d|/2), s € [-|d|/2,|d|/2), if (¢,6) =
= (1,-1), then 7 € (—|d|/2, |d|/2], s € [-]|d|/2,d|/2).

In Case (B) we proceed in the same way except that here o = a+bw,
where w = #. Then&za—i—bw:a+%—%\/5=a+b—bw, thus,
fa=(a+0b)k+b=2 + (la — kb)w = + sw. It is known from number
theory that E&E"s) is a complete residue system mod «. Since during the
proof we never specify which value (g,d) will equal, therefore our proof
will hold true for each ES?,

2.2. Exceptions

Let T be a subset of I defined here: T' = +{1+2v/2,3+/2,3+32,

44+4v/2,6+3v2,24+2v3, 1+ 6,1+ /7, 1 ++/8,142¥E4L 94 31541
3 VIHL 4 4 oVIBHL |y 4YIBHL 5 4 5VIBHL g 4 YIBHL 7y 4 VI3

7 VIT+1 VIT+1 V2141 V2941
8 + 5¥VEHL 3 4 VITHL 3 4 gVITHL 5 4 oVITHL 9 4 9VALHL 4 4 V2941
1+ \/§+1’1+\/Zi+1,1+\/‘§+171+\/45+1,1_{_4\/52+1’3+2\/52+1}.

The argument which will be used in the next sections does not work
for the elements of 7. But it is easy to compute the coefficient systems
and determine the set P for these numbers. We can observe that the
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assertion of the Th. will be valid in each case. The computed results are
presented in the Appendix. Now we can state our theorem.

2.3. The theorem and the sketch of the proof

Theorem. Let o be an arbitrary integer in Q(v/D) such that a, o — 1
is not a unit, and 1 < min (|a|, [@|) < 2, where D > 1 is a square-free
integer. Let E, be any of E&E’J), (e ==+1,6 = £1) a coefficient system
defined above. Then G (P) is the disjoint union of loops, if either |a| >
>2>[a,a>0orl|a >2>|a,a >0, and beside the loop 0 — 0
it contains only circles of order two of type m — (—n) — =, if either
la| > 2> |al, @< 0 orl|al >2>|al,a <0 holds.

Our proof is based on the investigation of the possible transitions.
For the sake of the clarity of the proof in Subsect.2.4 we discuss some
general statements separately, which are often referred to throughout
the paper. In Sect.3 we show under what conditions the transitions
are possible in an arbitrary circle of the periodic elements. In Sect. 4 we
prove that the modules of the irrational parts of # and J(7) are the same
for each m € P. In Sect.5 we prove the same assertion for the rational
parts of the modules of m and J(w). This basically completes the proof
of the teorem. In case D=5 the proof is slightly different, however the
differences are presented at the appropriate places. Further we assume
that the conditions of Theorem are valid in the whole paper and o ¢ T.

2.4. Preparing the proof

Remark 1. Observe that if d is an odd number, then we get the same
digit set for arbitrary value of (g,4). In addition in Case (A) we can say
that E(_Ec’f) = B9 because f(~a) = —r — sv/D, and E&® = Eg —0),
because 7a =r—gvD.

We get the same results in Case (B). Thus, if we have proved our
assertions in case |a| > [@|, we get the Th. in case |a| < |&| simply
by reversing the roles of ||, |&f| and those of ES*, ng =9 Further we
assume that (@] > 2 and 1 < [a] < 2.

Remark 2. In Case (A) |n| < (L + VD) ol holds, where 7 is an

2 ja]—1
arbitrary element of P. Then we can compute easily that || < /D,

because |O£—|°f|_—l decreases if |a| increases.
Proof. Assume that the absolute value of 7 is the maximum in P. If
the cardinality of P is 1, then m = 0, in the opposite case there exists

an g, for which 7, = 7o + f, where f € A. Thus, m& = 7d + fa. We
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have two cases: If |7,a] = |7d| — | fal, then we get from the definitions
In@| > |md|~|fa| > |d|(lr] - (3+1v/D)) from this }{;-I > |r|—(:+%vD).
We get the proof, if we rearrange this inequality. If |m,@| = |fa| — |nd)|
from this 0 < (3 +3v/D) — ||, and this implies that (1 +1v/D) > |x|. O

In Case (B) we get with same calculation: |r| < (1 + iw) Ioll‘ﬂl,

therefore, 1| <w ifa # 2+ I‘r’;’—l But for this number, a — 1 would be
a unit, therefore, we need not consider case oo = 2 + @

Remark 3. Since |a| > 2 and 1 < [a] < 2, therefore a # 0 and b # 0.
Remark 4. sgn (a) = sgn (b).

Proof. Assume that sgn (a) # sgn (b). Then in Case (A) |[@| = |a| +
+|b|v/D < 2 is impossible. In Case (B) | = |a| + Ibl([—%_—l) < 2 implies
that |a| = 1,D = 5 and [b| = 1. But then |a| = @ — |a| < 2, which is
a contradiction. ¢

Remark 5. @ > 0 implies that sgn (a) = sgn (b) = sgn (@) = sgn (d).
@ < 0 implies that sgn (a) = sgn (b) = sgn (@) # sgn (d).

Remark 6. In Case (A) |a| + [b|v'D < |d| < 2|a| + 2|b|v/D. In Case
(B) la| + |blw < |d] < 2|a] + 2|bJw. In both cases |d| > 3 follows from the
conditions of the Th.

Remark 7. Let 1 € P, w #£ 0, m = p+¢v/D or m = p+ qu according to
cases (A),(B) respectively. Then sgn (p) = sgn (7) and sgn (p) # sgn (q)
if ¢ # 0.

Proof. Let us assume that sgn (p) = sgn (¢). Then |7| = |p| + |¢|vD >
> /D in Case (A). This is a contradiction, therefore sgn (p) # sgn (q).
Since sgn (p) = sgn(—q), then sgn (p) = sgn (p — ¢v/D) = sgn (7). In
Case (B) we can proceed in a similar way. ¢ ‘

Remark 8. If f€E, then |f|<vD + 1 in Case (A) and |f|<w in (B).
Proof. Case (A): [fa| = |r—svD| < flg“"—lldl, therefore we obtain [f| <

<v/D+1. Case (B): [Fal = |r+s:42] < 14, we get [7] < 2[a,
thus, |f] < w.0 ‘

Remark 9. If there exists such a m; — 7 transition, where |[7| > |7
and g # 0, then |7| — T3] < @ in Case (A), and [7| — [7,] < % in (B).
Proof. Remark 7 and the proof of Remark 8 imply that |7,| = |7a|—|f],
therefore in Case (A) —‘/—Eiﬁ—llal > [f| = [7a] ~ |72| holds, and from this
YD1 > [7| — 2 thus, YBH > [7 — [r,|. In Case (B) tl[g| >

2
2
— YD1 =
> |f| = |7@| — ||, from which we get —2 - = £ 2> |7 - J%l thus,
w >I
2

- = 2
7I'l - |7T2I.<>
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Remark 10. Let m; be an irrational and 7; be a rational element in P.
Then |f1| > Iﬁj|'
Proof. In Case (A) let m; = pj, mi = p; + VD,q = 0. Since |m;| =
= |7;] = |p;| < VD, and |7| = |ps| +|¢:|V'D > V/D, the assertion is true.
In Case (B) let m; = p; and m = p; + qw in . We have || = [7;| =
= |p;| < w. |p;| > 0, since p; = 0 would imply that |m;| = |g;w| > w, which
cannot hold, therefore, |7;| > w — 1+ |p;|. Hence, we obtain 1mmed1ately
that |7;| > |1TJ| > 0.0
Remark 11. Each circle that contains excluswely rational elements, has
the shapem™ =+ 7 orm = —7 — .
Proof. (Indirect) Assume that there exists a circle each element of which
is rational and let the absolute value of 7(# 0) be maximum in this circle.
Let 7, be defined by mp — 7. If |my| = |7|, then my = £7, and we are
ready. So we may assume that || < |7|. Then 7 =p # 0, mp = ps # 0
where p, py € Z. Let m3 = ma + f, for some f € A. We can write in
Case (A): py = pa + bpv'D + k + Iv/D,we get from this: k = p, — pa
and | = —bp, thus, 7 = ak — bDl = ap; — a’p + b*Dp = ap, — dp.
Assume that sgn (aps) # sgn (dp). Then |r| = |aps| + |dp| > |d|. This
implies that p = p, = 0, which is a contradiction, therefore, sgn (ap,) =
= sgn (dp). Remark 6 implies that |d| > |a| and |p| > |p2|, so we get that
7| = |dp| apal > Ipalld] — lallpa| = Ipa] (4] — [al) . The Case (B) can be
proved in the same way. Remark 6 implies that in both (A) and (B) cases
|r| > |d|. This is a contradiction, therefore we proved that |m| = |7|. It
means that each element has same absolute value in the circle thus, we
completed the proof of Remark 11.0
Remark 12. The assertion of our theorem is true for the circle defined
in Remark 11.
Proof. We get from m, = ma:+ f that

1 f=n(l—-a)=n(l-a),n €Nincase T =,

2)f=-7m(a+1)=n(a+1),n € Nin case m = —.

Let us consider the value of 7 in every case. Case (A): from (1)
it follows that r = n (a — d), and from (2) follows that r = —n (a +d).
Since sgn (a) = sgn (a) and d = o, therefore @ > 0 in case (1) and @ < 0
in case (2) otherwise r > Lg—l would be valid. In Case (B) from (1) follows
that r = n(a+b—d), and from (2) follows that r = —n(a+b+d).
Since sgn (a) = sgn (b) = sgn (a) and d = a@, therefore @ > 0 in case (1)
and @ < 0 in case (2).0

In what follows, let us assume that each considered circle contains
at least one irrational element. Now we state an important assertion.
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Lemma 1. Let my, 72 be nonzero elements of P. »

(1) Assume that D # 1 mod 4, and m; = p;+¢;VD, (i = 1,2). Then
|q1| > |go| implies that |71| > |72

(2) Assume that D = 1mod 4, D #5, and m; = p;+qw, (i = 1,2).

Then |g1| > |gz| implies that |71| > |Tal.
Proof. Case (A): Let |q1| = |g2| + n, n € N. Assume in contrary
that || < |Ta|. Since |g1| # |ga|, therefore |71| < |7,|. Furthermore,
0 < [T — [T1| = (Ip2 = Ipa]) + Izl = la) VD = |pa| — |ps| — nv/D,
ie. |po| — |p1] > nv/D. To prove that this is impossible, we have to
investigate four cases: If |p1| > |@|vVD & |ps| > |g2|v/D holds, then
Ip2| > |p1|+nVD > ||V D +nvVD = |go|V/D +2n+/D, therefore, |m| =
=|pa| — lg2|V/D > 2nv/D. If |p1| > |¢1|v'D & |ps| < |g2|v/D holds, then
|m1|+|ma| = |p1| —|pe| +nv/D > 2nv/D. I |ps| < |@1|VD & |pa| > [go]vVD
holds, then |py| < |pa| & |pa| > Ipel- ¥ |p1] < |a1|vD & |ps| < |go|v/D
holds, then |ps| < |p1| — nv/D and |g2|v'D = |@1|v'D + nv/D so we can
write |m2| = |g2|v'D —|pa| > |g1|[vVD+nvD — |p1|+1vD = |my|+2nv/D.
Observe that each of the four cases leads to a contradiction, therefore we
have finished the proof of the Lemma 1 in Case (A).

In Case (B) we get similar results with similar computing, except
for case |pi| > |g1ijw & |p2| < |go|w. Since |7y| — |2 > 0, therefore
71| — [T2| = |p1] — |p2|] — nw + n, and from this |p;] — |ps| > nw — n.
We get that |m |+ [mo| = |p1| — |@1|w — [po| + |g2|lw = |p1| — |p2| + nw.
Observe that if n > 1, then |my| 4+ |m2| > 2w, which is a contradiction,
therefore we have to assume that n = 1. Then |m|+ |m2| = |p1| — |p2] +w.
Since |p1| — |p2| > w — 1, therefore |p;| — |p2| = [w]. Thus, |m| + |ms| =
= |p1| — |p2| +w and by Remark 2 (w+1) |O£f‘_|1 > [w]+w. We can compute
easily that this is impossible if D > 5.0

3. Investigation of the possible transitions

We shall investigate such periodic elements 7, 7y for which
(%) o — m and |T| > |7

In Case (A) Remark 2 and Remark 9 imply that _
(3.1) ||7] — |ma|| < VD, 7| + |ms| < 2v/DD, |7 — |7 < ¥BHL,

We can deduce some consequences of (3.1). If |p| = |pa] & |g] = |¢2]
then we get |T| = |T|, which contradicts (*). Now assume that |p| =
=|pa| & lg| # lga]. If [p| > |a|V'D & |pa| > |ga|V'D or |p| < |g]V/D & |pal<
< |g2|V/D is true, than ||7| — |m|| > /D, which contradicts (3.1). If
lpl > |g]V'D & |pa| < |go|V/D and from this |7| — [To| = [p| — |pa] +
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+(|g| — |g2))V'D < 0, because |gz] > |g|. This contradicts (). If |p| <
< |g|V'D & |pa|>|a>|v/D is valid, then [7] — [Ta|=(lg| — |g2[)v'D > VD,
which contradicts (3.1). In the end assume that |p| # |p2| & |g| # |g2],
then we have to consider four cases. If |[p| > |p2| & |g| > |ga| holds,
then |7| — [T2| = |p| — |p2| + (lg| — |e2|) VD > VD + 1, which contra-
dicts (3.1). If [p| > |pa| & |g| < |go| holds, and if |p| > |g|v'D & |ps| >
> |g2|vD or |p| < |glVD & |ps| < |ga|v/D is true, than ||r| — |my|| =
=|p| — |p2|| + |(lg2| ~ |g])v'D|>v/D + 1, which contradicts (3.1). On the
other hand if |p| > |q|v/D & |p2| < |g2|v/D is valid, then |7| — |72| > 0,
which implies that |p| — |p2| > | (lg2| = |a|) |V D, thus, |p| — |ps| > VD
so || + |ma| = |p| — |p2| + (2] — lg|) VD > 2v/D, which contradicts
(3.1). If [p| < |alvD & |pa| > |g2|vD then |p| > |ps| & |p| < |ps|-
This is impossible. If |p| < |p2| & |g| > |ge| holds, we get that if
[pl > 1g|vV'D & |pa| > lg2|V/D then |ma|— || = |ps| —Ip|+(lg] = lazl) VD 2
> /D +1, which contradicts (3.1). If |p| > |¢|v/D & |ps| < |g2|v/D then
Ip| > |p2| & |p| < |p2|- This is impossible. If |p| < |¢|vD & |pa| > |g2|v/D
then |7|+|m2| = |p2| — Ip|+ (lg| — |g2|) VD, thus, |g| = |g2| +1, otherwise,
||+ |ma| > 2+/D would be the consequence leading to a contradiction. If
lpl < lalV/D & |p2| < |g2|v/D then |m|~|ms| = |pa|~pl+(la| - |a2]) VD >
> 1+ +/D, which contradicts (3.1). If |p| < |ps] & |g| < |gz| holds, then
17| — 72| = |p] — |p2| + (lg| — |g2|) VD < 0, which contradicts (x).

In Case (B) we get a similar result for D > 5. On the other hand,
for D =5 if |p| < |glw & |p2| > |@2|w&|p| < |p2| & |g| > |go| is valid, then
7| — |TT2] = —m~+w—1, and from this w > m+1 > 2, which is impossible.
If we assume that |g| = |go| and |p| # |p2l, then |7| —|T2| = |p| — |p2| > 1,
which is impossible because |7| — |72| < %. Unfortunately, we do not get
a contradiction in either case |p| > |pa| & |g| < |g2] & |p| > |g|lw & |po| <
< |ga|w, or case |p| = |p2| & |g| = |g2| + 1 & |p] < lg|w & |p2| > |ga|w.

We can summarise our result as follows.

Lemma 2. Assume that 7,y belong to P, mg — 7 and |[7| > |T2|. Then
the following assertion holds.

(1) In case D # 1 (mod4) : if 7 = p+ ¢v'D,m = ps + VD,
then either [p| # |ps| & |g| = a2, or |g] = |go| +1 & 0 < [p| — |po| <
- < VD & Ip| < |¢|vD & |ps| > |g2|vV/D.

(2) In case D=1 (mod4) & D > 5: if 7 = p+ qw, T3 = pa + quw
then either |p| # |p2| & |q| = |gaf, or lg] = |g2| +1 & 0 < [p| — |p| <
<w-—-1&|p| < |qlw & |p2| > |g2|w.
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(3) In case D=1 (mod4) & D =5: if 7 = p+ qu, T = Py + gow
then either |p| > |py| & lg| < |g2| & |p| > lglw & |p2| < |g2|lw, or
[Pl = [pa| & lg] = la2| + 1 & |p| < |glw & |ps| > [g2w.

4. Transitions, where |q| # |q|

Let us consider an arbitrary circle of periodical elements. We as-
sume that there exists a transition 7, — 7, where [7| > [72), |q| # |ga|
and 7, my # 0.

In Case (A) according to the assertions of Lemma 2 7 = p +
+qVD, 5 = p2+92v/D and |g| = |go| +1 & 0 < |p| — |pa| < VD & |p| <
< |g|V'D & |p2| > |g2|v/D is true. Then the next two relations are valid:
(4.1) 7| + |72 = VD +m,

(4.2) [T| — [T2| = VD — m, where m = |p,| — |p|.

Then Remark 11 implies that 0 < m < v/D. Since 7y — m, there
exists an f € E,, for which m, = ma + f. We will try to give an upper
bound for |7| and |7| — |T2|. Then we have to investigate two cases. If
|f@] = Ir| + |s|VD, then [fa| = ||r| — |s|v/D| and so [F| = [7a| — [m,|.
Multiplying by o, we get |fa| = ||r| — |s|v/D| = [7d| — |72 and then
“ﬂll%ll—ﬂ > || — || Furthermore, if |my| = |7a| + |f] is valid, then
|m2| > |mal. But (4.2) implies that ||, |75] > m and from this we get
that |m5| > |a| > v/D+1. This is impossible. If || = |ra| — |f| is valid,
we get that | fa| = |rd|—|m.al|, and we get from this ﬂﬁﬂ%m > |xl.

Finally, if |my| = |f| — |7ral, then I—TIHL‘I/L?M > |m|. Thus, |r] <
< %ﬁlﬂ””a—l. So we have got that:
(4.3) 7| + |7 — |72] < |T|+|S|\/|?|+I7F2HE| + IITI—]lglI\/I_?I_

If |fal = ||r| — |s|V/D], then {fa| = |r| + |s|v/D and we get with a
similar computation that:

— — T|— \/_ 2| T 3\/5
(4.4) 7| + 7] — 7| < lir|—ls] IZHI olle] | |+l|dll .

Observe that (4.3) and (4.4) yield the same results: If |r| > |s|v/D,
then |7| + 7] — |T2| < Zlilillglf.zllﬁl <1+ ll’%‘l If |r| < |s|v/D, then ||+
7 o] < 2/B3lel < T4 b Singe /D4 Il > 1 bl i
is enough for us to consider the latter case. Then, from (4.2) it follows
that |7r|+\/5—m<\/5+% and
(4.5) v Ir| —m < Il

laf
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Assume that |r| < |s|v/D is valid. Then we get from (4.1) and
(4.5) that |r| —m > VD — |mg|. If VD — |my| > 72l then [r| —m > Fl.
This contradicts (4.5). Thus, we have to find a K D for each D, such that
|ma| < Kp and VD~ Kp > %—T— would be valid. If it will be successfull,
then we get that the considered transition does not exist! .

Thus, let Kp = \/_l—alﬁ_l—l Then vD — Kp = %. From Remark 2

it follows that Kp is a suitable upper bound, if Kp > [Qﬂﬂl—. This is

true, if VD ! ||°i1 > ‘/—“ [al . We can check with simple computmg that
this is always true except the cases where o € Tp. We got that my —
does not exist in Case (A).

In Case (B) let m = p+ qw,my = pa + quw. If D > 5, then we can
proceed in the same way, except that here Kp = (w — %) |o£ﬁl-1' Next, we
assume that D = 5, then |p| > |p2| & |g| < |g2] & |p| > |glw & |p2| <
< |go|w, where w = V54l We can compute easily from Remark 2 that
for arbitrary m € P : |7| < w — 0.1 if & ¢ T, therefore, we get that
|| + |m2| = |p| — Ip2] + (lg2| — |g]) w = w + 1 from which ||, |ms| > 1.1
follows, because 0 < |p| — |ps| < w. In addition we get that 7| — |Ta| =
= |p| — |p2| + (Jg| = |@2]) (w—1) =1 — (w—1) = 2 — w. We have to
consider four cases.

If [fa| = |r] — [slw — 1) let us assume that |s| > I;ﬂ then 2 —
a1 _1dl e,
~w = [7] - |72 < [T‘—IT,liﬁw_l) < 2 ‘[‘dl(w D - 8¢ < 2 — w, which
is a contradiction, therefore |s| < %. But then |7| < IT[T;" slo | ||7;2|| <
ldl_ 1dl,,

<2+ [f;f‘[ = M 4 % Since |a| > 7.8 and |m| < w — 0.1 we get

that || < 252 4 Il < 1.1,
If [fa| = |s| (w—1) — |r| then 2 —w = [7] — [F2| < I;Mﬁll)—_lrl <

< blw-t) o 7 2=l _ w——;—l < 2 — w, which is impossible.

ld =l
If |fal = |r| — || (w — 1) then || < fif + 2l < $ 4+l <11,
If | fa| = |s| (w — 1) — |r| then |r| < bl + 1%55+%<1.1.

‘ We arrive at contradictions in all cases, because || > 1.1, therefore,
we can say that transition m, — 7 does not exist. We can summarize
our results as follows:

Lemma 3. For arbitrary my — 7 transition, if [T]| > |72, |q| # |g| and
m,my # 0 are valid, then D =5,|p| = |p2| & lg] = |g2| +1 & |p| <
<|glw & |p2| > |go|w, where m =p+ qu,m = ps + Qow.
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5. The completion of the proof of the Theorem

Let us consider an arbitrary circle, and assume that the following
conditions are valid. (i) « is the element whose conjugate has the maximal
~absolute value in the circle.- (ii) Assume that there exist 7, 75 in the circle
such that m — m — m & |7| # |my|, |ma|.

First, assume that D # 5. We know that |q| > |q], |g2| because of
Lemma 1 and (i). Lemma 3 implies that |gz| = |¢|. Now, assume that
lg1| < lg|. Then there must be a transition 7, — m, in the circle such that
|lgz| < lgy| and then |7,| < |7,| follows from Lemma 1. But according
to the Lemma 3 such kind of transition does not exist, therefore, we can
observe that |g| = |¢1| = |g2|- Thus, in Case (A), we can describe these
two transitions with two equations for some f, f; € E,:

(5.1) m =7+ f, ie. po+@VD = (p+q¢vD)(a+bvD) + k+ VD,
(6.2) ¥ = Mo+ fi, ie. p+gvV/D = (p1 —I—ql\/I—j) (a—i—b\/ﬁ) +ky+1,VD.

Depending on the sign of @ and p, we can write the following four

equation systems, where 7 = p 4 ¢v/D and m,z > 0 integers:
(53) Ifa>0&p<0then my=p-+m+q¢gVD and 7, =p+2z+qVD.
(5.4)fa>0&p>0thenm =p—m-+qv/Dand m =p— z+ gV/D.
(5.5)Ifa < 0& p < 0thenmy =—p—m—qvD and 7, = —p—z—gv/D.
(5.6) If e < 0 & p > 0 then 7y = —p+m—qgv/D and 7, = —p+2z—qv/D.

From (5.1), (5.2) and (5.3) we get p+m +¢vD = (p+ ¢vD)(a +
b\/ﬁ)-i-f and p + gD = (P+z+Q\/1—7)(a+b\/—D_)+f1. From it
follows k — ky = m+az and | — [; = 2b. Using r = ak — bDI =
=a(k; +m+az) —bD(l, +zb) we obtain that r=r;+dz+am in Case (A).

We will receive some results in the other cases with the same
computing. In Case (A) we have from (5.4) r = 1 — dz — am, from
(6.5) r = —r1 +dz — am and from (5.6) r = —r; — dz + am. We can see
that all these four cases imply that |r| > J%l, which is a contradiction. In
Case (B) we get the same result. Thus, we got that there may exist only
such transitions where |7| = |71| = |m|.

Next, we assume that D = 5. We have already proved in Sect.4
that |g| < |go| will never be true, therefore, we have to consider only the
next case: D =5, |p| = |p2| & |g| = |g2| + 1 & |p| < |g|lw & |p2| > |g2|w.
For some f, f; € E, :

(6.7) my = mar+ £, in detail: py + gow = (p + qw) (a + bw) + k + lw.
(6.8) m = ma+ fi, in detail: p+ qw = (p1 + qw) (a + bw) + ky + Lw.

Determine k and [, where f = k+lw. Assume that p < 0, and @ > 0.

Then we get from (5.7) that p; +gow = p+qw —w = (p + qw) (a + bw) +
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+k + lw. We get that £ = p(1 —a) — %D—i—gf and [ = ¢(1—a) —
b(g+p) — 1. What can we say about the transition 7 — m 7
Assertion 1. |T| — |71| < w.
Proof. We know that |7| > w and Remark 8 imply that |f| < w. We
get from this that either |7| = |T.@| — |f4| or [7| = |m1@| + |f,|- Since
|Ta| = |Ta@| — |f|, therefore, |7&| — |f| < [mi@] + | f1|- We get from this
that [7| — 7| < UHHAL < 2ridde=1) <, 6

We saw in Sect. 4 that if |g| < |g1], then the transition 7 — m; does
not exist. Thus we can see that |g| > |g1|. Therefore, there are two cases:
Assertion 2. There does not ezist such a transition m—m, where |q|>|g1].
Proof. Assume that |g| = |g1| + n, where n > 0 is an integer. Observe
that 0 < [7]— 71| = |p|—Ip1|+(lg] - |a1)(w—1) = |p| = |pr[+n(w—-1) <w

and this implies that |p;| > |p|, and in this case either |m| = |gjw —
—nw — |p1| and from this |m| + |me| = |p| — ;| +w(l —n) < 0, or
|m1] = |p1]| — |g|lw + nw and from this |m| + |7| = |p1] — |p| + nw > nw

thus, n = 1 is valid. Thus, we have got that |m | = |ma|.

Now we shall calculate the value of k; and [; from (5.8) that p+-qw =

= (p+ qw — w) (a + bw) +k; +liw. We obtain that &, = p (1 —a)— %D+
+%’+%D-—% and l; = ¢ (1 - a)+a—b(g+ p)+b. Now we can compute s
from k—k, = —%D+% = 1—‘_42 and -1, = —a—b—1. Thus, s = al—bk =
=allh—a—b-1) -—b(kl—l—l—zﬂ) =aly —a® — ab — a — bk, — VP52,
Observe that d = a®+ ab-+b*352. This implies that s = s; — d — a. Since
@ > 0, therefore, |s| > %'. This is a contradiction. We arrive at the same
result even if we make this deducing in all cases depending on sign of &
and p.Q
Assertion 3. If |¢| = |g1| then |n| = |m|.
Proof. In this case |p| = |p1| + 1, since Ass. 1 implies that 0 < |7| —
—|71| = |p| — |p1| < w. We can calculate the value of k; and [; in the
same way that we used in the proof of Ass. 2. Then, from p + qw =
= (p+1+qw)(a+bw)+k +lw. We get that ks =p(1 —a)—a—2D+2
and [, = ¢ (1 —a)—b(g+ p)—b. Now we can compute r. Since k—k; = a
and [ — Iy = b—1thenr = (a+b)(ki+a) + 052 ({1 +b-1) =
= (a+b) k1 + a® + ab+ b1521 + 82152 +b. d = a® + ab+ b? 152 implies
that 7 = r; + d + b. Since @ > 0, therefore |r| > J%l. This is a contradic-
tion. We reach the same result even if we make this deducing in all cases
depending on sign of @ and p.¢

We have got a contradiction in all the cases of this subsection, thus
this way so we have proved the following assertion.
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Lemma 4. Each node of an arbitrary circle has the same absolute value.
Corollary. @ > 0 implies that each circle is a loop, @ < 0 implies that
each circle either consists of the loop 0, or contains a number and its
negative.

Proof. Assume that @ > 0. Then from 7, = T& + f we get that f =
= Ty — 7. Observe that if sgn (T) # sgn (73), then [f| = [T| + [7a| >
> w+1, which is impossible. Thus, we have got that sgn (7) = sgn (3) =
= sgn (p) = sgn (p2), which implies that sgn (1) = sgn () and according
to the Lemma 4 m = 9. In this case, naturally, 7 = m; is valid too. With
similar computation, we can get that @ < 0, which implies that 7 = —,.
Observe that in this case 7 = —my will be valid, and then 7; = m,. Thus,
we have finished the proof of our Theorem.¢

6. Appendix

Here are presented the elements of T, the suitable digit sets. If
P # {0}, then P and the transitions belonging to it are also provided.

Let (a+0¥2%) and (a+bvD)denoted by (a,b).
D =2. (1) a=%(1,2), £Eo=%{(1,1), (2,1), 1} U {0}. (2) a==(3,1),

tE, = :}:{(151)1 (Oa 1)’ 1} U {O} (3) a = :I:('?’ 3) tE, = i{ la]-)a (2 )1
(3,2), 1} U {0}, £P = {0, +(1,—-1)}. The transitions: (1,~1) = (=1,1)e +
+(_2a_2)7 ("*17 1) = (1a_1)a+(2a2) (4) a= (4 4) iEa - i{(]-,l 3 (27 1)7
]-a (312)} U {07 (_31_1) ( 4 2) ( 2 2) ( 5 3) ( )7 ( 67_4)a
(Oa'—l)}' (5) a = j:(613) :l:Ea - :l:{(l 1) (27 1)’ 17 (3 2) ( ) )7 (071)a
(2,2)} U0, (3,3), (1,2), (5,4)}.

D=3. (6) Ol‘:l:(Z, )1 :tE { )11}U{01(_3’“1)7(_17_l)a(”‘47 _2)}

D=6. (7) a=+(1,1), :i:Ea—:I:{l, 2} U {0}, £P={0, £(2,—-1)}. The

transitions: (2,—1) = (-2,1)a — 2, (—2,1) = (2 -1)a+2
. (8) oz—:l:(l,l , £E, —:i:{l 2}U{0 (—4,-1)}.
(1,1) :tEa—:I:{l 2, 3}U{0}

3. (10) =( ,2), £EBq —ﬂ:{(l 0), (2,1), (1,1), (3,2)} U {0}.
= {( 0), (2,1), (1,1), (3,2), (2,2), (4,3), (3,1),
i{( ,0), (0,1), ( 1), (2,2)}u{0}. (13)
U{O’ ( ) ( —“1) (1) ), (2a1)a (372), )
, (1,=1)} The transitions: +(—1,0) =
« -1), £(1,-1) = +(1,-1)a+
; (4,3) (3,2)} U {0, (—8,-6),

4)}, £P = {0, ( 2,1)}.

,’—1) ( 2,

gouo

?

1
(— ) (1 0) ( )7( 3 4)7 (_7a
The transitions: (— 2 1) = (2,-1)
(15) a = (5 5)7 iE& - i{(la ) )
(5,4), (7,5), (5,3), (6,4)} U {0}. (16) a =
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(1,1)7 (3,2), (2,2), (4,3), (8,6), (4,2), (5,4), (7,5), (5,3), (
)7 (_117—8)7 371), (07_1)7 (_97 _6)1 3
, ) (A7) a=(7,4), £E, =+ {(1,0), (2,1), (1,1
)’ (4’4)1 (574)7 (7’6)7 (373)7 (6’ 5)7 (2’3)’ (172)‘) (0’ 1)
» £E, = £{(1,0), (2,1), (1,1), (3,2), (2,2), (4,3), (4,4), (5,4),
) 9,7), (10,8)} U {0}.
(3,1), +E, = £{(1,1)} U {0, (2,2), (0,-1), (1,0),
—2,1), (1,—1)}. The transitions: £(—1,0) =
+(2,1), £(-2,1) = £(-2,1)a £ (0, 1), +(1,-1) = +£(1,-1)a £
) = £{(1,0), (2,1), (1,1), (3,2), (5,3), (4,2
, (=6,=3)}. (21) @ = (5,2), £E, = £{(1,0
4 3), (3,3), (1,2), (0,1)} U{0}.

W
o I
S
ot
H_

|

!

—~~
=
T
J—‘
SN’
o~

D = 29. (23) a = (4a 1)7 tE, = :i:{(lﬁo)’ (27 1)’ (111)) (31 2): (272)1

(4,2)} u{0}.

D=33. (24) a=(1,1), £E, = £{(1,0), (2,1)} U{0, (=4, ~1)}.

D =37. (25) a=(1,1), £E, = £{(1,0), (3,1), (4,1)} U {0}.

D =41. (26) a=(1,1), +B, = +{(1,0), (4, 1)}U{0, (2,0), (=5, 1),
(—3) _1)}

D 45. (27) a=(1,1), £Ba = £{(1,0), (4,1), (5,1), (2,0)} U {0}.

=5. (28) a = (1 4) :tEa = :|:{(1,0), (07 1)1 (1,2), 2, )1 (1 1)}U{0}

(29) a=(3,2), +Eq = £{(1,0), (0,1), (1,2), (2,0), (1,1)} U {0}.
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